东北大学离散数学复习总结满分版)
离散数学知识点总结
离散数学知识点总结离散数学是一门重要的数学学科,它涉及到离散的对象和离散的结构,而不是连续的对象和结构。
以下是离散数学的几个重要知识点的总结:集合论- 集合:集合是由元素组成的对象的集合。
集合的运算包括并集、交集和差集等。
集合:集合是由元素组成的对象的集合。
集合的运算包括并集、交集和差集等。
- 子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。
子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。
- 幂集:一个集合的幂集是所有可能的子集构成的集合。
幂集:一个集合的幂集是所有可能的子集构成的集合。
逻辑- 命题:一个命题是一个陈述句,可以被判断为真或假。
命题:一个命题是一个陈述句,可以被判断为真或假。
- 逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。
逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。
- 真值表:用来列出复合命题在各种可能情况下的真值。
真值表:用来列出复合命题在各种可能情况下的真值。
关系- 关系:关系用来描述元素之间的联系。
关系可以是二元的或多元的。
关系:关系用来描述元素之间的联系。
关系可以是二元的或多元的。
- 等价关系:等价关系是一种满足自反性、对称性和传递性的关系。
等价关系:等价关系是一种满足自反性、对称性和传递性的关系。
- 偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。
偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。
- 图的表示:图可以用邻接矩阵或邻接表来表示。
图的表示:图可以用邻接矩阵或邻接表来表示。
图论- 连通性:图中的连通性用来描述图中顶点之间是否存在路径。
连通性:图中的连通性用来描述图中顶点之间是否存在路径。
- 最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。
最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。
东北大学离散数学复习总结(满分版)
方法、知识点总结(知识重点和考题重点)前三章重点内容(知识重点):1、蕴含(条件)“→”的真值P→Q的真值为假,当且仅当P为真,Q为假。
2、重言(永真)蕴涵式证明方法<1>假设前件为真,推出后件也为真。
<2>假设后件为假,推出前件也为假。
易错3、等价公式和证明中运用4、重要公式重言蕴涵式:P∧Q => P or QP or Q => p∨QA->B =>(A∧or∨C)->(B∧or∨C)其他是在此基础上演变等价公式:幂等律P∧P=P P∨P=P吸收律P∧(P∨Q)=P P∨(P∧Q)=P同一律P∨F=P P∧T=PP∨T=T P∧F=FP <-> Q = (P->Q)∧(Q->P) = (P∧Q)∨(﹁P∧﹁Q)5、范式的写法(最方便就是真值表法)6、派遣人员、课表安排类算法:第一步:列出所有条件,写成符号公式第二步:用合取∧连接第三步:求上一步中的析取范式即可7、逻辑推理的写法直接推理论证:其中I公式是指重言蕴涵式那部分其中E公式是指等价公式部分条件论证: 形如~ , ~, ~ => R->SR P(附加条件)......S TR->S CP8、谓词基本内容注意:任意用—> 连接存在用∧连接量词的否定公式量词的辖域扩充公式量词分配公式其他公式9、带量词的公式在论域内的展开10、量词辖域的扩充公式11、前束范式的写法给定一个带有量词的谓词公式,1)消去公式中的联接词→和←→(为了便于量词辖域的扩充);2)如果量词前有“﹁”,则用量词否定公式﹁”后移。
再用摩根定律或求公式的否定公式,将“﹁”后移到原子谓词公式之前;3)用约束变元的改名规则或自由变元的代入规则对变元换名(为量词辖域扩充作准备);4)用量词辖域扩充公式提取量词,使之成为前束范式形式。
简要概括:1、去-> ,<-> 2、移﹁3、换元4、量词辖域扩充12、谓词演算的推理理论推理规则:P、T、CP、US、ES、EG、UG 的使用ES US 去量词EG UG 添量词★谨记:ES要在US之前,很重要添加量词注意事项:13、集合的幂集(用P表示,也常有花P表示)A是集合,由A的所有子集构成的集合,称之为A的幂集。
离散数学知识点总结
注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。
也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。
选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。
如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。
关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。
当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。
蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。
离散数学第一章知识点总结
离散数学第一章知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
第一章通常是对离散数学的基础概念和预备知识进行介绍,为后续的学习打下坚实的基础。
以下是对离散数学第一章知识点的详细总结。
一、集合的基本概念集合是由一些确定的、不同的对象所组成的整体。
集合中的对象称为元素。
我们通常用大写字母来表示集合,用小写字母表示元素。
如果一个元素 a 属于集合 A,记作 a ∈ A;如果一个元素 b 不属于集合 A,记作 b ∉ A。
集合有两种常见的表示方法:列举法和描述法。
列举法是将集合中的元素一一列举出来,例如 A ={1, 2, 3, 4, 5}。
描述法是通过描述元素的共同特征来表示集合,例如 B ={x | x 是大于 0 小于 10 的整数}。
集合之间的关系包括子集、真子集和相等。
