数学的魅力数学难题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其前提是尺规作图。 如果不限于尺规,它就会成为可能, 目前已知的方法就有好几种。 “三等分角问题”除了尺规要求外, 还有一点常被人忽略,那就是三等分 的是“任意角”,对于某些具体的角 度,比如90,它就是可能的。
SZU
第二节 Fermat大定理
第二节 Fermat大定理
(1637年——1994年)
x4 + y4 = z2 (3)
没有正整数解。从而方程(2)也没有正整数 解。
证明依赖于勾股数的表示(见本课程第3章)。 此处从略。
新的方向
索菲娅 Sophie Germain (1776 -
1831)
➢法国人。少数研究数学的女 性。
➢提出将“费马大定理”分成 两种情况: (I) n 能整除 x、y、z。 (II) n 不能整除 x、y、z。
后从这组解(a, b, c)出发,导出一组新的
正整数解(a1, b1, c1) , 而且c1 < c ,这与c 的最小性相矛盾
费马发明了一种“无穷递降法”,用以 给出了一个定理,由这个定理可以给出n=4的 情形。这个定理是:边长为整数的直角三角 形的面积不是一个完全平方数。用这种方法 可以证明方程
直线方程是(一次)线性的,而圆 的方程是二次的。通过上述五种手段所 能做出的交点问题,转化为求一次与二 次方程组的解的问题。
简单的代数知识告诉我们:
通过直尺与圆规所能做出 的只能是已知线段(长度) 的和、差、积、商以及开平 方的有限次组合。
Biblioteka Baidu
三大作图问题的不可能性
三大作图问题要作什么?
(1)“倍立方体” ,要作出数值3 2
(1)
在n > 2时没有正整数解。
在费马去世五年后的1670年,费马的儿 子在整理父亲遗留的书籍时,发现了这 一批注,并公开出版。
深圳大学数学与计算科学学院
2
两个特例:n=3,4
zwj@szu.edu.cn
新人出击
欧拉 Leonhard Euler (1707 - 1783)
➢ 瑞士人。 18世纪最优秀的数学家。
方程
xn yn zn, n 3
没有正整数解。
该书第二卷命题8给出了方程
x2 + y2 = z2
的整数通解。 若m, n 是两个正整数,且2mn是完全平方 数,则通解为
x m 2mn y n 2mn z m n 2mn
1637年,费马在阅读这一命题后,在 该命题旁边空白处用拉丁文写下一段具有 历史意义的批注:
几个著名数学问题
范围:古代三大难题;近代三大难题;现代七大
几个著名数学问题
的历史与现状
希尔伯特
选题原则: 典型、重要、著名、合适
• 几何作图三大难题 – 化圆为方 – 倍立方体 – 三等分角
• 费马大定理 • 哥德巴赫猜想 • 四色猜想 • 庞加莱猜想
范围:古代三大难题;近代三大难题;现代七大
SZU
这就是著名的“倍立方体问题”, 又叫“第罗问题”:
求作一个正方体,其体积等于已 知正方体体积的两倍
该 问 题 直 到 1837 年 才 由 万 锲 尔 (P.L. Wantzel, 1814--1848)给出否定 的答案。
要确定北门和小桥的位置,关键是算
出夹角 NSH 。记a 为南门S与居室H连线
4x3 3的x 解a 。 01837年万锲尔证明,这 两个问题都是用直尺和圆规不能作出 的。
(2)“化圆为方” ,要作出数值 ,
1882年德国数学家林德曼(C.L.F. Lindemann,1852——1939)证明 了是超越数,随即解决了“化圆为方” 问题的不可能性。
几何三大作图难题是已经解决了 的,结论为“不可能”。
➢ 世上最多产的数学家。 ➢ 13岁入大学,17岁取得
硕士学位,30岁右眼失 明,60岁完全失明。
欧拉( 1707-1783)
n=4的费马大定理证明: 无穷递降法
基本思想:(欧拉:1738)
假如(1)有正整数解(a,b,c), 即
a4 + b4 = c4
(2)
则在正整数解中总有使数 c 最小者,然
(2)“化圆为方” ,要作出数
(值3)“三等分角”,如果记a = cosA, 要
作出角度A/3, 也必作出相应的余弦值
x = cos(A/3), 由三倍角公式,此值x
是方4程x3 3x a 0
的解。
三大作图问题是不可能的
(1)“倍立方体” ,要作出数值3 2 , “三等分角”,要作出是三次方程
直尺和圆规能做什么?
