多元正态分布参数的假设检验
多元正态分布参数的估计与假设检验-判别分析
![多元正态分布参数的估计与假设检验-判别分析](https://img.taocdn.com/s3/m/05aaf9a5284ac850ad024277.png)
注 共轭分布族总是针对分布中的某个参数而言的 共轭分布族总是针对分布中的某个参数而言的.
三、贝叶斯风险
1、贝叶斯风险的定义 由第一小节内容可知,给定损失函数以后, 由第一小节内容可知,给定损失函数以后,风 险函数定义为
R(d ) = inf R(d ),
* d ∈D
∀d ∈ D
则称d * ( X )为参数θ的贝叶斯估计量
注 1、贝叶斯估计是使贝叶斯风险达到最小的决策 、 函数. 函数 2、不同的先验分布,对应不同的贝叶斯估计 、不同的先验分布, 2、贝叶斯点估计的计算 平方损失下的贝叶斯估计 定理4.2 定理 设θ的先验分布为π(θ)和损失函数为 的先验分布为π θ 和损失函数为
Θ
=∫
Θ
∫
Χ
L(θ , d ( x ))q( x | θ )π(θ )dxdθ
=∫
Θ
∫θ | x )g(x )dxdθ
Θ
= ∫ g(x ){ ∫ L(θ , d ( x ))h(θ | x )dθ }dx
Χ
四 、贝叶斯估计
1、贝叶斯点估计 定义4.6 若总体 的分布函数F(x,θ)中参数θ为随机 定义 若总体X的分布函数 中参数θ 的分布函数 θ 中参数 变量, θ 为 的先验分布,若决策函数类D中存在 变量,π(θ)为θ的先验分布,若决策函数类 中存在 一个决策函数使得对决策函数类中的任一决策函数 均有
第8.2节 节
判别分析
一、先验分布和后验分布 二、共轭先验分布 三、贝叶斯风险 四、贝叶斯估计
一、先验分布与后验分布
上一章提出用风险函数衡量决策函数的好坏, 上一章提出用风险函数衡量决策函数的好坏,但 是由于风险函数为二元函数,很难进行全面比较。 是由于风险函数为二元函数,很难进行全面比较。 贝叶斯通过引入先验分布, 的指标. 贝叶斯通过引入先验分布,给出了整体比较 的指标 1、先验信息 在抽取样本之前, 在抽取样本之前,人们对所要估计的未知参数 先验信息. 所了解的信息,通常称为先验信息 所了解的信息,通常称为先验信息 例1(p121例4.6) 某学生通过物理试验来确定当地 1(p121例 的重力加速度,测得的数据为(m/s²): 的重力加速度,测得的数据为 9.80, 9.79, 9.78, 6.81, 6.80 试求当地的重力加速度. 试求当地的重力加速度
正态总体方差的假设检验
![正态总体方差的假设检验](https://img.taocdn.com/s3/m/5b81024f591b6bd97f192279168884868762b8e3.png)
方差的计算方法
简单方差
适用于数据量较小,且数据间相互独立的情况。
加权方差
适用于数据量较大,且数据间存在相关关系的 情况,需要考虑到每个数据点的重要程度。
配对样本方差检验
总结词
配对样本方差检验用于比较两个相关样本的方差是否相同。
详细描述
在配对样本方差检验中,我们首先需要设定一个零假设,即两个相关样本的方差无显著差异。然后, 通过计算检验统计量(如Wilcoxon秩和统计量或Stevens' Z统计量),我们可以评估零假设是否被拒 绝。如果零假设被拒绝,则可以得出两个相关样本方差不相同的结论。
方差齐性检验的目的是为了后续 的方差分析提供前提条件,确保 各组数据具有可比性。
方差分析
方差分析(ANOVA)是
1
用来比较多个正态总体均
值的差异是否显著的统计
方法。
4
方差分析的结果通常以p值 表示,若p值小于显著性水 平(如0.05),则认为各组 均值存在显著差异。
2
方差分析的前提条件是各
组数据具有方差齐性和正
正态总体方差假设检验的未来发展
改进假设检验方法
结合其他统计方法
结合其他统计方法,如贝叶斯推断、机器学习等, 可以更全面地分析数据和推断总体特征。
针对正态总体方差假设检验的局限性,未来 研究可以探索更灵活、适应性更强的检验方 法。
拓展应用领域
正态总体方差假设检验的应用领域可以进一 步拓展,特别是在大数据和复杂数据分析方 面。
数学表达式
应用多元统计分析北大
![应用多元统计分析北大](https://img.taocdn.com/s3/m/3ec3d190ac51f01dc281e53a580216fc700a53bf.png)
8
第9页/共86页
第一章 绪 论
§1.1 引言--多元分析的研究 对象和内容
由于大量实际问题都涉及到多个变量,这些 变量又是随机变化,如学生的学习成绩随着被 抽取学生的不同成绩也有变化(我们往往需要 依据它们来推断全年级的学习情况)。所以要 讨论多维随机向量的统计规律性。
两组变量的相关分析
1
第2页/共86页
使用的教材
普通高等教育”十一五”国家级教材
北京大学数学教学系列丛书
本科生 数学基础课教材
应用多元统计分析
(北京大学出版社,高惠璇,2006.10)
2
第3页/共86页
参考书(一)
1. 实用多元统计分析(方开泰,1989,见参考文献[1]) 2. 多元统计分析引论(张尧庭,方开泰, 2003,见[2]) 3. 实用多元统计分析(王学仁,1990 ,见[6]) 4. 应用多元分析(王学民,1999 ,见[8]) 5. 实用统计方法与SAS系统(高惠璇,2001, 见[3]) 6. 多元统计分析(于秀林,1999 ,见[9]) 7. 多元统计方法(周光亚,1988 ,见[28]) 8. 多元分析(英 . M . 肯德 尔,1983 ,见[15]) 9. SAS系统使用手册等资料(1994-1998 ,见[17]-[21])
主成分分析方法为样品排序或多指标系 统评估提供可行的方法.