如果集合 A 中的所有元素都属于集合 B,那么 A 是 B 的子集,记作 A ⊆ B。
如果 A 是 B 的子集,且 B 中存在元素不属于 A,那么 A 是 B 的真子集,记作 A ⊂ B。
如果 A 和 B 包含相同的元素,那么 A 和 B 相等,记作 A = B。
二、集合的运算集合的基本运算有并集、交集和差集。
集合 A 和集合 B 的并集,记作 A ∪ B,是由属于 A 或者属于 B 的所有元素组成的集合。
集合 A 和集合 B 的交集,记作A ∩ B,是由同时属于 A 和 B 的所有元素组成的集合。
集合 A 与集合 B 的差集,记作 A B,是由属于 A 但不属于 B 的所有元素组成的集合。
此外,还有补集的概念。
如果给定一个全集 U,集合 A 的补集记作A,是由属于 U 但不属于 A 的所有元素组成的集合。
集合运算满足一些重要的定律,如交换律、结合律、分配律等。
例如,A ∪ B = B ∪ A(并集的交换律),A ∩ B =B ∩ A(交集的交换律),(A ∪ B) ∪ C = A ∪(B ∪ C)(并集的结合律),(A ∩B) ∩ C =A ∩ (B ∩ C)(交集的结合律)等。
离散数学知识点总结及应用
离散数学知识点总结及应用
知识点1: 集合论
- 集合的定义和表示方法
- 集合的运算:并、交、差、补
- 集合的基本性质和定律
知识点2: 逻辑与命题
- 命题的定义和特性
- 命题的联结词:与、或、非
- 命题的真值表和逻辑运算
- 命题的充分条件和必要条件
知识点3: 关系与函数
- 关系的定义和性质
- 关系的类型:自反、对称、传递、等价
- 函数的定义和基本概念
- 函数的特性和图像
知识点4: 图论
- 图的基本概念和术语
- 图的存储结构:邻接矩阵、邻接表
- 图的遍历算法:深度优先搜索、广度优先搜索
- 最短路径算法:Dijkstra算法、Floyd-Warshall算法
知识点5: 组合数学
- 排列和组合的基本概念
- 排列和组合的计算方法
- 随机变量和概率分布
- 组合数学在密码学等领域的应用
知识点6: 布尔代数
- 布尔代数的基本运算:与、或、非
- 布尔函数的最小化方法
- 布尔代数的应用:逻辑电路设计、编码器等
知识点7: 计算理论
- 自动机的基本概念和分类
- 正则语言和正则表达式
- 文法的定义和性质
- 上下文无关文法和巴科斯范式
知识点8: 数论
- 整数的性质和基本运算
- 质数和分解定理
- 同余关系和同余方程
- 数论在加密算法中的应用
以上是离散数学中的一些主要知识点和应用场景的简要总结,希望对你的研究有所帮助。
离散数学--总复习
第一部分:集合论知识点:集合关系(∈,⊆,⊂,∉,=)集合运算(并、交、差、对称差、补集、幂集),特殊集合(∅,E,P(A))集合恒等式(幂等律、交换律、结合律、分配律、吸收律、德摩根律、补交转换律(A-B=A⋂~B)、德·摩根律~(B⋃C)=~B~⋂C,A-(B⋃C)=(A-B)⋂(A-C))证明集合包含或相等(根据定义, 通过逻辑等值演算证明、利用已知集合等式或包含式, 通过集合演算证明)1. 证:A⋃(B⋂C)=(A⋃B)⋂(A⋃C)证∀x x∈A⋃(B⋂C)⇔ x∈A∨(x∈B∧ x∈C) (并,交的定义)⇔(x∈A∨x∈B)∧(x∈A∨x∈C) (逻辑演算的分配律)⇔x∈(A⋃B)⋂(A⋃C)2. 证明(A-B)-C=(A-C)-(B-C)证(A-C)-(B-C)= (A ⋂ ~C) ⋂ ~(B ⋂ ~C) (补交转换律)= (A ⋂ ~C) ⋂ (~B ⋃ ~~C) (德摩根律)= (A ⋂ ~C) ⋂ (~B ⋃ C) (双重否定律)= (A ⋂ ~C ⋂ ~B) ⋃(A ⋂ ~C ⋂ C) (分配律)= (A ⋂ ~C ⋂ ~B) ⋃(A ⋂∅) (矛盾律)= A ⋂ ~C ⋂ ~B (零律,同一律)= (A ⋂ ~B) ⋂ ~C (交换律,结合律)= (A – B) – C第二部分:逻辑学命题的定义(凡具有确定真假意义的陈述句均称为命题。
)联结词(⌝、∧、∨、→、↔、↑、↓(公式转化为只含↑、↓的表达形式))例:将p → q化为只含↑的公式p → q ⇔⌝p ∨q⇔⌝(p∧⌝q) ⇔ p↑⌝q⇔p↑⌝( q∧q)⇔ p↑ q↑ q命题符号化(1、王晓虽然聪明,但不用功.2、张辉与王丽都是三好生.3、张辉与王丽是同学.4、除非天冷,小王才穿羽绒服.5、除非小王穿羽绒服,否则天不冷.)等值演算(幂等律、交换律、结合律、分配律、吸收律、蕴涵等值式A→B⇔⌝A∨B等价等值式A↔B⇔(A→B)∧(B→A)假言易位等值式A→B⇔⌝B→⌝A等价否定等值式A↔B⇔⌝A↔⌝B)证明p→(q→r) ⇔ (p∧q)→r证p→(q→r)⇔⌝p∨(⌝q∨r) (蕴涵等值式)⇔ (⌝p⌝∨q)∨r (结合律)⇔⌝(p∧q)∨r (德摩根律)⇔ (p∧q) →r (蕴涵等值式)判断下列公式的类型q⌝∧(p→q)解q⌝∧(p→q)⇔ q⌝∧(⌝p∨q) (蕴涵等值式)⇔ q∧(p⌝∧q) (德摩根律)⇔ p∧(q⌝∧q) (交换律,结合律)⇔ p∧0 (矛盾律)⇔ 0 (零律)该式为矛盾式.命题公式(重言式、矛盾式、可满足式),利用真值表判断,等值演算,范式。
(完整word版)离散数学知识汇总
离散数学笔记第一章命题逻辑合取析取定义 1. 1.3否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真定义 1. 1.4条件联结词,表示“如果……那么……”形式的语句定义 1. 1.5双条件联结词,表示“当且仅当”形式的语句定义 1.2.1合式公式(1)单个命题变元、命题常元为合式公式,称为原子公式。
(2)若某个字符串A 是合式公式,则⌝A、(A)也是合式公式。
(3)若A、B 是合式公式,则A ∧B、A∨B、A→B、A↔B 是合式公式。
(4)有限次使用(2)~(3)形成的字符串均为合式公式。
1.3等值式1.4析取范式与合取范式将一个普通公式转换为范式的基本步骤1.6推理定义 1.6.1 设 A 与 C 是两个命题公式, 若 A → C 为永真式、 重言式,则称 C 是 A 的有 效结论,或称 A 可以逻辑推出 C ,记为 A => C 。
