[学习]多元正态分布的假设检验

合集下载

多元正态分布参数的估计与假设检验-判别分析

多元正态分布参数的估计与假设检验-判别分析
分布h(θ | x ) ∈ F * , 则称F *是关于分布密度p( x | θ ) 的共轭先验分布族,简称共轭分布族.
注 共轭分布族总是针对分布中的某个参数而言的 共轭分布族总是针对分布中的某个参数而言的.
三、贝叶斯风险
1、贝叶斯风险的定义 由第一小节内容可知,给定损失函数以后, 由第一小节内容可知,给定损失函数以后,风 险函数定义为
R(d ) = inf R(d ),
* d ∈D
∀d ∈ D
则称d * ( X )为参数θ的贝叶斯估计量
注 1、贝叶斯估计是使贝叶斯风险达到最小的决策 、 函数. 函数 2、不同的先验分布,对应不同的贝叶斯估计 、不同的先验分布, 2、贝叶斯点估计的计算 平方损失下的贝叶斯估计 定理4.2 定理 设θ的先验分布为π(θ)和损失函数为 的先验分布为π θ 和损失函数为
Θ
=∫
Θ

Χ
L(θ , d ( x ))q( x | θ )π(θ )dxdθ
=∫
Θ
∫θ | x )g(x )dxdθ
Θ
= ∫ g(x ){ ∫ L(θ , d ( x ))h(θ | x )dθ }dx
Χ
四 、贝叶斯估计
1、贝叶斯点估计 定义4.6 若总体 的分布函数F(x,θ)中参数θ为随机 定义 若总体X的分布函数 中参数θ 的分布函数 θ 中参数 变量, θ 为 的先验分布,若决策函数类D中存在 变量,π(θ)为θ的先验分布,若决策函数类 中存在 一个决策函数使得对决策函数类中的任一决策函数 均有
第8.2节 节
判别分析
一、先验分布和后验分布 二、共轭先验分布 三、贝叶斯风险 四、贝叶斯估计
一、先验分布与后验分布
上一章提出用风险函数衡量决策函数的好坏, 上一章提出用风险函数衡量决策函数的好坏,但 是由于风险函数为二元函数,很难进行全面比较。 是由于风险函数为二元函数,很难进行全面比较。 贝叶斯通过引入先验分布, 的指标. 贝叶斯通过引入先验分布,给出了整体比较 的指标 1、先验信息 在抽取样本之前, 在抽取样本之前,人们对所要估计的未知参数 先验信息. 所了解的信息,通常称为先验信息 所了解的信息,通常称为先验信息 例1(p121例4.6) 某学生通过物理试验来确定当地 1(p121例 的重力加速度,测得的数据为(m/s²): 的重力加速度,测得的数据为 9.80, 9.79, 9.78, 6.81, 6.80 试求当地的重力加速度. 试求当地的重力加速度

多元正态分布参数的假设检验

多元正态分布参数的假设检验
2. 算样本的均值 X
( ) ( ) 3. 计算统计量T的具体值 T02 = n X − μ0 ′ Σ−1 X − μ0 .
4. 按规定的小概率标准α,查 χ 2分布表,得临界
值 χα2 ( p),并作出判断: 当 T02 ≤ χα2 ( p),接受H0,拒绝H1,即认为与没有显
著差异。 当 T02 > χα2 ( p),接受H1,拒绝H0,即认为与有显著

当p = 1时,因为,X
~
N1 ( μ1 ,
σ2
n
)
,Y
~
N1 ( μ2
,
σ2
m
)
,
且相
互独立,在,H0成立条件下,有
(X −Y) 1 + 1
t=
nm
~ t(n + m− 2)
∑ ∑ ⎡ n

(Xi
− X)2
+
m
(Yi
−Y
)2
⎤ ⎥
(n+m−2)
⎣ i=1
j=1

∑ ∑ 显然
t2 = nm
⎡ ⎢
n
Xj −X
Xj −X ′
9
武汉理工大学统计学系唐湘晋
( )( ) ∑ 在
H 0 :μ
=
μ0下, S=
X~
n
X
1 NP (μ0 , n Σ)
j -X Xj -X

,
~
X − μ0 ~
Wp (n −1,
NP (0,
Σ).
1 n
Σ)
j =1
故由T2分布定义知
( ) ( ) T 2 = (n −1) ⎡⎣ n X − μ0 ⎤⎦′ S−1 ⎡⎣ n X − μ0 ⎤⎦ ~ T 2 ( p, n −1)