23
第24页/共86页
教育学--
主成分分析在学生学习成绩排序中的应用
这里把12门课的成绩看成12个变量,这些 变量是相关的,有的相关性强些,有的相关 性一般些。用主成分分析方法从12个相关的 变量中可以综合得出几个互不相关的主成分 --它们是原始变量的线性组合。其中第一 主成分综合原始变量的信息最多(一般在70 %以上),我们就用第一主成分(即单个综 合指标)替代原来的12个变量;然后计算第 一主成分的得分并进行排序。
正态分布均值的假设检验
![正态分布均值的假设检验](https://img.taocdn.com/s3/m/1d27a14853ea551810a6f524ccbff121dd36c5d1.png)
VS
详细描述
在单样本均值假设检验中,我们首先需要 确定一个期望的均值,然后计算样本的均 值。通过比较这两个值,我们可以判断样 本均值是否显著地偏离了期望的均值。常 用的统计量包括z分数和t分数,用于评估 样本均值与已知期望值之间的差异是否具 有统计学上的显著性。
双样本均值的假设检验
总结词
双样本均值的假设检验是检验两个独立样本的均值是否存在显著差异。
详细描述
在双样本均值假设检验中,我们需要比较两个独立样本的均值。通过计算两组样本的均值,并比较这两个值,我 们可以判断两个样本的均值是否存在显著差异。常用的统计量包括t检验和z分数,用于评估两个样本均值之间的 差异是否具有统计学上的显著性。
配对样本均值的假设检验
总结词
配对样本均值的假设检验是检验两个相关样本的均值是否存在显著差异。
Part
0(H0)
样本数据来自的总体均值等于某一固 定值。
备择假设(H1)
样本数据来自的总体均值不等于该固 定值。
选择合适的检验统计量
• 常用的检验统计量有t统计量、Z统计量等,根据具体情况选择合适的统计量。
确定显著性水平
• 显著性水平(α):在假设检验中,原假设为真但被拒绝 的概率,通常取值在0.01至0.05之间。
正态分布在统计学中的重要性
基础性
正态分布是统计学中最重要的概 率分布之一,许多统计方法和理 论都基于正态分布。
广泛应用性
正态分布在自然和社会科学领域 都有广泛的应用,如生物学、医 学、经济学、心理学等。
理论依据
正态分布在统计学中提供了理论 依据,许多统计推断和决策方法 都基于正态分布的性质和假设。
1 2
判断假设是否成立
通过假设检验,可以判断一个假设是否成立,从 而为进一步的研究或决策提供依据。
参数的假设检验
![参数的假设检验](https://img.taocdn.com/s3/m/6988318b0d22590102020740be1e650e52eacf80.png)
目录
• 参数假设检验的基本概念 • 参数假设检验的类型 • 参数假设检验的实例 • 参数假设检验的注意事项 • 参数假设检验的应用领域 • 参数假设检验的发展趋势与展望
01
参数假设检验的基本概 念
参数假设检验的定义
参数假设检验是在统计推断中,根据 样本数据对总体参数是否符合某种假 设进行检验的方法。
总结词
正态性检验是检验数据是否符合正态分 布的统计方法。
VS
详细描述
正态分布的参数检验包括峰度系数、偏度 系数、直方图和P-P图等,通过这些方法 可以判断数据是否符合正态分布,从而为 后续统计分析提供依据。
方差分析的参数检验
总结词
方差分析是检验不同组别之间是否存在显著差异的统计方法 。
详细描述
方差分析通过比较不同组别之间的方差,判断它们是否具有 统计学上的显著差异。这种方法广泛应用于实验设计和数据 分析中,用于比较不同处理或不同条件下的结果差异。
做出推断
根据检验统计量的值和临界值,做出关于 假设的推断。
选择检验统计量
根据假设和数据特征,选择合适的统计量 进行检验。
计算检验统计量的值
根据样本数据和选择的统计量,计算检验 统计量的值。
确定临界值
根据统计量的性质和误差概率,确定临界 值。
02
参数假设检验的类型
单侧假设检验
总结词
只考虑参数大于或小于某个值的情况。
详细描述
在单侧假设检验中,我们只考虑参数大于或小于某个值的情况,而不需要同时考虑两个方向。例如, 在检验某药物是否有效时,我们只关心该药物是否比对照组效果好,而不关心它是否比对照组差。
双侧假设检验
总结词
同时考虑参数大于和小于某个值的情况。
多元正态分布假设检验
![多元正态分布假设检验](https://img.taocdn.com/s3/m/cea2f979a4e9856a561252d380eb6294dd8822ad.png)
多元正态分布假设检验1. 引言说到多元正态分布,很多人可能会觉得它像是一块难啃的骨头,复杂得让人眼花缭乱。
但其实,别怕,今天咱们就像喝茶一样,慢慢聊聊这个话题,让它变得亲切点。
多元正态分布,听起来像个高大上的数学术语,其实就代表着一种数据分布的模式。
简单来说,就是当你有多个变量的时候,这些变量的数据可以同时呈现出一种规律。
就好比,你的身高、体重和年龄,都是可以一起影响你的健康状况的。