(用等值演算或真值表)第二章 谓词逻辑2.1、基本概念∀:全称量词 ∃:存在量词一般情况下, 如果个体变元的取值范围不做任何限制即为全总个体域时, 带 “全称量词”的谓词公式形如"∀x(H(x)→B(x)),即量词的后面为条件式,带“存在量词”的谓词公式形如∃x(H(x)∨WL(x)),即量词的后面为合取式 例题R(x)表示对象 x 是兔子,T(x)表示对象 x 是乌龟, H(x,y)表示 x 比 y 跑得快,L(x,y)表示x 与 y 一样快,则兔子比乌龟跑得快表示为: ∀x ∀y(R(x)∧T(y)→H(x,y))有的兔子比所有的乌龟跑得快表示为:∃x ∀y(R(x)∧T(y)→H(x,y))2.2、谓词公式及其解释定义 2.2.1、 非逻辑符号: 个体常元(如 a,b,c)、 函数常元(如表示22y x 的 f(x,y))、 谓词常元(如表示人类的 H(x))。
定义 2.2.2、逻辑符号:个体变元、量词(∀∃)、联结词(﹁∨∧→↔)、逗号、括号。
离散数学知识点总结
离散数学知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
下面就来对离散数学中的一些重要知识点进行总结。
一、集合论集合是离散数学的基础概念之一。
集合是由一些确定的、互不相同的对象组成的整体。
集合的表示方法有列举法和描述法。
集合之间的关系包括子集、真子集、相等。
集合的运算有并集、交集、补集等。
集合的并集是由属于两个或多个集合中的所有元素组成的集合。
交集则是由同时属于两个或多个集合的元素组成的集合。
补集是在给定的全集 U 中,不属于某个集合 A 的元素组成的集合。
集合的运算遵循一些基本的定律,如交换律、结合律、分配律等。
这些定律在解决集合相关的问题时非常有用。
二、关系关系是集合论中的一个重要概念,它描述了两个集合元素之间的某种联系。
关系可以用集合的形式表示,也可以用关系矩阵和关系图来表示。
关系的性质包括自反性、反自反性、对称性、反对称性和传递性。
不同性质的关系在实际应用中有着不同的意义。
等价关系是一种特殊的关系,它同时具有自反性、对称性和传递性。
等价关系可以将集合中的元素进行分类,形成等价类。
偏序关系也是一种常见的关系,它具有自反性、反对称性和传递性。
偏序关系可以用来描述元素之间的顺序关系,例如在集合的包含关系中。
三、函数函数是一种特殊的关系,它对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
函数的类型包括单射函数、满射函数和双射函数。
函数的复合是将两个函数依次作用,得到一个新的函数。
函数的逆是在函数是双射的情况下存在的,并且逆函数的复合等于原函数。
四、图论图是由顶点和边组成的结构。
图可以分为无向图和有向图。
图的基本概念包括顶点的度、路径、回路、连通性等。
图的存储方式有邻接矩阵和邻接表。
邻接矩阵适合表示稠密图,而邻接表适合表示稀疏图。
图的遍历算法有深度优先搜索和广度优先搜索。
这两种算法在图的处理中经常被用到,例如寻找图中的路径、判断图的连通性等。
离散数学必备知识点总结汇总
离散数学必备知识点总结汇总
1.集合论:集合的概念、元素、子集、交集、并集、差集、补集、空集、集合的运算、集合的等价关系、集合的序关系等。
2.命题逻辑:命题的概念、命题的联接词(与、或、非)、命题的否
定形式、命题的蕴涵、等价命题、命题的充分条件和必要条件、命题的合
取范式和析取范式、蕴涵式、逻辑等价式、命题的否定形式的推理。
3.谓词逻辑:谓词的概念、谓词的量化、全称量化和存在量化、谓词
逻辑的等价式和推理规则、归纳定理和应用。
4.关系:关系的概念、关系的性质、关系的运算、关系的性质和关系
的代数结构。
5.图论:图的概念、图的表示、连通图、树、度数和定理、欧拉图、
哈密顿图、图的平面性质等。
6.混合图:有向图、无向图、有向图和无向图的表示、混合图的回路、可达矩阵、连通度、强连通图等。
7.布尔代数:布尔运算、布尔函数、布尔代数的运算规则、完备性和
最小化。
8.代数结构:半群、群、环、域的定义和性质、同态和同构。
9.组合数学:排列组合、二项式系数、排列、组合、分配原理、鸽巢
原理、生成函数、容斥原理等。
10.图的着色:图的着色问题、邻接矩阵、边界点、图的着色问题的
算法、四色定理等。
11.概率论:基本概念、概率的性质、条件概率、独立事件、贝叶斯定理、随机变量、概率分布函数、期望、方差、协方差、相关系数、大数定理和中心极限定理等。
12.递归:递归关系、递归函数、递归算法、递归树、递归求解等。
离散数学必备知识点总结汇总
总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数2种不同的关系;为mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数1.若|X|=m,|Y|=n,则从X到Y有mn2种不同的关系,有m n种不同的函数;2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3. 判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b => c≥avb6) 结合律a^(b^c)=(a^b)^c对偶av(bvc)=(avb)vc7) 等幂律a^a=a 对偶ava=a8) 吸收律a^(avb)=a 对偶av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=> av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;。
离散数学知识点总结
离散数学知识点总结离散数学知识点总结同时要善于总结,在学习《离散数学》的过程,对概念的理解是学习的重中之重。
本文就来分享一篇离散数学知识点总结,希望对大家能有所帮助!一、认知离散数学离散数学是计算机科学基础理论的核心课程之一,是计算机及应用、通信等专业的一门重要的基础课。
它以研究量的结构和相互关系为主要目标,其研究对象一般是有限个或可数个元素,充分体现了计算机科学离散性的特点。
学习离散数学的目的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进一步提高抽象思维和逻辑推理的能力,为计算机的应用提供必要的描述工具和理论基础。
1.定义和定理多离散数学是建立在大量定义、定理之上的逻辑推理学科,因此对概念的理解是学习这门课程的核心。
在学习这些概念的基础上,要特别注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。
