大一高数复习资料

合集下载

高数大一必考知识点归纳

高数大一必考知识点归纳

高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。

为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。

1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。

1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。

1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。

2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。

2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。

2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。

3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。

3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。

3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。

4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。

4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。

4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。

5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。

5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。

5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。

综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。

大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。

大一高数全部知识点汇总

大一高数全部知识点汇总

大一高数全部知识点汇总高等数学作为大一学生必修的一门课程,是建立在中学数学基础之上的一门学科,主要涉及微积分、数列、级数、概率论等内容。

下面是大一高数的全部知识点汇总。

1. 函数与极限1.1 函数函数的概念、性质及表示法常见函数及其性质(线性函数、幂函数、指数函数、对数函数、三角函数等)复合函数与反函数1.2 极限数列收敛的概念与性质函数极限的定义与性质极限的四则运算法则与基本极限公式无穷小量与无穷大量常见极限计算方法2. 导数与微分2.1 导数导数的定义与性质常见函数的导数(幂函数、指数函数、对数函数、三角函数等)导数的四则运算法则及高阶导数2.2 微分微分的定义与性质微分中值定理函数的单调性与极值曲线的凹凸性与拐点导数在几何应用中的意义(切线、法线、极值、拐点等)3. 积分与不定积分3.1 积分定积分的定义与性质牛顿-莱布尼茨公式与积分区间可加性常见函数的积分(幂函数、指数函数、对数函数、三角函数等)定积分的计算方法(换元法、分部积分法、分段函数等)3.2 不定积分不定积分的定义与性质常见函数的不定积分基本初等函数与初等函数的积分表达式4. 微分方程4.1 微分方程的基本概念微分方程的定义、分类及基本术语4.2 一阶常微分方程可分离变量的一阶方程一阶线性方程齐次方程与非齐次方程4.3 二阶常系数齐次线性微分方程特征根与特征方程解的结构与通解形式已知边值问题与未知边值问题4.4 变量分离的方程4.5 有关高阶微分方程的基本概念5. 数列与级数5.1 数列的定义与常见性质等差数列与等比数列数列的极限与单调性5.2 级数的定义与常见性质等比级数与调和级数级数的收敛与发散判定绝对收敛与条件收敛级数收敛的收敛准则6. 概率统计6.1 随机事件与概率概率的定义与性质事件关系与运算条件概率与独立性6.2 随机变量与概率分布随机变量的概念与性质离散型随机变量与连续型随机变量常见概率分布(均匀分布、二项分布、正态分布等)6.3 统计与抽样总体与样本的概念随机抽样与抽样分布参数估计与假设检验以上就是大一高数的全部知识点汇总,希望对你的学习有所帮助!。

大一高数的重点知识点

大一高数的重点知识点

大一高数的重点知识点一、函数与极限1. 函数的定义与性质2. 一次函数与二次函数的图像与性质3. 指数函数与对数函数的性质4. 三角函数的性质与图像5. 极限的定义与基本性质6. 常见函数的极限与连续性二、导数与微分1. 导数的定义与应用2. 常见函数的导数公式与高阶导数3. 微分的定义与应用4. 高阶导数与泰勒展开式5. 隐函数的导数与相对变化率6. 函数的单调性与凹凸性三、定积分与不定积分1. 定积分的定义与性质2. 定积分的计算与应用3. 不定积分的定义与基本公式4. 常见函数的不定积分公式5. 牛顿-莱布尼茨公式与变量替换法6. 定积分在几何学中的应用四、常微分方程1. 常微分方程的基本概念与解的存在唯一性定理2. 可分离变量与齐次方程的解法3. 一阶线性常微分方程的解法4. 变量可分离与参数代换法5. 高阶常微分方程与常系数线性齐次方程6. 常微分方程在科学与工程中的应用五、多元函数与偏导数1. 多元函数的定义与性质2. 隐函数与显函数的偏导数3. 高阶偏导数与混合偏导数4. 多元函数的极限与连续性5. 多元函数的偏导数与全微分6. 多元函数的泰勒展开式与极值判定六、重积分与坐标系1. 二重积分与累次积分2. 极坐标系下的二重积分计算3. 三重积分与累次积分4. 柱坐标系与球坐标系下的三重积分计算5. 重积分的应用:质心、转动惯量、体积等问题6. 曲线积分与曲面积分的基本概念与计算方法以上是大一高数的重点知识点的简要介绍,包含了函数与极限、导数与微分、定积分与不定积分、常微分方程、多元函数与偏导数以及重积分与坐标系等方面的内容。