正态分布均值的假设检验

正态分布均值的假设检验

VS
详细描述
在单样本均值假设检验中,我们首先需要 确定一个期望的均值,然后计算样本的均 值。通过比较这两个值,我们可以判断样 本均值是否显著地偏离了期望的均值。常 用的统计量包括z分数和t分数,用于评估 样本均值与已知期望值之间的差异是否具 有统计学上的显著性。
双样本均值的假设检验
总结词
双样本均值的假设检验是检验两个独立样本的均值是否存在显著差异。
详细描述
在双样本均值假设检验中,我们需要比较两个独立样本的均值。通过计算两组样本的均值,并比较这两个值,我 们可以判断两个样本的均值是否存在显著差异。常用的统计量包括t检验和z分数,用于评估两个样本均值之间的 差异是否具有统计学上的显著性。
配对样本均值的假设检验
总结词
配对样本均值的假设检验是检验两个相关样本的均值是否存在显著差异。
Part
0(H0)
样本数据来自的总体均值等于某一固 定值。
备择假设(H1)
样本数据来自的总体均值不等于该固 定值。
选择合适的检验统计量
• 常用的检验统计量有t统计量、Z统计量等,根据具体情况选择合适的统计量。
确定显著性水平
• 显著性水平(α):在假设检验中,原假设为真但被拒绝 的概率,通常取值在0.01至0.05之间。
正态分布在统计学中的重要性
基础性
正态分布是统计学中最重要的概 率分布之一,许多统计方法和理 论都基于正态分布。
广泛应用性
正态分布在自然和社会科学领域 都有广泛的应用,如生物学、医 学、经济学、心理学等。
理论依据
正态分布在统计学中提供了理论 依据,许多统计推断和决策方法 都基于正态分布的性质和假设。
1 2
判断假设是否成立
通过假设检验,可以判断一个假设是否成立,从 而为进一步的研究或决策提供依据。