2. 假设检验的基础2.1 什么是假设检验?假设检验,就像是你在做一个决定之前,先给自己列个清单。
你想知道某个观点是否成立,首先要提出一个“零假设”,然后再通过数据来检验它。
比如,你可能想知道一款新产品的效果是不是比旧款好,那你就先假设新产品和旧款效果一样,接着用数据来验证。
真是妙啊!2.2 多元正态分布在假设检验中的作用那么,这跟多元正态分布有什么关系呢?其实,当我们在进行假设检验时,常常会假设数据是服从某种分布的。
而多元正态分布就像是给你提供了一种“理想”的数据状态,让你可以更轻松地进行各种统计分析。
换句话说,使用多元正态分布,你可以放心大胆地进行推断,就像开车时把安全带系好一样,心里有底。
3. 如何进行多元正态分布假设检验3.1 数据的准备要进行多元正态分布假设检验,首先得准备好你的数据。
这就像做饭前,你得把食材准备齐全。
数据要足够多,还要确保没有缺失值。
就算有缺失,也可以通过一些方法来填补,但记得要小心,这可不能随便糊弄。
3.2 检验的方法接下来,咱们就进入了检验的环节。
常用的方法有ShapiroWilk检验和Bartlett检验等,这些听起来像是外星人名字的检验其实很简单。
ShapiroWilk检验主要是检查数据是否服从正态分布,而Bartlett检验则是用于检查不同组之间的方差是否相等。
通过这些检验,你就能找到数据是否符合多元正态分布的线索。
4. 结论与反思多元正态分布假设检验,乍一看似乎是个高深莫测的领域,但其实掌握了基本概念后,还是挺容易上手的。
多元线性回归模型检验
![多元线性回归模型检验](https://img.taocdn.com/s3/m/6c7e162c001ca300a6c30c22590102020740f2c1.png)
多元线性回归模型检验引言多元线性回归是一种常用的统计分析方法,用于研究两个或多个自变量对目标变量的影响。
在应用多元线性回归前,我们需要确保所建立的模型符合一定的假设,并进行模型检验,以保证结果的可靠性和准确性。
本文将介绍多元线性回归模型的几个常见检验方法,并通过实例进行说明。
一、多元线性回归模型多元线性回归模型的一般形式可以表示为:$$Y = \\beta_0 + \\beta_1X_1 + \\beta_2X_2 + \\ldots + \\beta_pX_p +\\varepsilon$$其中,Y为目标变量,$X_1,X_2,\\ldots,X_p$为自变量,$\\beta_0,\\beta_1,\\beta_2,\\ldots,\\beta_p$为模型的回归系数,$\\varepsilon$为误差项。
多元线性回归模型的目标是通过调整回归系数,使得模型预测值和实际观测值之间的误差最小化。
二、多元线性回归模型检验在进行多元线性回归分析时,我们需要对所建立的模型进行检验,以验证假设是否成立。
常用的多元线性回归模型检验方法包括:1. 假设检验多元线性回归模型的假设包括:线性关系假设、误差项独立同分布假设、误差项方差齐性假设和误差项正态分布假设。
我们可以通过假设检验来验证这些假设的成立情况。
•线性关系假设检验:通过F检验或t检验对回归系数的显著性进行检验,以确定自变量与目标变量之间是否存在线性关系。
•误差项独立同分布假设检验:通过Durbin-Watson检验、Ljung-Box 检验等统计检验,判断误差项是否具有自相关性。
•误差项方差齐性假设检验:通过Cochrane-Orcutt检验、White检验等统计检验,判断误差项的方差是否齐性。
•误差项正态分布假设检验:通过残差的正态概率图和Shapiro-Wilk 检验等方法,检验误差项是否满足正态分布假设。
2. 多重共线性检验多重共线性是指在多元线性回归模型中,自变量之间存在高度相关性的情况。
多元统计分析:第三章 多元正态总体参数的假设检验(补充)
![多元统计分析:第三章 多元正态总体参数的假设检验(补充)](https://img.taocdn.com/s3/m/4df9faaf0029bd64783e2c3d.png)
第三章 多元正态总体参数的假设检验
所涉及的最大似然估计量—单个总体
ˆ X时 (4) 当 0 (0 0巳知)时, 取 似然函数达最大值:
L( X , 0 ) 2
np 2
0
n 2
n 1 etr - 0 A 2
19
第三章 多元正态总体参数的假设检验
15
第三章 多元正态总体参数的假设检验
所涉及的最大似然估计量—单个总体
单个p维正态总体Np(μ,Σ),设X(i)(i=1,…,n)为来自p 维总体的随机样本.样本的似然函数为
L( , ) 2
np 2
1 ˆ A时, 似然函数达最大值 : ˆ X , (1)当 n n np A 2 A np L( X , ) 2 2 exp - n n 2
9
第三章 多元正态总体参数的假设检验
§3.6正态性检验--p维数据的正态性检验
D2(1)≤ D2(2) ≤…≤ D2(n) 统计量 D2 的经验分布函数取为
.