在考试中有一部分内容是考查学生对定义和定理的识记、理解和运用,因此要真正理解离散数学中所给出的每个基本概念的真正的含义。
比如,命题的定义、五个基本联结词、公式的主析取范式和主合取范式、三个推理规则以及反证法;集合的五种运算的定义;关系的定义和关系的四个性质;函数(映射)和几种特殊函数(映射)的定义;图、完全图、简单图、子图、补图的定义;图中简单路、基本路的定义以及两个图同构的定义;树与最小生成树的定义。
掌握和理解这些概念对于学好离散数学是至关重要的。
2. 方法性强在离散数学的学习过程中,一定要注重和掌握离散数学处理问题的方法,在做题时,找到一个合适的解题思路和方法是极为重要的`。
如果知道了一道题用怎样的方法去做或证明,就能很容易地做或证出来。
反之,则事倍功半。
在离散数学中,虽然各种各样的题种类繁多,但每类题的解法均有规律可循。
所以在听课和平时的复习中,要善于总结和归纳具有规律性的内容。
在平时的讲课和复习中,老师会总结各类解题思路和方法。
作为学生,首先应该熟悉并且会用这些方法,同时,还要勤于思考,对于一道题,进可能地多探讨几种解法。
《离散数学》期末复习
《离散数学》期末复习《离散数学》期末复习内容:第一章~第七章题型:一、选择题(20%,每题2分)二.填空题(20%,每题2分)三、计算题(20%,每题5分)四、证明题(20%,每题5分)五、判断题(20%,每题2分)第1章数学语言与证明方法1.1 常用的数学符号1.计算常用的数学符号式子1.2 集合及其表示法1.用列举法和描述法表示集合2.判断元素与集合的关系(属于和不属于)3.判断集合之间的包含与相等关系,空集(E),全集(?)4.计算集合的幂集5.求集合的运算:并、交、相对补、对称差、绝对补6.用文氏图表示集合的运算7.证明集合包含或相等方法一:根据定义, 通过逻辑等值演算证明方法二:利用已知集合等式或包含式, 通过集合演算证明1.3 证明方法概述1、用如下各式方法对命题进行证明。
直接证明法:A→B为真间接证明法:“A→B为真” ?“ ?B→ ?A为真”归谬法(反证法):A∧?B→0为真穷举法:A1→B, A2→B,…, A k→B 均为真构造证明法:在A为真的条件下, 构造出具有这种性质的客体B ?空证明法:“A恒为假” ?“A→B为真”平凡证明法:“B恒为真” ?“A→B为真”数学归纳法:第2章命题逻辑2.1 命题逻辑基本概念1、判断句子是否为命题、将命题符号化、求命题的真值(0或1)。
命题的定义和联结词(?, ∧, ∨, →, ?)2、判断命题公式的类型赋值或解释.成真赋值,成假赋值;重言式(永真式)、矛盾式(永假式)、可满足式:。
2.2 命题逻辑等值演算1、用真值表判断两个命题公式是否等值2、用等值演算证明两个命题公式是否等值3、证明联结词集合是否为联结词完备集2.3 范式1、求命题公式的析取范式与合取范式2、求命题公式的主析取范式与主合取范式(两种主范式的转换)3、应用主析取范式分析和解决实际问题2.4 命题逻辑推理理论1、用直接法、附加前提、归谬法、归结证明法等推理规则证明推理有效第3章一阶逻辑3.1 一阶逻辑基本概念1、用谓词公式符号命题(正确使用量词)2、求谓词公式的真值、判断谓词公式的类型3.2 一阶逻辑等值演算1、证明谓词公式的等值式2、求谓词公式的前束范式第4章关系4.1 关系的定义及其表示1、计算有序对、笛卡儿积2、计算给定关系的集合3、用关系图和关系矩阵表示关系4.2 关系的运算1、计算关系的定义域、关系的值域2、计算关系的逆关系、复合关系和幂关系3、证明关系运算满足的式子4.3 关系的性质1、判断关系是否为自反、反自反、对称、反对称、传递的2、判断关系运算与性质的关系3、计算关系自反闭包、对称闭包和传递闭包4.4 等价关系与偏序关系1、判断关系是否为等价关系2、计算等价关系的等价类和商集3、计算集合的划分4、判断关系是否为偏序关系5、画出偏序集的哈期图6、求偏序集的最大元、最小元、极小元、极大元、上界、下界、上确界、下确界7、求偏序集的拓扑排序第5章函数1.判断关系是否为函数2.求函数的像和完全原像3.判断函数是否为满射、单射、双射4.构建集合之间的双射函数5.求复合函数6.判断函数的满射、单射、双射的性质与函数复合运算之间的关系7.判断函数的反函数是否存在,若存在求反函数第6章图1.指出无向图的阶数、边数、各顶点的度数、最大度、最小度2.指出有向图的阶数、边数、各顶点的出度和入度、最大出度、最大入度、最小出度最小入出度3.根据握手定理顶点数、边数等4.指出图的平行边、环、弧立点、悬挂顶点和悬挂边5.判断给定的度数列能否构成无向图6.判断图是否为简单图、完全图、正则图、圈图、轮图、方体图7.求给定图的补图、生成子图、导出子图8.判断两个图是否同构6.2 图的连通性1.求图中给定顶点通路、回路的距离2.计算无向图的连通度、点割集、割点、边割集、割边3.判断有向图的类型:强连通图、单向连通图、弱连通图6.3 图的矩阵表示1.计算无向图的关联矩阵2.计算有向无环图的关联矩阵3.计算有向图的邻接矩阵4.计算有向图的可达矩阵5.计算图的给定长度的通路数、回路数6.4 几种特殊的图1、判断无向图是否为二部图、欧拉图、哈密顿图第7章树及其应用7.1 无向树1.判断一个无向图是否为树2.计算无向树的树叶、树枝、顶点数、顶点度数之间的关系3.给定无向树的度数列,画出非同构的无向树4.求生成树对应的基本回路系统和基本割集系统5.求最小生成树7.2 根树及其应用1.判断一个有向图是否为根树2.求根树的树根、树叶、内点、树高3.求最优树4.判断一个符号串集合是否为前缀码5.求最佳前缀码6.用三种方法遍历根树。
离散数学知识点总结