正态分布的假设检验方法

正态分布的假设检验方法

正态分布的假设检验方法正态分布的假设检验方法假设检验是统计学中一种重要的方法,用于确定数据样本是否支持某个假设。

正态分布的假设检验方法是一种常用的假设检验方法,用于检验数据是否符合正态分布。

正态分布是统计学中最重要的概率分布之一,也是自然界中许多现象的模型。

正态分布的特点是均值和标准差唯一确定,呈钟形对称分布。

在实际应用中,我们常常需要通过样本数据来判断总体是否符合正态分布。

下面将介绍正态分布的假设检验方法。

首先,我们需要明确假设检验的零假设和备择假设。

在正态分布的假设检验中,零假设通常是总体符合正态分布,备择假设则是总体不符合正态分布。

其次,我们需要选择适当的检验统计量。

在正态分布的假设检验中,常用的检验统计量有样本均值、样本方差和样本偏度等。

根据具体问题的不同,选择合适的检验统计量进行计算。

然后,我们需要确定显著性水平。

显著性水平是决定是否拒绝零假设的临界值。

通常,我们选择显著性水平为0.05或0.01,即5%或1%的显著性水平。

接下来,我们计算检验统计量的观察值。

根据样本数据,计算得到检验统计量的观察值。

然后,我们需要计算检验统计量的临界值。

根据显著性水平和自由度,查找对应的临界值。

最后,我们比较观察值和临界值。

如果观察值大于临界值,则拒绝零假设,认为数据不符合正态分布;如果观察值小于等于临界值,则接受零假设,认为数据符合正态分布。

除了以上介绍的基本方法,正态分布的假设检验还有一些常用的方法,如Shapiro-Wilk检验和Kolmogorov-Smirnov检验。

这些方法可以在不同情况下应用,以提高假设检验的准确性和可靠性。

总结起来,正态分布的假设检验方法是一种常用的假设检验方法,用于检验数据是否符合正态分布。

通过确定零假设和备择假设、选择适当的检验统计量、确定显著性水平、计算观察值和临界值,并比较它们的大小,我们可以得出数据是否符合正态分布的结论。

在实际应用中,我们还可以借助其他的假设检验方法,如Shapiro-Wilk检验和Kolmogorov-Smirnov检验,以提高假设检验的准确性和可靠性。

多元正态分布假设检验

多元正态分布假设检验

多元正态分布假设检验1. 引言说到多元正态分布,很多人可能会觉得它像是一块难啃的骨头,复杂得让人眼花缭乱。

但其实,别怕,今天咱们就像喝茶一样,慢慢聊聊这个话题,让它变得亲切点。

多元正态分布,听起来像个高大上的数学术语,其实就代表着一种数据分布的模式。

简单来说,就是当你有多个变量的时候,这些变量的数据可以同时呈现出一种规律。

就好比,你的身高、体重和年龄,都是可以一起影响你的健康状况的。

2. 假设检验的基础2.1 什么是假设检验?假设检验,就像是你在做一个决定之前,先给自己列个清单。

你想知道某个观点是否成立,首先要提出一个“零假设”,然后再通过数据来检验它。

比如,你可能想知道一款新产品的效果是不是比旧款好,那你就先假设新产品和旧款效果一样,接着用数据来验证。

真是妙啊!2.2 多元正态分布在假设检验中的作用那么,这跟多元正态分布有什么关系呢?其实,当我们在进行假设检验时,常常会假设数据是服从某种分布的。

而多元正态分布就像是给你提供了一种“理想”的数据状态,让你可以更轻松地进行各种统计分析。

换句话说,使用多元正态分布,你可以放心大胆地进行推断,就像开车时把安全带系好一样,心里有底。

3. 如何进行多元正态分布假设检验3.1 数据的准备要进行多元正态分布假设检验,首先得准备好你的数据。

这就像做饭前,你得把食材准备齐全。

数据要足够多,还要确保没有缺失值。

就算有缺失,也可以通过一些方法来填补,但记得要小心,这可不能随便糊弄。

3.2 检验的方法接下来,咱们就进入了检验的环节。

常用的方法有ShapiroWilk检验和Bartlett检验等,这些听起来像是外星人名字的检验其实很简单。

ShapiroWilk检验主要是检查数据是否服从正态分布,而Bartlett检验则是用于检查不同组之间的方差是否相等。

通过这些检验,你就能找到数据是否符合多元正态分布的线索。

4. 结论与反思多元正态分布假设检验,乍一看似乎是个高深莫测的领域,但其实掌握了基本概念后,还是挺容易上手的。

多元统计分析:第三章 多元正态总体参数的假设检验(补充)

多元统计分析:第三章   多元正态总体参数的假设检验(补充)
18
第三章 多元正态总体参数的假设检验
所涉及的最大似然估计量—单个总体
ˆ X时 (4) 当 0 (0 0巳知)时, 取 似然函数达最大值:
L( X , 0 ) 2
np 2
0
n 2
n 1 etr - 0 A 2
19
第三章 多元正态总体参数的假设检验
15
第三章 多元正态总体参数的假设检验
所涉及的最大似然估计量—单个总体
单个p维正态总体Np(μ,Σ),设X(i)(i=1,…,n)为来自p 维总体的随机样本.样本的似然函数为
L( , ) 2
np 2
1 ˆ A时, 似然函数达最大值 : ˆ X , (1)当 n n np A 2 A np L( X , ) 2 2 exp - n n 2
9
第三章 多元正态总体参数的假设检验
§3.6正态性检验--p维数据的正态性检验
D2(1)≤ D2(2) ≤…≤ D2(n) 统计量 D2 的经验分布函数取为
.
其中H(D2(t) |p)表示χ2 (p)的分布函数在D2(t)的值. 设χ2 分布的pt分位数为χt2 ,显然χt2满足: H(χt 2 |p)= pt. 即χ2 分布的pt 分位数χt2 =H-1(pt |p). 由经验分布得到样本的pt 分位数D2(t)=Fn-1(pt ). 若H(x|p)≌Fn(x),应有D2(t) ≌ χt2 ,绘制点(D2(t) , χt2 )的散 布图,当X为正态总体时,这些点应散布在一条直线上. 10
(1) (1) ( 2) ( 2)
np 2
A1 A2 n
(t )
np 2 2
e
X )( X