其中H(D2(t) |p)表示χ2 (p)的分布函数在D2(t)的值. 设χ2 分布的pt分位数为χt2 ,显然χt2满足: H(χt 2 |p)= pt. 即χ2 分布的pt 分位数χt2 =H-1(pt |p). 由经验分布得到样本的pt 分位数D2(t)=Fn-1(pt ). 若H(x|p)≌Fn(x),应有D2(t) ≌ χt2 ,绘制点(D2(t) , χt2 )的散 布图,当X为正态总体时,这些点应散布在一条直线上. 10
(1) (1) ( 2) ( 2)
np 2
A1 A2 n
(t )
np 2 2
e
X )( X
多元正态分布及其参数估计、假设检验
![多元正态分布及其参数估计、假设检验](https://img.taocdn.com/s3/m/0150fbf343323968001c926d.png)
协方差阵相等时,两个正态总体均值向量的检 验
协方差阵不相等时,两个正态总体均值向量的 检验
协方差阵检验 多个协差阵相等的检验
可编辑ppt
16
均值向量和协方差阵的假设检 验时常用的统计分布
可编辑ppt
17
可编辑ppt
可编辑ppt
10
多元正态分布密度函数
可编辑ppt
11
多元正态分布的数字特征
可编辑ppt
12
多元正态分布的性质
可编辑ppt
13
多元正态分布的参数估计
可编辑ppt
14
可编辑ppt
15
多元正态总体均值向量和协方 差阵的假设检验
均值向量和协方差阵的假设检验时常用的统计 分布
均值向量的假设检验
多元变量的边缘密度独立性与条件分布多元正态总体均值向量和协方差阵的假设检验多元正态总体均值向量和协方差阵的假设检验均值向量和协方差阵的假设检验时常用的统计分布协方差阵不相等时两个正态总体均值向量的检验多个协差阵相等的检验均值向量和协方差阵的假设检验时常用的统计分布均值向量的假设检验协方差阵相等时两个正态总体均值向量的检验协方差阵不相等时两个正态总体均值向量的检验多个协差阵相等的检验
28
多个协差阵相等的检验
可编辑ppt
29
第三讲 多元正态分布及其参数估计、 假设检验
多元分布概述 多元正态分布
可编辑ppt
1
第一节 多元分布概述
多元变量--随机向量 多元分布函数 多元分布密度 多元变量的边缘密度、独立性与条件分
布 多元变量的数字特征
可编辑ppt
2
应用多元统计分析讲稿朱建平
![应用多元统计分析讲稿朱建平](https://img.taocdn.com/s3/m/7d42df648bd63186bdebbc2c.png)
第一章多元分析概述第一节引言多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。
近30年来,随着计算机应用技术的发展和科研生产的迫切需要,多元统计分析技术被广泛地应用于地质、气象、水文、医学、工业、农业和经济等许多领域,已经成为解决实际问题的有效方法。
然而,随着Internet的日益普及,各行各业都开始采用计算机及相应的信息技术进行管理和决策,这使得各企事业单位生成、收集、存储和处理数据的能力大大提高,数据量与日俱增,大量复杂信息层出不穷。
在信息爆炸的今天,人们已经意识到数据最值钱的时代已经到来。
显然,大量信息在给人们带来方便的同时也带来一系列问题。
比如:信息量过大,超过了人们掌握、消化的能力;一些信息真伪难辩,从而给信息的正确应用带来困难;信息组织形式的不一致性导致难以对信息进行有效统一处理等等,这种变化使传统的数据库技术和数据处理手段已经不能满足要求.Internet的迅猛发展也使得网络上的各种资源信息异常丰富,在其中进行信息的查找真如大海捞针。
这样又给多元统计分析理论的发展和方法的应用提出了新的挑战。
多元统计分析起源于上世纪初,1928年Wishart发表论文《多元正态总体样本协差阵的精确分布》,可以说是多元分析的开端。
20世纪30年代R.A. Fisher 、H.Hotelling、S.N.Roy、许宝騄等人作了一系列得奠基性工作,使多元分析在理论上得到了迅速得发展。
20世纪40年代在心理、教育、生物等方面有不少得应用,但由于计算量大,使其发展受到影响,甚至停滞了相当长得时间。
20世纪50年代中期,随着电子计算机得出现和发展,使多元分析方法在地质、气象、医学、社会学等方面得到广泛得应用。
20世纪60年代通过应用和实践又完善和发展了理论,由于新的理论、新的方法不断涌现又促使它的应用范围更加扩大。
20世纪70年代初期在我国才受到各个领域的极大关注,并在多元统计分析的理论研究和应用上也取得了很多显著成绩,有些研究工作已达到国际水平,并已形成一支科技队伍,活跃在各条战线上。
多元正态分布参数的假设检验
![多元正态分布参数的假设检验](https://img.taocdn.com/s3/m/90d8a280d4d8d15abe234edf.png)
2 22.74 32.56 51.49 61.39 9 22.62 32.57 51.23 61.39 16 23.02 33.05 51.48 61.44
3 22.60 32.76 51.50 61.22 10 22.67 32.67 51.64 61.50 17 23.02 32.95 51.55 61.62
5
武汉理工大学统计学系唐湘晋
一、Σ已知时单个总体均值向量的检验
设 X1, X2,…, Xn 是来自正态总体 N p ( μ , Σ ) 的样本, 考虑假设: H 0 :μ = μ 0 ,
H 1 :μ ≠ μ 0
a) p = 1 b) p > 1
U 1 )
T02 = n ( X − μ 0 )′ Σ − 1 ( X − μ 0 ) .