总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数为2种不同的关系;mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种不同的关系,有m n种不同的函1.若|X|=m,|Y|=n,则从X到Y有mn数;2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2.集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3.判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶 avb≥aA^b≤b 对偶 avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶 av(bvc)=(avb)vc7)等幂律a^a=a 对偶 ava=a8) 吸收律a^(avb)=a 对偶 av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶 a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=> av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则 v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
离散数学知识点总结
离散数学知识点总结离散数学是数学的一个分支,主要研究离散的数学结构和离散的数学对象。
它包括了许多重要的概念和技术,是计算机科学、通信工程、数学和逻辑学等领域的基础。
本文将对离散数学的一些核心知识点进行总结,包括命题逻辑、一阶逻辑、图论、集合论和组合数学等内容。
1. 命题逻辑命题逻辑是离散数学的一个重要分支,研究命题之间的逻辑关系。
命题是一个陈述语句,要么为真,要么为假,而且不能同时为真和为假。
命题逻辑包括逻辑运算和逻辑推理等内容,是离散数学的基础之一。
1.1 逻辑运算逻辑运算包括与(∧)、或(∨)、非(¬)、蕴含(→)和双条件(↔)等运算。
与、或和非是三种基本的逻辑运算,蕴含和双条件则是基于这三种基本运算得到的复合运算。
1.2 逻辑等值式逻辑等值式是指在命题逻辑中具有相同真值的两个复合命题。
常见的逻辑等值式包括德摩根定律、双重否定定律、分配率等。
1.3 形式化证明形式化证明是命题逻辑的一个重要内容,研究如何利用逻辑规则和等值式来推导出给定命题的真值。
形式化证明包括直接证明、间接证明和反证法等方法,是离散数学中的常见技巧。
2. 一阶逻辑一阶逻辑是命题逻辑的延伸,研究命题中的量词和谓词等概念。
一阶逻辑包括量词、谓词逻辑和形式化证明等内容,是离散数学中的重要部分。
2.1 量词量词包括全称量词(∀)和存在量词(∃),用来对命题中的变量进行量化。
全称量词表示对所有元素都成立的命题,而存在量词表示至少存在一个元素使命题成立。
2.2 谓词逻辑谓词逻辑是一阶逻辑的核心内容,研究带有量词的语句和谓词的逻辑关系。
谓词是含有变量的函数,它可以表示一类对象的性质或关系。
2.3 形式化证明形式化证明在一阶逻辑中同样起着重要作用,通过逻辑规则和等值式来推导出给定命题的真值。
一阶逻辑的形式化证明和命题逻辑类似,但更复杂和抽象。
3. 图论图论是离散数学中的一个重要分支,研究图和图的性质。
图是由节点和边组成的数学对象,图论包括图的表示、图的遍历、最短路径、最小生成树等内容,是离散数学中的一大亮点。
东北大学离散数学试卷及复习资料
一、填空 20% (每小题2分)1、 P :你努力,Q :你失败。
“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为 。
2、论域D={1,2},指定谓词P则公式),(x y yP x ∃∀真值为 。
2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。
3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R=(列举法)。
R 的关系矩阵M R =。
5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ;A 上既是对称的又是反对称的关系R= 。
6、设代数系统<A ,*>,其中A={a ,b ,c},则幺元是 ;是否有幂等性 ;是否有对称性 。
7、4阶群必是 群或 群。
8、下面偏序格是分配格的是 。
9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。
10、公式R Q P Q P P ⌝∧∨⌝∧∧⌝∨)(())(( 的根树表示为。
二、选择 20% (每小题2分)1、在下述公式中是重言式为( )A .)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→↔↔;C .Q Q P ∧→⌝)(;D .)(Q P P ∨→ 。
2、命题公式 )()(P Q Q P ∨⌝→→⌝ 中极小项的个数为( ),成真赋值的个数为( )。
A .0;B .1;C .2;D .3 。
3、设}}2,1{},1{,{Φ=S ,则 S2 有( )个元素。
A .3;B .6;C .7;D .8 。
4、 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系},,,, | ,,,{c b d a S S d c S S b a d c b a R +=+⨯>∈<⨯>∈<><><<=则由 R 产 生的S S ⨯上一个划分共有( )个分块。
东北大学期末考核《离散数学X》期末考试备战高分题集
离散数学X期末考试备战题集一、有两个小题1.分别说明联结词、∧、∨、→和在自然语言中表示什么含义。
解:“”表示“…不成立”,“不…”。
“∧”表示“并且”、“不但…而且...”、“既…又 ...”等。
“∨”表示“或者”,是可兼取的或。
“”表示如果…,则…;只要…,就…;只有… , 才…;仅当…。
“”表示“当且仅当”、“充分且必要”。
2.分别列出P Q、 P Q、P Q 、P Q的真值表(填下表)。
P Q P Q P Q P Q P Q解:P Q P Q P Q P Q二、 1.指出下面的命题公式中哪些是永真式(只写题号即可)。
(1). (P∧(P→Q))→Q (2). P→(P∨Q)(3). (P∧Q)→Q (4). (P∨Q)→P解:(1),(2),(3)为永真式。
2.然后对上面的永真式任选其中一个给予证明(方法不限)。
证明 (3). (P∧Q)→Q设前件(P∧Q)为真,则得Q为真。
所以(P∧Q)→Q是永真式。
3.上面哪个不是永真式(找出一个即可),请说明它为什么不是永真式。
解:(4). (P∨Q)→P 不是永真式。
因为如果前件P∨Q为真,后件P不一定为真。
所以(P∨Q)→P 不是永真式。
三、用谓词逻辑推理的方法证明下面推理的有效性。