作图工具——直尺和圆规能做什么?
直观地看: (1)通过两点作直线; (2)以已知点为圆心,已知线段为半径作圆; (3)定出两条已知非平行直线的交点; (4)定出两个已知圆的交点; (5)定出已知直线与已知圆的交点。
1837年数学家万锲尔(P.L. Wantzel, 1814--1848)注意到:
“将一个正整数的立方表为两个正整数 的立方和;将一个正整数的四次方表为 两个正整数的四次方和;或者,一般地, 将一个正整数的高于二次的幂表为两个 正整数的同一次幂的和,这是不可能的。 对此,我找到了一个真正奇妙的证明, 但书页的空白太小,无法把它写下。”
用式子来表达这段话就是:
方程
xn + yn = zn
SH与河流之间的夹角,则通过几何知识可
以算出
NSH 2a
北门N
3
小桥P
a
?
南门S
河流
H公主 居室
这就是著名的“三等分任意角”问 题
求作一个角, 等于已知角的三分之一
这个问题流传下来,直到1837年才 由万锲尔给出否定的答案。
深圳大学数学与计算科学学院
3 三大作图难题 难在何处?
zwj@szu.edu.cn
1831年,一位完全靠自学成材的法国 女数学家索菲娅,依靠自己的聪明才智,把 结果向前推进了一大步:
在x, y, z与n互素的前提下,证明了对所 有小于100的奇素数,费马大定理成立。
如 果 n 是 不 超 过 100 的 奇 素 数 , 则不存在正整数组( x, y, z ), 使得x, y, z与n互素且满足方程 xn+yn=zn。
几何作图三大难题
In This Section 一家人
化圆 为方
倍立方体
三等 分角
(公元前5世纪——1882年)
=
×2=
这就是化圆为方问题
求作一个正方形, 其面积等于已知圆的面积
该问题直到1882年才被德国数学家林德曼 (C.L.F. Lindemann,1852——1939)证明 为不可能。
SZU
第二节 Fermat大定理
第二节 Fermat大定理
(1637年——1994年)
x4 + y4 = z2 (3)
没有正整数解。从而方程(2)也没有正整数 解。
证明依赖于勾股数的表示(见本课程第3章)。 此处从略。
新的方向
索菲娅 Sophie Germain (1776 -
1831)
➢法国人。少数研究数学的女 性。
➢提出将“费马大定理”分成 两种情况: (I) n 能整除 x、y、z。 (II) n 不能整除 x、y、z。
后从这组解(a, b, c)出发,导出一组新的
正整数解(a1, b1, c1) , 而且c1 < c ,这与c 的最小性相矛盾
费马发明了一种“无穷递降法”,用以 给出了一个定理,由这个定理可以给出n=4的 情形。这个定理是:边长为整数的直角三角 形的面积不是一个完全平方数。用这种方法 可以证明方程
直线方程是(一次)线性的,而圆 的方程是二次的。通过上述五种手段所 能做出的交点问题,转化为求一次与二 次方程组的解的问题。
简单的代数知识告诉我们:
通过直尺与圆规所能做出 的只能是已知线段(长度) 的和、差、积、商以及开平 方的有限次组合。
Biblioteka Baidu
三大作图问题的不可能性
三大作图问题要作什么?