4
武汉理工大学统计学系唐湘晋
§3.2 多元正态分布的均值向量的检验
p维正态总体 N p (μ, Σ) 的统计推断问题,包括均 值向量的检验和均值的置信域问题。 p维正态随 机向量的每一个分量都是一元正态变量,若将p 维均值向量的检验问题化为p个一元正态的均值 检验问题,虽然可以使问题简化,但忽略了p个 分量间的互相依赖关系,常常得不出正确的结 论。
13
武汉理工大学统计学系唐湘晋
解:
⎡ X 1 ⎤ ⎡ 22.82 ⎤ ⎢ ⎥ ⎢ X 2 ⎥ ⎢ 32.79 ⎥ ⎥ = X=⎢ ⎢ X 3 ⎥ ⎢ 51.45 ⎥ ⎢ ⎥ ⎢ ⎥ X 4 ⎥ ⎣ 61.38 ⎦ ⎢ ⎦ ⎣
1 21 V= ∑ (Xi − X)(Xi − X)′ 21 − 1 i=1 ⎡ 70.3076 ⎤ ⎢ −52.1469 ⎥ 73.5511 ⎥ =⎢ ⎢ 3.4462 −19.3637 ⎥ 90.4098 ⎢ ⎥ 1.2022 −33.6989 40.0895⎦ −6.9624 ⎣
多元正态分布
![多元正态分布](https://img.taocdn.com/s3/m/66bcf2e9b1717fd5360cba1aa8114431b90d8eda.png)
混合模型
除了高斯混合模型,还有其他类 型的混合模型,如多项式混合模 型、泊松混合模型等。
扩展应用领域
多元正态分布在许多领域都有广 泛的应用,如心理学、经济学、 生物统计学等。
THANKS
感谢观看
02
联合分布的均值向量和协方差矩阵由各个分量的均 值和协方差决定。
03
当各分量之间相互独立时,其联合分布的协方差矩 阵为各分量协方差矩阵的线性组合。
04
多元正态分布的推断
参数估计
最大似然估计
01
通过最大化样本数据的似然函数来估计多元正态分布的参数,
包括均值向量和协方差矩阵。
最小二乘估计
02
将多元正态分布的均值向量作为回归系数,利用最小二乘法进
多元正态分布
• 多元正态分布概述 • 多元正态分布的参数 • 多元正态分布的性质 • 多元正态分布的推断 • 多元正态分布在统计和机器学习中的
应用 • 多元正态分布的扩展和变种
01
多元正态分布概述
定义与性质
定义
多元正态分布是多个连续随机变量的 概率分布,其概率密度函数是多元高 斯函数。
性质
多元正态分布具有旋转对称性、椭球 等高性、边缘分布的独立性和最大熵 等性质。
当其他维度固定时,该维度的边缘分 布是关于均值对称的,且方差与该维 度与其他维度的协方差成正比。
随机变量的线性变换
对于多元正态分布的随机变量,对其 进行线性变换后,新变量的分布仍然 是多元正态分布。
线性变换包括平移、旋转、缩放等, 这些变换不会改变变量的分布形态。
随机向量的联合分布
01
对于多元正态分布的随机向量,其各分量之间的联 合分布也是正态分布。
06
正态总体下参数的假设检验
![正态总体下参数的假设检验](https://img.taocdn.com/s3/m/59ad9a7642323968011ca300a6c30c225901f0f3.png)
正态分布的性质
1 2
3
集中性
正态分布的曲线关于均值$mu$对称。
均匀性
正态分布的曲线在均值附近最密集,向两侧逐渐扩散。
稳定性
正态分布的方差$sigma^2$决定了曲线的宽度,方差越大 ,曲线越宽。
正态分布在统计学中的应用
两个总体比例的比较案例
案例描述
某项调查显示,某地区支持甲政 策的居民占60%,支持乙政策的 居民占40%。现从该地区随机抽 取200名居民进行调查,得到支持 甲政策的居民有120名,支持乙政 策的居民有80名。
检验步骤
首先计算两组的样本比例和支持 率,然后根据正态分布的性质计 算临界值,最后根据临界值判断 两组之间是否存在显著差异。
检验步骤
首先计算两组的样本均值和标准差,然后根据正态分布的性质计算临界值,最后根据临界值判断两组之间是否存在显 著差异。
结论
如果两组之间的差异超过临界值,则可以认为两种药物治疗慢性胃炎的疗效存在显著差异;否则,不能 认为两种药物治疗慢性胃炎的疗效存在显著差异。
单个总体比例的假设检验案例
案例描述
检验步骤
03
正态总体下参数的假设检验 方法
单个总体均值的假设检验
总结词
单个总体均值的假设检验是统计学中常见的一种检验方法,用于检验单个正态总体均值 的假设。
详细描述
在假设检验中,我们通常会提出一个关于总体均值的假设,然后使用样本数据来检验这 个假设是否成立。对于单个总体均值的假设检验,我们首先需要确定样本数据和总体分 布的性质,然后选择合适的统计量进行计算,最后根据统计量的分布和临界值来判断假
多元统计分析和假设检验
![多元统计分析和假设检验](https://img.taocdn.com/s3/m/30dc996a2bf90242a8956bec0975f46526d3a74b.png)
因子分析步骤:
因子分析
聚类分析
聚类分析是一组将研究对象分为相对同质的群组的 统计分析技术,每群内部成员彼此比较相似,聚 类分析也叫分类分析。
2.参数检验与非参数检验
假设检验的过程可以跟据变量采用的测量指标,广泛分 为参数检验和非参数检验。
检验问题可以分为两类:在已知总体分布的具体函数形 式的前提下,只是其中若干个参数未知,则称这种检验 问题为参数检验问题,否则称为非参数检验问题。
非参数检验是在总体分布情况不明时,用来检验数据资 料是否来自同一个总体假设的一类检验方法。
是检验来自两个彼此独立的总体的样本均值是否 存在显著性差异;
两个样本方差相等于不等式使用的计算t值的公式 不同,因此要先对方差进行齐次性检验。SPSS的 输出,给出了方差齐次与不齐两种计算结果的t值, 和t检验显著性概率的同时,还给出了对方差齐次 性检验的F值和F检验的显著性概率。
独立样本的t检验
相关分析步骤:
相关分析
回归分析