多元正态分布及其参数估计、假设检验

多元正态分布及其参数估计、假设检验
• 协方差阵已知时的均值向量的假设检验 • 协方差阵未知时的均值向量的假设检验
协方差阵相等时,两个正态总体均值向量的检 验
协方差阵不相等时,两个正态总体均值向量的 检验
协方差阵检验 多个协差阵相等的检验
可编辑ppt
16
均值向量和协方差阵的假设检 验时常用的统计分布
可编辑ppt
17
可编辑ppt
可编辑ppt
10
多元正态分布密度函数
可编辑ppt
11
多元正态分布的数字特征
可编辑ppt
12
多元正态分布的性质
可编辑ppt
13
多元正态分布的参数估计
可编辑ppt
14
可编辑ppt
15
多元正态总体均值向量和协方 差阵的假设检验
均值向量和协方差阵的假设检验时常用的统计 分布
均值向量的假设检验
多元变量的边缘密度独立性与条件分布多元正态总体均值向量和协方差阵的假设检验多元正态总体均值向量和协方差阵的假设检验均值向量和协方差阵的假设检验时常用的统计分布协方差阵不相等时两个正态总体均值向量的检验多个协差阵相等的检验均值向量和协方差阵的假设检验时常用的统计分布均值向量的假设检验协方差阵相等时两个正态总体均值向量的检验协方差阵不相等时两个正态总体均值向量的检验多个协差阵相等的检验
28
多个协差阵相等的检验
可编辑ppt
29
第三讲 多元正态分布及其参数估计、 假设检验
多元分布概述 多元正态分布
可编辑ppt
1
第一节 多元分布概述
多元变量--随机向量 多元分布函数 多元分布密度 多元变量的边缘密度、独立性与条件分
布 多元变量的数字特征
可编辑ppt
2

第三章多元正态总体参数的假设检验

第三章多元正态总体参数的假设检验

第三章 多元正态总体参数的假设检验3.1 几个重要统计量的分布一、正态变量二次型的分布1、分量独立的n 维随机向量X 的二次型设),,1)(,(~21n i N X i i =σμ,且相互独立,记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n X X X 1,则),(~2n n I N X σμ,其中)',,(1n μμμ =。

X 的二次型具有以下一些结论:结论1 当),,1(0n i i ==μ,12=σ时,则)(~'212n XX X ni iχξ∑===;当),,1(0n i i ==μ,12≠σ时,则)(~'122n X X χσ(或记为)(~'22n X X χσ)。

结论2 当),,1(0n i i =≠μ,X X '的分布常称为非中心2χ分布。

Def3.1.1 设n 维随机向量)0)(,(~≠μμn n I N X ,则称随机向量X X '=ξ为服从n 个自由度、非中心参数∑===ni i 12'μμμδ的2χ分布,记为)(~'),(~'22δχδχn X X n X X 或。

若时且1),0)(,(~22≠≠σμσμn n I N X ,有)(~'122δχσn X X 。

结论3 设),0(~2n n I N X σ,A 为对称矩阵,且r A rank =)(,则二次型 A A r AX X =⇔222)(~/'χσ(A 为对称幂等矩阵)。

结论4 设),(~2n n I N X σμ,'A A =,则),(~'122δχσr AX X ,其中A A A =⇔=22'1μμσδ,且)()(n r r A rank ≤=。

结论5 二次型与线性函数的独立性:设),(~2n n I N X σμ,A 为n 阶对称矩阵,B 为n m ⨯矩阵,令)(,'维随机向量为m Z BX Z AX X ==ξ,若O BA =,则AX X BX '和相互独立。

《多元正态分布》课件

《多元正态分布》课件

度概率密度函数的乘积。
高维正态分布在机器学习中的应用
降维处理
高维正态分布可以用于降维处理,通过保留数据的主要特征,降低 数据的维度,提高数据的可解释性和处理效率。
特征选择
高维正态分布可以用于特征选择,通过分析特征之间的相关性,选 择与目标变量高度相关的特征,去除冗余和无关的特征。
概率模型
高维正态分布可以用于构建概率模型,通过估计数据的概率分布, 进行分类、回归和聚类等机器学习任务。
总结词
检验多元正态分布的协方差矩阵是否与预期 协方差矩阵一致。
详细描述
通过对比样本协方差矩阵与预期协方差矩阵 ,评估样本数据是否符合多元正态分布的假 设。常用的方法包括样本协方差矩阵与预期 协方差矩阵的差异检验、样本数据的散点图 和拟合曲线分析等。
多元正态分布的其他假设检验方法
总结词
其他用于检验多元正态分布的方法。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
二元正态分布
二元正态分布的定义
总结词
二元正态分布是多元正态分布在两个维度上的特例,其概率密度函数呈钟形, 且服从二维高斯分布。
详细描述
二元正态分布是一种连续概率分布,描述了两个随机变量之间的关系,当这两 个随机变量相互独立时,其联合概率分布是二元正态分布。它的概率密度函数 由均值向量和协方差矩阵决定,呈现出钟形曲线。
多元正态分布的均值向量和协方差矩阵决定了其 分布形态。
多元正态分布的应用场景
多元统计分析
多元正态分布在多元统计分析中 广泛应用,如主成分分析、因子 分析、聚类分析等。
机器学习
在机器学习中,多元正态分布用 于描述特征之间的相关性,以及 在隐含层节点中实现特征的映射 。