对于每个知识点,理解其定义、性质以及应用场景是非常重要的。

在学习过程中,要多做习题、例题和练习题,加深对各个知识点的理解与掌握。

希望以上内容对你有所帮助,祝你在大一高数学习中取得好成绩!。

高数大一最全知识点

高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。

掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。

下面将为大家整理总结大一高数中最全的知识点。

第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。

2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。

3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。

第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。

2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。

3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。

第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。

2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。

3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。

第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。

2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。

3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。

第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。

2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。

3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。

第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。

2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。

大一高数知识点笔记

大一高数知识点笔记

大一高数知识点笔记高等数学是大学课程中的重要基础学科,对于大一的同学来说,掌握好高数的知识点是至关重要的。

以下是我对大一高数部分重要知识点的笔记整理。

一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。

简单来说,对于定义域中的每一个值,都有唯一确定的值与之对应。

函数的表示方法有解析式法、图像法和列表法。

2、函数的性质(1)单调性:函数在某个区间上,如果随着自变量的增加,函数值也增加,就是单调递增;反之则是单调递减。

(2)奇偶性:如果对于函数定义域内的任意一个 x,都有 f(x) =f(x),则称函数为偶函数;如果 f(x) = f(x),则称函数为奇函数。

(3)周期性:如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x)都成立,那么就把函数 y = f(x)叫做周期函数,周期为 T。

3、极限的概念极限是指函数在某个变化过程中无限趋近于某个值。

比如,当 x 趋近于某个值 a 时,函数 f(x)趋近于一个确定的常数 L,就说函数 f(x)在x 趋近于 a 时的极限是 L。

4、极限的计算(1)利用极限的四则运算法则:如果 lim f(x) 和 lim g(x) 都存在,那么 lim f(x) ± g(x) = lim f(x) ± lim g(x);lim f(x) × g(x) = lim f(x) × lim g(x);lim f(x) / g(x) = lim f(x) / lim g(x) (lim g(x) ≠ 0)。

(2)两个重要极限:lim (sin x / x) = 1 (x → 0);lim (1 +1/x)^x = e (x → ∞)5、无穷小与无穷大(1)无穷小:以零为极限的变量称为无穷小。

(2)无穷大:在自变量的某个变化过程中,绝对值无限增大的变量称为无穷大。

二、导数与微分1、导数的定义函数 y = f(x) 在 x = x₀处的导数 f'(x₀) = lim f(x₀+Δx) f(x₀) /Δx (Δx → 0)。

大一高数知识点提纲

大一高数知识点提纲

大一高数知识点提纲
一、实数与数轴
A. 实数的定义与性质
B. 数轴的概念和表示法
C. 实数的分类:有理数和无理数
二、函数与映射
A. 函数的定义与性质
B. 函数的图像与性质
C. 映射的概念与性质
三、数列与极限
A. 数列的定义和性质
B. 数列的收敛与发散
C. 数列极限的计算与性质
四、导数与微分
A. 导数的定义与性质
B. 基本导数法则
C. 高阶导数和隐函数求导
五、微分中值定理与应用
A. 罗尔中值定理和拉格朗日中值定理的概念与性质
B. 柯西中值定理及其应用
C. 泰勒展开和泰勒公式的应用
六、不定积分与定积分
A. 不定积分的定义与性质
B. 基本积分法则
C. 定积分的定义与性质
七、微分方程初步
A. 微分方程的基本概念和分类
B. 一阶常微分方程的解法
C. 高阶常微分方程的解法
八、空间解析几何
A. 点、直线、平面的方程及其性质
B. 空间中的曲线与曲面
C. 参数方程与极坐标方程
九、多元函数与偏导数
A. 多元函数的概念与性质
B. 偏导数的定义与计算
C. 隐函数求导与高阶偏导数
十、重积分与曲线积分
A. 二重积分的概念与计算
B. 三重积分的概念与计算
C. 曲线积分的概念和计算
以上是大一高数的知识点提纲,它包括实数与数轴、函数与映射、数列与极限、导数与微分、微分中值定理与应用、不定积分与定积分、微分方程初步、空间解析几何、多元函数与偏导数、重积分与曲线积分等内容。