把存在相关关系的两个或多个变量,一个或几个作为自变量, 另一个作为因变量,把它们之间不十分准确、稳定的关系 用数学方程式来表达,用自变量的值来估计、预测因变量 的值,这个过程称为回归分析。变量之间相互关联的规律 或关系称为回归关系,表达回归关系的数学方程称为回归 方程。
来生成比单个观察更容易管理的数据群组。
聚类分析步骤:
聚类分析
尺度分析步骤:
尺度分析
一个样本的柯尔摩格洛夫-斯米诺夫检验
正态分布的假设检验
![正态分布的假设检验](https://img.taocdn.com/s3/m/69c5fba4b1717fd5360cba1aa8114431b90d8e10.png)
两个正态总体中参数的假设检验
2 2
设有两个独立总体X ~N(~,「),丫~N(」2,;「2)。从两个总体中分别独立抽取容
2
量为m,n的简单随机样本(X「X2,…Xm),(丫1,丫2,…£)。记X,Sx为样本
(X_,,X2,…Xm)的样本均值与方差,Y,S丫2为样本(丫‘丫昇…丫,)的样本均值与方差。对参
单个正态总体中参数的假设检验
单个正态总体中参数的假设检验最为简单,也最为常见。假设总体X~N(\;「2),我
们从总体中随机抽取一个简单随机样本(X^X?,…,Xn),利用样本观测值(x「X2,…,xn)
对参数・,「2作假设检验,列表如下:
假设H。
其它要求
选取统计量
拒绝域
CT =CT°已知
uX一%
*
w={|u 1%}
W予
出,氏未知
S2
F=—X2
Sy2
W ={Fa怙(m—,n—1)}“FcF克(m_1,n_1)}
丐羽2
W={F £Fy2(m —1,n —1)}
耳勿2
W={F讥2(m-1,n-1)}
数叫,;汀;丄2,二22作假设检验,列表如下:
概率论与数理统计假设检验正态总体参数的假设检验(2)
![概率论与数理统计假设检验正态总体参数的假设检验(2)](https://img.taocdn.com/s3/m/e6e98873f56527d3240c844769eae009581ba25d.png)
概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。
多元正态总体的假设检验和方差分析
![多元正态总体的假设检验和方差分析](https://img.taocdn.com/s3/m/a779e1978e9951e79b8927e9.png)
第 3 章多元正态总体的假设检验与方差分析从本章开始,我们开始转入多元统计方法和统计模型的学习。
统计学分析处理的对象是带有随机性的数据。
按照随机排列、重复、局部控制、正交等原则设计一个试验,通过试验结果形成样本信息(通常以数据的形式),再根据样本进行统计推断,是自然科学和工程技术领域常用的一种研究方法。
由于试验指标常为多个数量指标,故常设试验结果所形成的总体为多元正态总体,这是本章理论方法研究的出发点。
所谓统计推断就是根据从总体中观测到的部分数据对总体中我们感兴趣的未知部分作出推测,这种推测必然伴有某种程度的不确定性,需要用概率来表明其可靠程度。
统计推断的任务是“观察现象,提取信息,建立模型,作出推断”。
统计推断有参数估计和假设检验两大类问题,其统计推断目的不同。
参数估计问题回答诸如“未知参数的值有多大?”之类的问题, 而假设检验回答诸如“未知参数的值是吗?”之类的问题。
本章主要讨论多元正态总体的假设检验方法及其实际应用,我们将对一元正态总体情形作一简单回顾,然后将介绍单个总体均值的推断,两个总体均值的比较推断,多个总体均值的比较检验和协方差阵的推断等。
3.1 一元正态总体情形的回顾一、假设检验在假设检验问题中通常有两个统计假设(简称假设), 一个作为原假设(或称零假设),另一个作为备择假设(或称对立假设),分别记为和。
1、显著性检验2为便于表述,假定考虑假设检验问题:设X1, X2,…,X n来自总体N(,)的样本,我们要检验假设3.1)原假设H。
与备择假设H i应相互排斥,两者有且只有一个正确。
备择假设的意思是,一旦否定原假设H0 ,我们就选择已准备的假设H1。
2当 已知时,用统计量 z在原假设H 。
成立下,统计量z 服从正态分布z 〜N (0 ,1),通过查表,查得N(0 ,1)的上对于检验问题(3.1.1,我们制定这样一个检验规则(简称检验)(3.2)分位点z 2。
当z z 2时,拒绝H 0 ; 当z z 2时,接受H o 。
8-2正态分布均值的假设检验
![8-2正态分布均值的假设检验](https://img.taocdn.com/s3/m/e8acc950640e52ea551810a6f524ccbff021ca6a.png)
)
的情况
利用t检验法检验具有相同方差的两正态总 体均值差的假设.
设 X1, X2 ,, Xn 为来自正态总体N (1, 2 ) 的样本, Y1,Y2 ,,Yn 为来自正态总体N (2 , 2 )的
样本, 且设两样本独立. 注意两总体的方差相等.
又设 X ,Y 分别是总体的样本均值, S12 , S22是样本
因为 2 未知, 不能利用 X 0 来确定拒绝域. / n
因为 S 2 是 2 的无偏估计, 故用 S 来取代 , 即采用t X 0 来作为检验统计量.
S/ n
当观察值
t
x 0
s/ n
过分大时就拒绝H0,
拒绝域的形式为 t x 0 k . s/ n
根据第六章§2定理三知,
定理三
当H0为真时,
79.1, 81.0, 77.3, 79.1, 80.0, 78.1, 79.1, 77.3, 80.2, 82.1; 设这两个样本相互独立, 且分别来自正态总
体 N (1, 2 )和 N (2, 2 ), 1, 2, 2均为未知, 问建议的新操作方法能否提高得率? (取 0.05)
解 需要检验假设 H0 : 1 2 0, H1 : 1 2 0.
即甲、乙两台机床加工的产品直径无显著差异.
三、基于成对数据的检验( t 检验 )
从直观上看, 合理的检验法则是:
若观察值 x 与 0 的差 x 0 过分大, 即 x 0 k ,
则我们拒绝 H0 接受 H1 .