多元正态分布参数的假设检验

多元正态分布参数的假设检验

2 22.74 32.56 51.49 61.39 9 22.62 32.57 51.23 61.39 16 23.02 33.05 51.48 61.44
3 22.60 32.76 51.50 61.22 10 22.67 32.67 51.64 61.50 17 23.02 32.95 51.55 61.62
5
武汉理工大学统计学系唐湘晋
一、Σ已知时单个总体均值向量的检验
设 X1, X2,…, Xn 是来自正态总体 N p ( μ , Σ ) 的样本, 考虑假设: H 0 :μ = μ 0 ,
H 1 :μ ≠ μ 0
a) p = 1 b) p > 1
U 1 )
T02 = n ( X − μ 0 )′ Σ − 1 ( X − μ 0 ) .
4
武汉理工大学统计学系唐湘晋
§3.2 多元正态分布的均值向量的检验
p维正态总体 N p (μ, Σ) 的统计推断问题,包括均 值向量的检验和均值的置信域问题。 p维正态随 机向量的每一个分量都是一元正态变量,若将p 维均值向量的检验问题化为p个一元正态的均值 检验问题,虽然可以使问题简化,但忽略了p个 分量间的互相依赖关系,常常得不出正确的结 论。
13
武汉理工大学统计学系唐湘晋
解:
⎡ X 1 ⎤ ⎡ 22.82 ⎤ ⎢ ⎥ ⎢ X 2 ⎥ ⎢ 32.79 ⎥ ⎥ = X=⎢ ⎢ X 3 ⎥ ⎢ 51.45 ⎥ ⎢ ⎥ ⎢ ⎥ X 4 ⎥ ⎣ 61.38 ⎦ ⎢ ⎦ ⎣
1 21 V= ∑ (Xi − X)(Xi − X)′ 21 − 1 i=1 ⎡ 70.3076 ⎤ ⎢ −52.1469 ⎥ 73.5511 ⎥ =⎢ ⎢ 3.4462 −19.3637 ⎥ 90.4098 ⎢ ⎥ 1.2022 −33.6989 40.0895⎦ −6.9624 ⎣