通过学习这些知识点,学生可以建立起大一高数的基本概念和计算方法,为后续更高级的数学课程打下坚实的基础。

大一高数上所有知识点总结

大一高数上所有知识点总结

大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。

大一高数复习知识点

大一高数复习知识点

大一高数复习知识点一、函数与极限1. 函数的概念函数是数学中的一个基本概念,它描述了输入与输出之间的关系。

一般来说,我们把输入称为自变量,输出称为因变量。

2. 极限的概念极限是函数中的一个重要概念,用来描述函数在某一点上的趋近性。

简单来说,一个函数的极限可以看作是函数在该点附近的稳定值。

3. 基本的极限运算法则- 常数乘以函数的极限等于函数的极限乘以该常数。

- 两个函数的和的极限等于两个函数的极限之和。

- 函数的极限与自变量无关。

二、导数与微分1. 导数的定义导数描述了函数在某一点上的变化率。

在数学上,导数可以通过极限来定义,即函数在某一点上的极限值。

2. 常见函数的导数公式- 常数函数的导数为0。

- 幂函数的导数可以通过幂函数的指数减1再乘以导数来计算。

- 指数函数和对数函数的导数可以通过指数函数或对数函数自身来计算。

3. 微分的概念微分描述了函数在某一点上的局部线性逼近。

它是导数的一种应用。

三、微分中值定理1. 罗尔定理罗尔定理指出,如果一个函数在某一闭区间上连续,在该区间的两个端点处取得相同的函数值,那么在这个区间内,存在至少一点使得函数的导数等于零。