拒绝域的形式 x 0 k , ( k 待定). 由标准正态分布的分布函数 (•) 的单调性可知,
P{拒绝 H0 | H0 为真 } P0 ( x 0 k)
P 0
要检验假设 H0 : 10.5, H1 : 10.5,
正态分布的假设检验方法
![正态分布的假设检验方法](https://img.taocdn.com/s3/m/6adb2207b80d6c85ec3a87c24028915f814d8450.png)
正态分布的假设检验方法正态分布是一个重要的统计概念,经常用于解决各种实际问题。
不同于其它常见分布,正态分布具有非常特殊的性质,其中最突出的就是其反映了许多现实生活中的随机变量(例如人的身高、体重等)的分布类似于正态分布的情况。
随着科技与数据收集技术的不断进步,人们能够收集到越来越多的实际数据,并采用各种统计方法来分析这些数据。
在实际应用中,对于一些特定的问题,我们需要检验数据是否符合正态分布,并进而研究相关假设问题。
这需要运用到假设检验的方法,因此本文将对正态分布的假设检验方法进行详细阐述,包括其基础理论、假设设定方法、检验统计量的计算以及显著性检验的实现等。
一、基础理论正态分布是统计学中一个重要的概念,它是一个连续型概率分布,通常由两个参数μ和σ描述,其中μ是正态分布的均值,σ是正态分布的标准差。
对于一个正态分布的随机变量x ~N(μ,σ²),它的概率密度函数可以表示为:$$ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\mathrme^{−(x−\mu)^2/2\sigma^2} $$在实际研究中,许多随机变量的分布都具有类似于正态分布的特性,在大样本情况下,它们的概率密度图常常能够像钟形曲线一样展示出来,因此我们可以通过正态分布模型,来描述某些随机变量的概率分布情况。
随着数据科学的不断进步,我们现在可以通过各种手段来收集数据,并利用统计工具对这些数据进行分析。
假设检验是其中一个最基础的分析方法,它通常用于判断某一假设是否成立。
正态分布的假设检验方法,就是一种基于正态分布模型的检验方法。
二、假设设定方法在进行正态分布的假设检验时,我们通常要设定两个假设,分别为原假设和备择假设。
原假设($H_0$)是我们想要检验的假设,而备择假设($H_1$)则是对原假设的拒绝。
在正态分布的假设检验中,常见的假设包括以下两种:1. 单样本均值检验对于单样本均值检验,我们设定以下的原假设和备择假设:$$ H_0:\mu=\mu_0 \ \ \ \ \ H_1:\mu\neq\mu_0 $$其中,$H_0$表示总体均值等于特定值$\mu_0$,$H_1$表示总体均值不等于$\mu_0$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( ) ( ) 3. 计算统计量T的具体值 T02 = n X − μ0 ′ Σ−1 X − μ0 .
4. 按规定的小概率标准α,查 χ 2分布表,得临界
值 χα2 ( p),并作出判断: 当 T02 ≤ χα2 ( p),接受H0,拒绝H1,即认为与没有显
著差异。 当 T02 > χα2 ( p),接受H1,拒绝H0,即认为与有显著
当p = 1时,因为,X
~
N1 ( μ1 ,
σ2
n
)
,Y
~
N1 ( μ2
,
σ2
m
)
,
且相
互独立,在,H0成立条件下,有
(X −Y) 1 + 1
t=
nm
~ t(n + m− 2)
∑ ∑ ⎡ n
⎢
(Xi
− X)2
+
m
(Yi
−Y
)2
⎤ ⎥
(n+m−2)
⎣ i=1
j=1
⎦
∑ ∑ 显然
t2 = nm
⎡ ⎢
n
Xj −X
Xj −X ′
9
武汉理工大学统计学系唐湘晋
( )( ) ∑ 在
H 0 :μ
=
μ0下, S=
X~
n
X
1 NP (μ0 , n Σ)
j -X Xj -X
′
,
~
X − μ0 ~
Wp (n −1,
NP (0,
Σ).
1 n
Σ)
j =1
故由T2分布定义知
( ) ( ) T 2 = (n −1) ⎡⎣ n X − μ0 ⎤⎦′ S−1 ⎡⎣ n X − μ0 ⎤⎦ ~ T 2 ( p, n −1)
6
武汉理工大学统计学系唐湘晋
在原假设 H0 下,
X
~
Np
⎛ ⎜⎝
μ0
,
1 n
Σ ⎞⎟⎠.
则
( ) X = μ0 +
1 n
1
Σ2Y
,Y
~
Np
0, I p
.