正态分布和假设检验的关系

正态分布和假设检验的关系

正态分布和假设检验的关系正态分布和假设检验,听起来是不是有点高深莫测?别担心,咱们今天就来聊聊这俩小家伙,轻轻松松把它们理清楚。

正态分布,它可不是随便什么分布。

想象一下,你在公园里散步,看到一群人围着一个草坪打篮球。

大多数人都在中间那块儿打得热火朝天,离边缘的越远,人数就越少。

这个现象,其实就像正态分布的形状。

中间那一块儿高高的,就是大多数数据集中出现的地方,两边慢慢往下滑,像个优雅的山丘。

说到假设检验,就更有意思了。

你是不是觉得这像是个神秘的仪式?它就是一个科学的推理过程。

你先立一个假设,比如说“这个药能治感冒”。

你得用数据来验证这个假设,看看它是否成立。

就像在打扑克,先看手里的牌,决定要不要下注。

假设检验的关键就在于你能否用数据证明你手里的牌比别人更好。

让我们再把这俩结合起来,正态分布和假设检验就像是一对好搭档。

正态分布提供了一个背景,就像给假设检验搭建了一个舞台。

想象一下,假设检验就像一位自信满满的演员,而正态分布就是他背后那群默默支持的群众。

没有了正态分布,这位演员就显得有些无助,缺少了舞台上的光环。

在进行假设检验的时候,你可能会碰到一个术语叫“p值”。

别被这个字母吓到,它其实就是在告诉你,你的假设有多靠谱。

想象一下,你在评估一个新款手机的拍照功能,p值就像是你朋友对这个手机拍出来的照片的评价。

越小的p值,朋友越兴奋,说明这个手机的表现很可能真不错。

反之,如果p值大得像个气球,那可能就是这手机的拍照效果和你之前用的差不多,没什么特别的。

正态分布和假设检验也给了科学研究一个相对公平的游戏规则。

想想看,如果没有这个规则,大家在研究时就像在无序的市场上争抢,谁都不知道自己在争什么,结果就会出现各自为政的混乱。

正态分布就像是那根尺子,给大家量一量,看看谁的研究靠谱,谁的研究只是打了个空炮。

你是不是觉得这有点像抽奖?想象一下,抽奖箱里装满了不同颜色的球,正态分布告诉你,哪种颜色的球最常见,哪种颜色的球比较稀有。

多元正态分布及检验

多元正态分布及检验

协方差分析
以前介绍的方差分析可用于两组或多组均数间 的比较,其处理因素一般是可以控制的。方差 分析要求各比较组除了所施加的处理因素不同 外,其他对观察指标有影响得因素齐同或均衡, 即要求控制对观察指标有影响的其它因素。在 实际工作中,有时有些因素无法加以控制,或 由于实验设计的疏忽、实验条件的限制等原因, 造成对观察指标有影响的个别因素未加控制或 难以控制。此时用方差分析不合适,应考虑用 协方差分析。
x1i x2i
x1i n
n 1
x2i
12 21 /
11 22 r12
x1ix2i
x1i
x2i
n
x2
1i
x1i
2
n
x2 2i
x2i
2
n
协方差阵与逆阵
11 21
12
22
1
1
11
22
2 12
22
12
21
11
1122
2 12
11 22
N k m ni nj
Di2j
F
一组资料(单样本)
对于单变量且服从正态分布资料的样本 与总体的比较,
变形
t = (X - m0) = n (X - m0)
S/ n
S
t2 = n(X - m0)S- 2 (X - m0)
当为多元资料时,此公式推广为HoTt2eling
T 2 = n(X - ) m0 ' S- (X - m0)
( ) ( ) T 2 = n1n2
n1 + n2
X1 -
X2
Sc- 1
X1 -
X2
其中 X1, X2为样本均数向量,S1, S2 为样本协方差阵, Sc 为合并 样本协方差阵。

第四章 多元正态总体均值向量和协差阵的假设检验

第四章 多元正态总体均值向量和协差阵的假设检验

210
280 280 293 210 190 310 200 189 280 190 295 177
100
65 117 114 55 64 110 60 110 88 73 114 103
34
63 48 63 30 51 90 62 69 78 63 55 54
468
416 468 395 546 507 442 440 377 299 390 494 416
1.当
已知时,检验用的统计量为
2、当
未知时,检验用的统计量为
(二)两个正态总体均值的比较检验 设从总体 中抽出一个样本 中抽出一个样本 ,从总体
,要进行的假设检验为
1.两个正态分布总体方差

已知时,检验用的统计量
2.两个正态分布总体方差

未知,但
(三)多个正态总体均值的比较检验 设有k个正态总体分别为 本:各总体的样本如下: 从k个总体中各自独立的抽取一个样
经计算得
拒绝原假设
甲和丁存在显著差别
第二节 协方差阵的检验 一、检验

要检验
是来自
的样本是已知的正定矩阵,检验的统计量是对于方阵A =
,将它对角线的所有元素相加所得的和,称为矩阵A的迹,记为trA=




分位点表
二、检验
检验用的统计量是

不大且
时,
的上
分位点
销售方式3 X1 65 X2 33 X3 480 X4 260
2
3 4 5 6 7 8 9 10 11 12 13 14
119
63 65 130 69 46 146 87 110 107 130 80 60

8-2正态分布均值的假设检验

8-2正态分布均值的假设检验

)
的情况
利用t检验法检验具有相同方差的两正态总 体均值差的假设.
设 X1, X2 ,, Xn 为来自正态总体N (1, 2 ) 的样本, Y1,Y2 ,,Yn 为来自正态总体N (2 , 2 )的
样本, 且设两样本独立. 注意两总体的方差相等.
又设 X ,Y 分别是总体的样本均值, S12 , S22是样本
因为 2 未知, 不能利用 X 0 来确定拒绝域. / n
因为 S 2 是 2 的无偏估计, 故用 S 来取代 , 即采用t X 0 来作为检验统计量.
S/ n
当观察值
t
x 0
s/ n
过分大时就拒绝H0,
拒绝域的形式为 t x 0 k . s/ n
根据第六章§2定理三知,
定理三
当H0为真时,
79.1, 81.0, 77.3, 79.1, 80.0, 78.1, 79.1, 77.3, 80.2, 82.1; 设这两个样本相互独立, 且分别来自正态总
体 N (1, 2 )和 N (2, 2 ), 1, 2, 2均为未知, 问建议的新操作方法能否提高得率? (取 0.05)
解 需要检验假设 H0 : 1 2 0, H1 : 1 2 0.
即甲、乙两台机床加工的产品直径无显著差异.
三、基于成对数据的检验( t 检验 )
从直观上看, 合理的检验法则是:
若观察值 x 与 0 的差 x 0 过分大, 即 x 0 k ,
则我们拒绝 H0 接受 H1 .
拒绝域的形式 x 0 k , ( k 待定). 由标准正态分布的分布函数 (•) 的单调性可知,
P{拒绝 H0 | H0 为真 } P0 ( x 0 k)
P 0
要检验假设 H0 : 10.5, H1 : 10.5,