要求按照推理的格式书写推理过程。
x(B(x)C(x)), xA(x), x(A(x)C(x)) x B(x)解:⑴xA(x) P⑵ A(a) ES ⑴⑶x(A(x)C(x)) P⑷A(a)C(a) US ⑶⑸ C(a) T⑵⑷ I⑹x(B(x)C(x)) P⑺B(a)C(a) US ⑹⑻B(a) T ⑸⑺ I⑼x B((x) EG ⑻四、令全集E={1,2},A={1}, P(A)表示集合A的幂集。
(注意:要求有计算过程,不能直接写出计算结果!)1. 指出 P(E)和P(A)各有多少个元素。
即求|P(E)|和|P(A)|。
解:因为P(E)={Φ,{1},{2}, {1,2}} 所以P(E)有4个元素。
离散数学知识点全归纳
离散数学知识点全归纳离散数学是数学的一个分支,研究的是离散对象和离散结构。
在计算机科学、信息技术以及其他领域中,离散数学具有重要的应用价值。
以下是离散数学的一些重要知识点的全面总结。
1. 集合论和逻辑- 集合:基本概念、运算、包含关系、并集、交集、差集、幂集等。
- 命题逻辑:命题、命题的连接词、真值表、逻辑等价、析取范式、合取范式等。
- 谓词逻辑:谓词、量词、逻辑推理、存在量词和全称量词等。
2. 证明方法- 直接证明:利用已知事实和逻辑推理,直接得出结论。
- 对证法:从假设的反面出发,利用矛盾推理得出结论。
- 数学归纳法:证明基础情况成立,再证明递推步骤成立。
3. 图论- 图的基本概念:顶点、边、路径、回路、度、连通性等。
- 图的表示:邻接矩阵、邻接表等。
- 最短路径:Dijkstra算法、Floyd-Warshall算法等。
- 最小生成树:Prim算法、Kruskal算法等。
4. 关系与函数- 关系及其性质:自反性、对称性、传递性、等价关系等。
- 函数及其性质:定义域、值域、单射、满射、双射等。
- 逆函数和复合函数:求逆函数、复合函数的定义和性质。
5. 组合数学- 排列和组合:排列、组合的计算公式和性质。
- 递归关系:递推公式、递归算法等。
- 图的着色:色数、四色定理等。
6. 代数系统- 半群、幺半群、群、环、整环和域的定义和性质。
- 同态:同态映射、同构等。
- 应用:编码理论、密码学等。
以上是离散数学的一些重要知识点的概括。
深入理解和掌握这些知识,对于解决实际问题和在相关领域中取得成功非常重要。
在学习过程中,建议结合实际例子和习题进行练习,加深对知识的理解和应用能力。
离散数学知识点总结
离散数学知识点总结1. 集合论- 集合的基本概念:集合、元素、子集、幂集、并集、交集、差集、补集。
- 集合的运算:德摩根定律、分配律、结合律、交换律。
- 有限集合和无限集合:可数与不可数集合、阿列夫零、阿列夫一。
2. 数理逻辑- 命题逻辑:命题、联结词、真值表、逻辑等价、逻辑蕴含、逻辑独立。
- 一阶谓词逻辑:量词、谓词、解释、满足、逻辑公式、全称量词、存在量词。
- 证明方法:直接证明、间接证明、反证法、数学归纳法。
3. 递归关系和函数- 递归定义:递归方程、初始条件、递归函数。
- 递归函数的例子:阶乘、斐波那契数列。
- 函数的性质:单射、满射、双射、复合函数。
4. 图论- 图的基本概念:顶点、边、路径、回路、图的同构。
- 图的类型:无向图、有向图、简单图、多重图、连通图、强连通图。
- 图的算法:欧拉路径、哈密顿回路、最短路径(Dijkstra算法)、最小生成树(Prim算法、Kruskal算法)。
5. 组合数学- 排列与组合:排列数、组合数、二项式定理。
- 组合恒等式:Pascal三角形、组合恒等式。
- 组合问题:计数原理、Inclusion-Exclusion原理。
6. 布尔代数- 布尔运算:AND、OR、NOT、XOR、NAND、NOR、XNOR。
- 布尔表达式的简化:卡诺图、奎因-麦克拉斯基方法。
- 布尔函数的表示:真值表、卡诺图、逻辑表达式。
7. 关系论- 关系的基本概念:笛卡尔积、自反性、对称性、传递性。
- 关系的类型:等价关系、偏序关系、全序关系。
- 关系的闭包:自反闭包、对称闭包、传递闭包。
8. 树和森林- 树的基本概念:节点、边、根、叶、子树、兄弟、祖先、子孙。
- 特殊类型的树:二叉树、平衡树、B树、B+树。
- 树的遍历:前序遍历、中序遍历、后序遍历、层次遍历。
9. 算法复杂度- 时间复杂度:最好情况、最坏情况、平均情况、大O表示法。
- 空间复杂度:算法空间需求的分析。
- 渐进分析:渐进紧确界、大Θ表示法、小o和大O的非正式描述。
《离散数学》期末复习提要汇总
《离散数学》期末复习提要课程的主要内容1、集合论部分(集合的基本概念和运算、二元关系和函数);2、数理逻辑部分(命题逻辑、谓词逻辑);3、图论部分(图的基本概念、特殊的图,树及其性质)。
一、各章复习要求与重点第一章命题逻辑[复习知识点]1、命题与联结词(否定、析取、合取、蕴涵、等价),复合命题2、命题公式与解释,真值表,公式分类(永真、矛盾、可满足),公式的等价3、析取范式、合取范式,极小(大)项,主析取范式、主合取范式4、公式类别的判别方法(真值表法、等值演算法、主析取/合取范式法)5、全功能集6、推理理论本章重点内容:命题与联结词、公式与解释、析取范式与合取范式、公式恒真性的判定、推理理论[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与解释的概念;掌握求给定公式真值表的方法,用基本等价式化简其他公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等价式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价的方法。
掌握24个重要等值式。
5、掌握推理理论,会写出推理的证明,掌握附加前提证明法和归谬发。
[本章重点习题]习题P31-36: 1.1,1.7-1.9,1.12,1.18,1.19,1.15 [疑难解析]1、公式恒真性的判定判定公式的恒真性,包括判定公式是恒真的或是恒假的。
具体方法有两种,一是真值表法,对于任给一个公式,主要列出该公式的真值表,观察真值表的最后一列是否全为1(或全为0),就可以判定该公式是否恒真(或恒假),若不全为0,则为可满足的。
二是推导法,即利用基本等价式推导出结果为1,或者利用恒真(恒假)判定定理:公式G 是恒真的(恒假的)当且仅当等价于它的合取范式(析取范式)中,每个子句(短语)均至少包含一个原子及其否定。