( ) −1
n Σ 2 X − μ0 = Y
( ) ( ) T02 = n X − μ0 ′ Σ−1 X − μ0 = Y'Y ~ χ 2 ( p)
且相互独立,由Wishart分布的可知性知
S1 + S2 ~ Wp (n + m − 2, Σ)
18
武汉理工大学统计学系唐湘晋
由T2统计量的定义知
T2
=
(n
+m−2) Nhomakorabeanm n+m
(X
−
Y)′(S1
+
S2 )−1(X −
Y)
~
T2(
p, n
+
m
−
2)
利用T2与F的关系,检验统计量取为
F
=
(n
+
m − 2)
设 X1, X2 ,K, Xn为来自总体 X ~ N p ( μ1 , Σ) 的样本;
Y1, Y2 ,K, Ym 为来自总体 Y ~ N p ( μ2 , Σ) 的样本,且
两总体相互相互独立,Σ未知。要检验两总体均值是 否相等,即
H0 : μ1 = μ2 H1 : μ1 ≠ μ2
15
武汉理工大学统计学系唐湘晋
~ F(p,n− p) 计算F统计量具体值F。
−
X)′
4. 按规定的显著水平α,查F分布临界值 Fα ( p, n − p) ,
并作出判断:
当 F0 ≤ Fα ( p, n − p),接受H0,拒绝H1,即认为与没有 显著差异。
当F0 > Fα ( p, n − p),接受H1,拒绝H0,即认为与有显 著差异。
Xi − X
Xi − X ′ + m Yj − Y
j =1
Yj
−Y
′⎤ ⎥
⎦
∑ ∑ 其中
X
=
1 n
n i =1
Xi ,
Y=
1 m
m
Yj
j =1
在原假设H0下
( ) T 2 = nm n+m
X − Y ′ Ve-1(X − Y) ~ T 2 (p, n + m -1)
n + m − p −1
(n + m − 2) p
T2
~
F(p, n
+
m
−
p
−1)
17
武汉理工大学统计学系唐湘晋
因为在H0成立条件下
(X
-
Y)
~
N
p
(0,
(
1 n
+
1 m
)Σ),
nm n+m
(X
-
Y)
~
Np
(0,
Σ)
n
∑ S1 = (Xi - X)(Xi - X)′ ~ Wp (n −1, Σ) i =1 m
∑ S2 = (Yj − Y)(Yj − Y)′ ~ Wp (m −1, Σ) j =1
11
武汉理工大学统计学系唐湘晋
例 某小麦良种的四个主要经济性状的理论值 为 μ0 = (22.75, 32.75, 51.50, 61.50)′ 。现在从外地引入 一新品种,在21个小区种值,取得如表所示数据。设 新品种的四个性状 X = ( X1, X 2 , X 3, X 4 )′ ~ N4 (μ, Σ), 试检 验假设 H0 : μ = μ0 (α = 0.05)
4
武汉理工大学统计学系唐湘晋
§3.2 多元正态分布的均值向量的检验
p维正态总体 N p (μ, Σ) 的统计推断问题,包括均 值向量的检验和均值的置信域问题。 p维正态随 机向量的每一个分量都是一元正态变量,若将p 维均值向量的检验问题化为p个一元正态的均值 检验问题,虽然可以使问题简化,但忽略了p个 分量间的互相依赖关系,常常得不出正确的结 论。
3.015 0.607
⎤ ⎥ ⎥ ⎥ 1.111⎥⎦
⎡26.643
S2
=
⎢ ⎢
8.288
⎢18.290
⎢ ⎣
5.578
9.902 8.127 4.049
22.082 7.310
⎤ ⎥ ⎥ ⎥ 3.911⎥⎦
2.由原始数据计算得
⎡50.06⎤
X
=
⎢⎢34.28⎥⎥ ⎢14.62 ⎥
⎢ ⎣
2.46
⎥ ⎦
⎡59.36⎤
Y = ⎢⎢27.66⎥⎥ ⎢42.60⎥
⎢⎣13.26
⎥ ⎦
21
武汉理工大学统计学系唐湘晋
⎡12.425
S1
=
⎢ ⎢ ⎢
9.922 1.636
⎢ ⎣
1.033
14.369 1.170 0.930
−
p
+1 T
2
~
F( p,n
+
m−
p
− 1)
(n + m − 2) ⋅ p
19
武汉理工大学统计学系唐湘晋
具体步骤是:
1.作统计假设:H0:μ1 = μ2 , H1:μ1 ≠ μ2
2.计算样本的均值 X 和 Y ,样本离差阵S1和S2
3.由公式F
=
(n + m − 2) − p +1T 2 (n + m − 2) ⋅ p
23.16 32.78 51.48 61.41
7
22.67 32.58 51.44 61.30
14
22.67 32.67 51.43 61.15
21
23.13 32.95 31.38 61.58
13
武汉理工大学统计学系唐湘晋
解:
X
=
⎡ ⎢ ⎢ ⎢ ⎢ ⎢⎣
X1 X2 X3 X4
⎤ ⎥ ⎥ ⎥ ⎥ ⎥⎦
=
⎡22.82⎤ ⎢⎢32.79⎥⎥ ⎢51.45⎥ ⎢⎣61.38⎥⎦
∑ V
=
1 21 − 1
21 i =1
(Xi
−
X)(Xi
−
X)′
⎡ 70.3076
=
⎢⎢−52.1469 ⎢ 3.4462
⎢ ⎣
−6.9624
73.5511 −19.3637
1.2022
90.4098 −33.6989
⎤ ⎥ ⎥ ⎥ 40.0895⎥⎦
第三章
多元正态分布参数的假设检验
1
武汉理工大学统计学系唐湘晋
§3.1 基本概念
统计假设检验包括两类问题:一是已经知道随机变量 分布函数的形式,但其中包含几个未知的参数,要求 检验这些参数是否等于某些已知的数值,这类问题称 为参数的假设检验;二是随机变量的分布函数未知, 要检验它是否服从某一已知的分布,这类问题称为分 布的假设检验。
3
武汉理工大学统计学系唐湘晋
小概率原理
一个概率很小的事件,在一次试验中可以认为是不可 能发生的; 在假设检验中,接受或拒绝原假设的决定是根据样本 特征值与假设值的偏差超过一定界限的概率作出的, 如果这个概率很小,就拒绝假设;如果这个概率较 大,就接受假设。这里显然有一个标准问题,即要规 定一个很小的概率α作为临界值,当上述偏差超出规 定界限的概率小于或等于α时,就拒绝原假设,反之 就接受原假设。这个临界概率α称为显著性水平。
差异。
8
武汉理工大学统计学系唐湘晋
二、Σ未知时单个总体均值向量的检验
建议:用样本协方差S来替换Σ ,即
( ) ( ) T 2 = n X − μ0 ′ V-1 X − μ0 = n (n −1)(X − μ0 )′ S-1 (X − μ0 )