2. 拉格朗日中值定理拉格朗日中值定理是导数中值定理的一种情况,它表示在一个开区间上,函数存在至少一点处的导数等于该区间上函数的平均斜率。

四、不定积分与定积分1. 不定积分的定义不定积分是函数逆运算的一种形式,使用一个表示无穷小的符号 "dx" 来表示。

不定积分可以求出一个函数的原函数。

2. 常见函数的不定积分公式- 幂函数的不定积分可以通过幂函数的幂次加1再除以幂次来计算。

- 指数函数和对数函数的不定积分可以通过指数函数或对数函数自身来计算。

3. 定积分的定义定积分用来计算曲线与坐标轴之间的面积或曲线的弧长。

定积分可以看作是不定积分的一种应用。

五、常微分方程1. 常微分方程的定义常微分方程是含有未知函数的导数的方程,其中未知函数是变量的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 函数与极限 第一节 函数○邻域(去心邻域)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim极限存在准则及两个重要极限○夹逼准则第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x eee e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第四节 无穷小量与无穷大量 ○无穷小与无穷大的本质函数()x f 无穷小⇔()0lim =x f函数()x f 无穷大⇔()∞=x f lim ○无穷小与无穷大的相关定理与推论(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦ (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1fx -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小;(()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)无穷小量的阶○等价无穷小(P65/P77)(外加此公式)(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为【题型示例】求值233lim 9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ (其中3x =为函数()239x f x x -=-的可去间断点) 倘若运用罗比达法则求解(详见第三章第二节): 解:()()0233323311limlim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim 23--→x x x【求解示例】36x →===【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫ ⎪+⎝⎭====第五节 函数的连续性 ○函数连续的定义()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=xa e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =闭区间上连续函数的性质 ○零点定理【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,~xx sin tan -23x内至少有一个根ξ 第二章 导数与微分第一节 导数概念(导数公式表P111) ○高等数学中导数的定义及几何意义【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 求导的基本法则 ○函数和(差)、积与商的求导法则 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭○反函数的求导【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(P 习题2.2)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛⎫ ⎝高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第三节 隐函数及参数方程型函数的导数○隐函数的求导(等式两边对x 求导)【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第四节 函数的微分○基本初等函数微分公式与微分运算法则 ()dx x f dy ⋅'=第六节 微分学中值定理 ○罗尔定理(1)在闭区间[a,b]上连续 (2)在开区间(a,b )内可导 (3)f(a)=f(b)则至少存在一点在(a,b )使f(x)内可导 ○拉格朗日中值定理【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第七节 罗比达法则○运用罗比达法则进行极限运算的基本步骤1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】 200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法) 【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx x x y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶ 取对数获得乘积式(通过对数运算将指数提前)第八节 函数形态研究○连续函数单调性(单调区间) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导 ∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x == 3.(三行表)x(),1-∞1()1,22()2,+∞()f x '+-+()f x极大值极小值4.∴函数()f x 的单调递增区间为(][),1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >) 2.()10x x e ϕ'=->,(0x >) ∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +< 【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +< ○连续函数凹凸性【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x (,0)-∞ 0 (0,1)1(1,2) 2 (2,)+∞y ' - 0 + + 0 - y '' + + - - y 1 (1,3) 54.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; 函数2313y x x =+-的拐点坐标为()1,3函数的极值和最大、最小值○函数的极值与最值的关系⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-=4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 函数图形的描绘第三章 一元函数积分学第四节 不定积分的概念与性质(积分表P208/P213)○原函数与不定积分的概念 ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(P208、P213很重要) ○不定积分的线性性质(分项积分公式)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 换元积分法○第一类换元法(凑微分)(P226) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d xϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x+⎰【求解示例】222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式P216)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈)::令t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰○分部积分法(P228)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指”○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x xxxx x x e xdx e d x e x xd e e x e xdx e x e d x e x e x xd ee x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x xe xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰○定积分的定义()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质⑴()()b baaf x dx f u du =⎰⎰⑵()0a a f x dx =⎰ ⑶()()bbaakf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求)微积分基本公式○牛顿-莱布尼兹公式(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dx ϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x xx L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos 000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim 21lim sin cos 2sin cos 21122xxx x xL x x x x x x e ex x e xxdx e dx x x e x e x x e x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第五节 定积分的换元法及分部积分法 ○定积分的换元法 ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰ 【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求4221x dx x ++⎰()221210,43220,1014,332332311132222113111332223522933解:t t x x x t x t t x dx dx tx t t dt t dt t x t =+>=-====++−−−−−−→++⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵ 若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分的应用(P248)面积增量的近似值为[f 上(x )- f 下(x )]dx 它也就是面积元素设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成y =f 上 y =f下上下⎰=ba S [f上(x )- f下X-型区域1、直角坐标系情形常用等价无穷小~ 1e -x,0 →x 当~ 1-x a ~ x sin ~ x tan ~ x arcsin ~ x arctan ~ )1ln(x +~xx sin tan -23x ~xcos 1-22x ~ 1)1(-+αx xx x xx x x xα例1 求双纽线θρ2cos 22a =所围平面图形的面积.解由对称性知总面积=4倍第一象限部分面积14A A =θθπd a A 2cos 21442⎰=.a =例2 计算由两条抛物线x y =2和2x y =所围成的图形的面积.解 两曲线的交点)1,1()0,0(面积元素dxx x dA )(2-=选X为积分变量 x ]1,0[∈x dxx x A )(21-=⎰10333223⎥⎦⎤⎢⎣⎡-=x x .31=2x y =2y x =取积分变量为x ,],[b a x ∈在],[b a 上任取小区间],[dx x x +,取以dx 为底的窄曲边梯形绕x 轴旋转而成的薄片的体积的近似值为体积元素, dx x f dV2)]([π=xdxx +旋转体的体积为 dx x f V ba 2)]([⎰=π)(x f y =。

相关文档
最新文档