多元正态总体的假设检验和方差分析

多元正态总体的假设检验和方差分析

第 3 章多元正态总体的假设检验与方差分析从本章开始,我们开始转入多元统计方法和统计模型的学习。

统计学分析处理的对象是带有随机性的数据。

按照随机排列、重复、局部控制、正交等原则设计一个试验,通过试验结果形成样本信息(通常以数据的形式),再根据样本进行统计推断,是自然科学和工程技术领域常用的一种研究方法。

由于试验指标常为多个数量指标,故常设试验结果所形成的总体为多元正态总体,这是本章理论方法研究的出发点。

所谓统计推断就是根据从总体中观测到的部分数据对总体中我们感兴趣的未知部分作出推测,这种推测必然伴有某种程度的不确定性,需要用概率来表明其可靠程度。

统计推断的任务是“观察现象,提取信息,建立模型,作出推断”。

统计推断有参数估计和假设检验两大类问题,其统计推断目的不同。

参数估计问题回答诸如“未知参数的值有多大?”之类的问题, 而假设检验回答诸如“未知参数的值是吗?”之类的问题。

本章主要讨论多元正态总体的假设检验方法及其实际应用,我们将对一元正态总体情形作一简单回顾,然后将介绍单个总体均值的推断,两个总体均值的比较推断,多个总体均值的比较检验和协方差阵的推断等。

3.1 一元正态总体情形的回顾一、假设检验在假设检验问题中通常有两个统计假设(简称假设), 一个作为原假设(或称零假设),另一个作为备择假设(或称对立假设),分别记为和。

1、显著性检验2为便于表述,假定考虑假设检验问题:设X1, X2,…,X n来自总体N(,)的样本,我们要检验假设3.1)原假设H。

与备择假设H i应相互排斥,两者有且只有一个正确。

备择假设的意思是,一旦否定原假设H0 ,我们就选择已准备的假设H1。

2当 已知时,用统计量 z在原假设H 。

成立下,统计量z 服从正态分布z 〜N (0 ,1),通过查表,查得N(0 ,1)的上对于检验问题(3.1.1,我们制定这样一个检验规则(简称检验)(3.2)分位点z 2。

当z z 2时,拒绝H 0 ; 当z z 2时,接受H o 。

正态分布的假设检验方法

正态分布的假设检验方法

正态分布的假设检验方法正态分布是一个重要的统计概念,经常用于解决各种实际问题。

不同于其它常见分布,正态分布具有非常特殊的性质,其中最突出的就是其反映了许多现实生活中的随机变量(例如人的身高、体重等)的分布类似于正态分布的情况。

随着科技与数据收集技术的不断进步,人们能够收集到越来越多的实际数据,并采用各种统计方法来分析这些数据。

在实际应用中,对于一些特定的问题,我们需要检验数据是否符合正态分布,并进而研究相关假设问题。

这需要运用到假设检验的方法,因此本文将对正态分布的假设检验方法进行详细阐述,包括其基础理论、假设设定方法、检验统计量的计算以及显著性检验的实现等。

一、基础理论正态分布是统计学中一个重要的概念,它是一个连续型概率分布,通常由两个参数μ和σ描述,其中μ是正态分布的均值,σ是正态分布的标准差。

对于一个正态分布的随机变量x ~N(μ,σ²),它的概率密度函数可以表示为:$$ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\mathrme^{−(x−\mu)^2/2\sigma^2} $$在实际研究中,许多随机变量的分布都具有类似于正态分布的特性,在大样本情况下,它们的概率密度图常常能够像钟形曲线一样展示出来,因此我们可以通过正态分布模型,来描述某些随机变量的概率分布情况。