(1)“倍立方体” ,要作出数值3 2
(1)
在n > 2时没有正整数解。
在费马去世五年后的1670年,费马的儿 子在整理父亲遗留的书籍时,发现了这 一批注,并公开出版。
深圳大学数学与计算科学学院
2
两个特例:n=3,4
zwj@szu.edu.cn
新人出击
欧拉 Leonhard Euler (1707 - 1783)
➢ 瑞士人。 18世纪最优秀的数学家。
方程
xn yn zn, n 3
没有正整数解。
该书第二卷命题8给出了方程
x2 + y2 = z2
的整数通解。 若m, n 是两个正整数,且2mn是完全平方 数,则通解为
x m 2mn y n 2mn z m n 2mn
1637年,费马在阅读这一命题后,在 该命题旁边空白处用拉丁文写下一段具有 历史意义的批注:
几个著名数学问题
范围:古代三大难题;近代三大难题;现代七大
几个著名数学问题
的历史与现状
希尔伯特
选题原则: 典型、重要、著名、合适
• 几何作图三大难题 – 化圆为方 – 倍立方体 – 三等分角
• 费马大定理 • 哥德巴赫猜想 • 四色猜想 • 庞加莱猜想
范围:古代三大难题;近代三大难题;现代七大
SZU
这就是著名的“倍立方体问题”, 又叫“第罗问题”:
求作一个正方体,其体积等于已 知正方体体积的两倍
该 问 题 直 到 1837 年 才 由 万 锲 尔 (P.L. Wantzel, 1814--1848)给出否定 的答案。
要确定北门和小桥的位置,关键是算
出夹角 NSH 。记a 为南门S与居室H连线
4x3 3的x 解a 。 01837年万锲尔证明,这 两个问题都是用直尺和圆规不能作出 的。
(2)“化圆为方” ,要作出数值 ,
1882年德国数学家林德曼(C.L.F. Lindemann,1852——1939)证明 了是超越数,随即解决了“化圆为方” 问题的不可能性。
几何三大作图难题是已经解决了 的,结论为“不可能”。
➢ 世上最多产的数学家。 ➢ 13岁入大学,17岁取得
硕士学位,30岁右眼失 明,60岁完全失明。
欧拉( 1707-1783)
n=4的费马大定理证明: 无穷递降法
基本思想:(欧拉:1738)
假如(1)有正整数解(a,b,c), 即
a4 + b4 = c4
(2)
则在正整数解中总有使数 c 最小者,然
(2)“化圆为方” ,要作出数
(值3)“三等分角”,如果记a = cosA, 要
作出角度A/3, 也必作出相应的余弦值
x = cos(A/3), 由三倍角公式,此值x
是方4程x3 3x a 0
的解。
三大作图问题是不可能的
(1)“倍立方体” ,要作出数值3 2 , “三等分角”,要作出是三次方程
直尺和圆规能做什么?
作图工具——直尺和圆规能做什么?
直观地看: (1)通过两点作直线; (2)以已知点为圆心,已知线段为半径作圆; (3)定出两条已知非平行直线的交点; (4)定出两个已知圆的交点; (5)定出已知直线与已知圆的交点。
1837年数学家万锲尔(P.L. Wantzel, 1814--1848)注意到:
“将一个正整数的立方表为两个正整数 的立方和;将一个正整数的四次方表为 两个正整数的四次方和;或者,一般地, 将一个正整数的高于二次的幂表为两个 正整数的同一次幂的和,这是不可能的。 对此,我找到了一个真正奇妙的证明, 但书页的空白太小,无法把它写下。”
用式子来表达这段话就是:
方程
xn + yn = zn
SH与河流之间的夹角,则通过几何知识可
以算出
NSH 2a
北门N
3
小桥P
a
?
南门S
河流
H公主 居室
这就是著名的“三等分任意角”问 题
求作一个角, 等于已知角的三分之一
这个问题流传下来,直到1837年才 由万锲尔给出否定的答案。
深圳大学数学与计算科学学院
3 三大作图难题 难在何处?
zwj@szu.edu.cn
1831年,一位完全靠自学成材的法国 女数学家索菲娅,依靠自己的聪明才智,把 结果向前推进了一大步:
在x, y, z与n互素的前提下,证明了对所 有小于100的奇素数,费马大定理成立。
如 果 n 是 不 超 过 100 的 奇 素 数 , 则不存在正整数组( x, y, z ), 使得x, y, z与n互素且满足方程 xn+yn=zn。
几何作图三大难题
In This Section 一家人
化圆 为方
倍立方体
三等 分角
(公元前5世纪——1882年)
=
×2=
这就是化圆为方问题
求作一个正方形, 其面积等于已知圆的面积
该问题直到1882年才被德国数学家林德曼 (C.L.F. Lindemann,1852——1939)证明 为不可能。