离散数学知识点归纳
离散数学知识点归纳一、集合论。
1. 集合的基本概念。
- 集合是由一些确定的、彼此不同的对象组成的整体。
这些对象称为集合的元素。
例如,A = {1,2,3},其中1、2、3是集合A的元素。
- 集合的表示方法有列举法(如上述A的表示)和描述法(如B={xx是偶数且x < 10})。
2. 集合间的关系。
- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。
例如,{1,2}⊆{1,2,3}。
- 相等:如果A⊆ B且B⊆ A,则A = B。
- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂ B。
3. 集合的运算。
- 并集:A∪ B={xx∈ A或x∈ B}。
例如,A = {1,2},B={2,3},则A∪B={1,2,3}。
- 交集:A∩ B = {xx∈ A且x∈ B}。
对于上述A和B,A∩ B={2}。
- 补集:设全集为U,集合A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
二、关系。
1. 关系的定义。
- 设A、B是两个集合,A× B的子集R称为从A到B的关系。
当A = B时,R称为A上的关系。
例如,A={1,2},B = {3,4},R={(1,3),(2,4)}是从A到B的关系。
2. 关系的表示。
- 关系矩阵:设A={a_1,a_2,·s,a_m},B={b_1,b_2,·s,b_n},R是从A到B的关系,则R的关系矩阵M_R=(r_ij),其中r_ij=<=ft{begin{matrix}1,(a_i,b_j)∈ R0,(a_i,b_j)∉ Rend{matrix}right.。
- 关系图:对于集合A上的关系R,用节点表示A中的元素,若(a,b)∈ R,则用有向边从a指向b。
3. 关系的性质。
- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有(a,a)∈ R,则R 是自反的。
例如,A={1,2,3},R = {(1,1),(2,2),(3,3)}是自反关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法、知识点总结(知识重点和考题重点)前三章重点内容(知识重点):1、蕴含(条件)“→”的真值P→Q的真值为假,当且仅当P为真,Q为假。
2、重言(永真)蕴涵式证明方法<1>假设前件为真,推出后件也为真。
<2>假设后件为假,推出前件也为假。
易错3、等价公式和证明中运用4、重要公式重言蕴涵式:P∧Q => P or QP or Q => p∨QA->B =>(A∧or∨C)->(B∧or∨C)其他是在此基础上演变等价公式:幂等律P∧P=P P∨P=P吸收律P∧(P∨Q)=P P∨(P∧Q)=P同一律P∨F=P P∧T=PP∨T=T P∧F=FP <-> Q = (P->Q)∧(Q->P) = (P∧Q)∨(﹁P∧﹁Q)5、范式的写法(最方便就是真值表法)6、派遣人员、课表安排类算法:第一步:列出所有条件,写成符号公式第二步:用合取∧连接第三步:求上一步中的析取范式即可7、逻辑推理的写法直接推理论证:其中I公式是指重言蕴涵式那部分其中E公式是指等价公式部分条件论证: 形如~ , ~, ~ => R->SR P(附加条件)... ...S TR->S CP8、谓词基本内容注意:任意用—> 连接存在用∧连接量词的否定公式量词的辖域扩充公式量词分配公式其他公式9、带量词的公式在论域内的展开10、量词辖域的扩充公式11、前束范式的写法给定一个带有量词的谓词公式,1)消去公式中的联接词→和←→(为了便于量词辖域的扩充);2)如果量词前有“﹁?”,则用量词否定公式﹁?”后移。
再用摩根定律或求公式的否定公式,将“﹁?”后移到原子谓词公式之前;3)用约束变元的改名规则或自由变元的代入规则对变元换名(为量词辖域扩充作准备);4)用量词辖域扩充公式提取量词,使之成为前束范式形式。
简要概括:1、去-> ,<-> 2、移﹁3、换元4、量词辖域扩充12、谓词演算的推理理论推理规则:P、T、CP、US、ES、EG、UG 的使用ES US 去量词EG UG 添量词★谨记:ES要在US之前,很重要添加量词注意事项:13、集合的幂集(用P表示,也常有花P表示)A是集合,由A的所有子集构成的集合,称之为A的幂集。
记作P(A)或2的A次方给定有限集合A,如果|A|=n, 则|P(A)|=2的n次方14、求集合的划分数与等价关系数——相同15、三种重要集合运算一、差运算- (相对补集)二、绝对补集~三、对称差前三章重点内容(考题重点):最常考内容和方法需要看自己课件,前三章考试内容不多且简单1、命题符号化(包括第一章简单的命题和第二章谓词的命题)2、逻辑推理(命题逻辑和谓词逻辑两种推理,每章书最后部分)3、主析取范式与主合取范式(命题逻辑和谓词逻辑中的两种范式写法)4、真值的判断后五章重点内容(知识重点):1、笛卡尔积定义:设A、B是集合,由A的元素为第一元素,B的元素为第二元素组成序偶的集合,称为A和B 的笛卡尔积,记作A×B如果A、B都是有限集,且|A|=m, |B|=n,则|AXB |=mn.2、域的表示:定义域dom(关系的第一个元素的范围)值域Ran(关系的第二个元素的范围)3、空关系、完全关系、A上的恒等关系IA的定义空关系只有点,没有一条边。
4、关系的个数5、对称、反对称、自反、反自反、传递的判定6、等价关系、等价类定义:设R是A上关系,若R是自反的、对称的和传递的,则称R是A中的等价关系等价关系的个数:划分数;由等价关系图求等价类:R图中每个独立子图上的结点,构成一个等价类。
不同的等价类个数=独立子图个数7、相容关系、相容类特点:自反、对称。
图的简化:⑴不画环;⑵两条对称边用一条无向直线代替相容类:设r是集合X上的相容关系,C?X,如果对于C 中任意两个元素x,y有<x,y>∈r ,称C是r的一个相容类从简化图找最大相容类:最大相容类的意义是——一个相容类加多一个点就不是相容类了,所以最大相容类可以是多个而不是唯一的“最大”的概念,定义类似极大线性无关组,但元素个数不同------找最大完全多边形。
最大完全多边形:含有结点最多的多边形中,每个结点都与其它结点相联结。
通过最大相容类求完全覆盖:完全覆盖就是指所有最大相容类构成的集合。