随着数据科学的不断进步,我们现在可以通过各种手段来收集数据,并利用统计工具对这些数据进行分析。

假设检验是其中一个最基础的分析方法,它通常用于判断某一假设是否成立。

正态分布的假设检验方法,就是一种基于正态分布模型的检验方法。

二、假设设定方法在进行正态分布的假设检验时,我们通常要设定两个假设,分别为原假设和备择假设。

原假设($H_0$)是我们想要检验的假设,而备择假设($H_1$)则是对原假设的拒绝。

在正态分布的假设检验中,常见的假设包括以下两种:1. 单样本均值检验对于单样本均值检验,我们设定以下的原假设和备择假设:$$ H_0:\mu=\mu_0 \ \ \ \ \ H_1:\mu\neq\mu_0 $$其中,$H_0$表示总体均值等于特定值$\mu_0$,$H_1$表示总体均值不等于$\mu_0$。

多元正态分布的定义与性质详解演示文稿

多元正态分布的定义与性质详解演示文稿

2. 风险函数
由于损失函数L与决策函数d(x)有关,而决策函数 是随机变量,因而损失函数也为随机变量。这样损失函 数与样本X的取值有关,因而需要构造一个更好的指标 来衡量决策函数的好坏. 这就是风险函数.
定义4.2 设样本空间和分布族分别为和F * ,决
策空间为,损失函数为L( , d ),决策函数为d( X ),
R( , d1) R( , d2 ),
且存在一些使得不等式严格成立,即R( , d1)
R(
,
d
2
),则称决策函数d1一致优于d
,如果等式
2
成立即R( , d1)=R(ห้องสมุดไป่ตู้, d2 ), ,则二者等价.
定义4.4 设D {d( X )}是一切定义在样本空间 上取值于决策空间上的决策函数的全体,若存 在一个决策函数d*( X )(d*( X ) D), 使得对任意一 个d( X ) D,都有
例4(p118) 设总体X服从正态分布N (, 2 ), 2为已知,
( X1, X2 , , Xn)T取自X的样本,试求参数点估计
和区间估计的决策函数.
解 根据上一章的结论,参数点估计的决策函数为
d( x)
x
1 n
n i 1
xi
参数区间估计的决策函数为
d ( x) [ x u
2
n
,
x
u
2
] n
决策 对每个统计问题的具体回答,就称为一个决策.
例如,参数的点估计,每一个估计值就是一个决策. 决策空间 一个统计问题中,可能选取得全部决策 组成的集合为决策空间,记为 R.
例如,设总体分布服从N (, 2 ), 对未知参数进行
估计,由于在(, )中取值,因而其决策空

多元正态分布均值向量和协差阵的检验

多元正态分布均值向量和协差阵的检验

2
在一元统计中,若 t ~ t (n 1) 分布, 2 则 t ~ F (1, n 1) 分布,即把t分布转化为F分 布来处理,在多元统计分析中统计量也有类 似的性质。
定理1:设X ~ N p (0, ), S ~ W p (n, ),且X与S相互独立, 令 T 2 nX T S 1 X n p 1 2 则 T ~ F ( p, n p 1) np
其中,T 2 (n 1)[ n ( X 0 )T S 1 n ( X 0 )] 再由样本值计算出 F,比较 若F F,则拒绝H 0,否则,接受H 0。
给定检验水平,查F分布表,使PF F =,确定出临界值 F。
在处理实际问题时,单一变量的检验和多变量的检 验可以联合使用,多元的检验具有概括和全面的特点, 而一元的检验容易发现各变量之间的关系和差异,能给 人们提供更多的统计分析的信息。
这个公式在后面检验中经常用到。
2、一个正态总体均值向量的假设检验
设X ,X ,,X 来自于p维正态总体N p ( , ),容量为n的样本,n p,且 (1) (2) (n) 1 n X= X i , n i 1 S ( X i X )( X i X )T
i 1 n
而 故
Y n ( X 0 ) ~ N p (0, )
T02 n( X 0 )T 1( X 0 ) ~ 2 ( p)
(2)协差阵未知时,均值向量的检 验 H 0:=( H1: 1 0 0为已知向量), 假设H 0成立,检验统计量为 F (n 1) p 1 2 T ~ F ( p, n p ) (n 1) p
• 例1:对某地区农村的6名2周岁男婴的身高、胸围、上半 臂围进行测量,得样本数据如表所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档