8、关系的分类:偏序关系定义:R是A上自反、反对称和传递的关系,则称R 是A上的偏序关系。
并称<A,R>是偏序集。
全序关系定义:<A,≤>是偏序集,任何x,y∈A,如果x与y都是可比较的,则称≤是全序关系(线序、链)。
9、偏序集Hasse图的画法1).用“。
”表示A中元素。
2).如果x≤y,且x≠y,则结点y要画在结点x的上方。
3). 如果x≤y,且y盖住x,x与y之间连一直线。
4). 一般先从最下层结点(全是射出的边与之相连(不考虑环)),逐层向上画,直到最上层结点(全是射入的边与之相连)。
(采用抓两头,带中间的方法)10、重要元素定义(极大小元、最大小元、上下界、最大下界与最小上界)11、如何求映射是入(单)、满、双射?第一步:分别求出定义域和值域第二步:比较就出来了,就那么简单但是要证明的话:两者结合得:双射成立12、复合函数中的重要性质(常考):f:X→Y, g:Y→Z是两个函数, 则⑴如果f和g是满射的,则g。
f 也是满射的;⑵如果f和g是入射的,则g。
f 也是入射的;⑶如果f和g是双射的,则g。
f 也是双射的⑴如果g。
f 是满射的,则g是满射的;⑵如果g。
f 是入射的,则 f 是入射的;⑶如果g。
f 是双射的,则f是入射的和g是满射的13、函数种类个数的求法14、逆函数(性质)设f:X→Y是双射的函数,f C:Y?X 也是函数, 称之为 f 的逆函数。
设f:X→Y是双射的函数,则有15、第六章基础知识重点幂等元、幺元e、零元0、逆元的概念同态同构:f(x)满射、并且满足*不是双射就一定复合同构的条件:必须具有幺元对幺元、零元对零元......代数系统(重点)半群:封闭、可逆独异点:有幺元群:可逆交换群:可交换群的特征:1.消去律 2.无零元 3.除幺元外无其他幂等元运算表中:每个元素在每一行、列必须出现仅出现一次!16、第七章基础知识重点格:<A,≤>是偏序集,如果任何a,b∈A,使得{a,b}都有最大下界和最小上界,则称<A,≤>是格平凡格:所有全序都是格,称之为平凡格。
分配格:(判定定理)所有链均为分配格。
设<A, ≤>是分配格,对任何a,b,c∈A, 如果有a∧b=a∧c及a ∨b=a∨c则必有b=c .有界格:(判定定理)有界格定义:如果一个格存在全上界1与全下界0,则称此格为有界格。
从格的图形看:全上界1,就是图的最上边元素(只一个)。
全下界0,就是图的最下边元素(只一个)。
有补格:(判定定理:根据定义看是不是每个中间元素都有补元)补元:设<A,≤>是个有界格,a∈A, 如果存在b∈A, 使得a∨b=1 a∧b=0 则称a与b互为补元(其中∨是求最小上界,∧求最大下界)有补格的定义:一个有界格中,如果每个元素都有补元,则称之为有补格布尔格:如果一个格既是分配格又是有补格,则称之为布尔格。
*重要定理:在有界分配格中,如果元素有补元,则补元是唯一的。
17、格的同构条件(特别)需同时满足:钻石定律:一个布尔代数的所有原子(直接覆盖最小元0的元素)构成的布尔代数一定与元代数同构18、布尔代数表达式和布尔函数<B,∨,∧,ˉ> 是布尔代数的形式含有变元x1,x2,…,xn 的布尔表达式记作E(x1,x2,…xn),也可以看成是一个函数f:Bn→B, 称之为布尔函数布尔表达式的范式的写法(很重要,与第一第二章的方法类似)19、第八章图论的重要知识点(好多好多的定义自己记吧)图的同构:两个图同构的必要条件:1.结点个数相等.2.边数相等.3.度数相同的结点数相等.4.对应的结点的度数相等.图的连通:强连通、单侧连通和弱连通(一般不考)如果任何两个结点间相互可达, 则称G是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G是单侧连通. 如果将G看成无向图后(即把有向边看成无向边)是连通的,则称G是弱连通强分图、单侧分图和弱分图在简单有向图中,具有强连通的最大子图,称为强分图.具有单侧连通的最大子图,称为单侧分图.具有弱连通的最大子图,称为弱分图.图的矩阵表示和写法(前两个有点重要):一、邻接矩阵每一行的1:在无向图中代表一条线有向图中代表—>出线列中的1代表<—入线二、可达性矩阵三、完全关系矩阵图中结点的度与个数、边的关系:考试需要两则结合20、欧拉图与H(汉密尔)图(重点)定义:在无孤立结点的图G中,若存在一条回路,它经过图中每条边一次且仅一次,称此回路为欧拉回路. 称此图为欧拉图汉密尔顿回路(H回路):通过G中每个结点恰好一次的回路.具有汉密尔顿回路(H回路)的图.欧拉回路的判定:(充要条件)无向图G具有欧拉路,当且仅当G是连通的,且有零个或两个奇数度的结点.汉密尔顿图的判定: (只有充分条件)(充分条件)设G是有n个结点的简单图,若G中每对结点度数之和大于等于n,则G有一条H回路欧拉回路的算法(重重重!虽然可能不考)(记做闭迹交集法)H回路的算法(重重重!虽然可能不考)(记做相邻最小权法)21、树中的重要方法:树的结点与边数:边数=结点数-1 e = v-1m叉有序树转化成二叉树的方法:赋权图的最小生成树的求法(记做相邻最小权不回路法):定义:一棵生成树中的所有边的权之和称为该生成树的权. 具有最小权的生成树,称为最小生成树.最优树求法:定义***后五章重点内容(考题重点):<精华看完绝对不亏>1、求逆元(例如a逆)第一步:求出幺元e第二步:a逆与a进行所定义的运算,写出等式:如a*a逆=e,求解2、群的阶性质*有一个群G,a属于G,a元素的阶为n,当且仅当k=mn(n的整数倍),a 的k次方=e.*n阶群中的元素x,x的n次方等于e3、树的边数e与叶结点t的关系e=2t-24、图的画法与格的判断画法在前面总结过:偏序集Hasse图的画法3).用“。
”表示A中元素。
4).如果x≤y,且x≠y,则结点y要画在结点x的上方。
3). 如果x≤y,且y盖住x,x与y之间连一直线。
4). 一般先从最下层结点(全是射出的边与之相连(不考虑环)),逐层向上画,直到最上层结点(全是射入的边与之相连)。
(采用抓两头,带中间的方法)判断——格:看是否任意都有最小上界、最大下界;分配格:跟那俩个特别的格比较,没有那样的子格就是分配格;链一定是分配格有界格:有无最大最小元(1,0表示),有限个元素的格一定是有界格;有补格:看是否每个元素都有补元若有补元,补元唯一的是有界分配格!布尔格:分配、有补5、复合函数的性质f:X→Y, g:Y→Z是两个函数, 则⑴如果f和g是满射的,则g。