立体几何复习(知识点+经典习题)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考链接】

1.设α和β为不重合的两个平面,给出下列命题:

(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;

(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直。 上面命题中,真命题...的序号 (写出所有真命题的序号). 2.在空间,下列命题正确的是

(A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行 (C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行 考点二 三视图与直观图及面积与体积 【基础训练】

1.如图(3),,E F 为正方体的面11ADD A 与面11BCC B 的中心,则四边形1BFD E 在该正方体的面上的投影可能是 .

2.如果一个水平放置的图形的斜二测直观图是一个底角为0

45,腰和上底均为1的等腰梯形,那么原图形的面积是( ) A. 222+ B

12+ C 22

+ D 12+3.在ABC ∆中, 0

2 1.5120AB BC ABC ==∠=,, 若使其绕直线BC 旋转一周,则它形成的几何体的体积是( )

F

E D1

C1

B1

D

C

B

A

A.92π

B.

72π C. 52π D. 32

π 4. 已知一个长方体共一顶点的三个面的面积分别是2,3,6,

,,则这个长方体的对角线长是 . 若长方体共顶点的三个侧面面积分别为3,5,15,则它的体积为 .

5.正方体的内切球和外接球的半径之比为( ) A.

3:1 B.32: C.2:3: D. 3:3

6.一个正方体的顶点都在球面上 ,它的棱长为2,则球的表面积是( ) A.2

8cm π B. 2

12cm π C. 2

16cm π D. 2

20cm π

7.若三个球的表面积之比是1:2:3,则它们的体积之比是 .

8.长方体的一个顶点上三条棱长分别为3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是( )

A.25π

B. 50π

C.125π

D. 以上都不对 9..半径为 R 的半圆卷成一个圆锥,则它的体积为 .

【高考链接】

1.一个棱锥的三视图如图,则该棱锥的全面积为( )

(A )48+122 (B )48+242 (C )36+122 (D )36+242

2.设某几何体的三视图如下则该几何

体的体积为 3

m

3..如图1,△ ABC 为三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=3

2

BB '=CC ' =AB,则多面体△ABC -A B C '''的正视图(也称主视图)是

考点三 线面间位置关系 【基础训练】

1.已知在四边形ABCD 中,E,F 分别是AC,BD 的中点,若AB=2,CD=4,

EF AB ⊥,则EF 与CD 所成的角的度数是( )

A.0

90 B.0

45 C.0

60 D.0

30

2.已知直线12,,l l α平面, 1212,l l l l αα,则与的位置关系是( )

2.A l α B. 2l α⊂ C.22l l αα⊂或 D.2l α与相交

【高考链接】

1设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥, B .a b αβαβ⊥⊥,,∥ C .a b αβαβ⊂⊥,,∥

D .a b αβαβ⊂⊥,∥,

2.对两条不相交的空间直线a 和b ,必定存在平面α,使得( )

(A ),a b αα⊂⊂(B ),//a b αα⊂(C ),a b αα⊥⊥ (D ),a b αα⊂⊥ 3.已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则( )

.A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n

4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )

A .,,αγβγαβ⊥⊥若则‖

B .,,m n m n αα⊥⊥若则‖

C .,,m n m n αα若则‖‖‖

D .,,m m αβαβ若则‖‖‖ 5.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( ) A .若,l ααβ⊥⊥,则l β⊂ B .若//,//l ααβ,则l β⊂ C .若,//l ααβ⊥,则l β⊥ D .若//,l ααβ⊥,则l β⊥ 6.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是

(A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m // 7.用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ; ③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b . A. ①②

B. ②③

C. ①④

D.③④

考点四 求空间图形中的角 【基础训练】

1.直角ABC ∆的斜边AB α⊂,AC,BC 与平面α所成的角分别为00

3045和,CD 是斜边AB 上的高,则CD 与平面α所成的角为 .

2.如图,正三棱柱V-ABC(顶点在地面上的射影是底面正三角形的中心)中,D,E,F 分别是VC,V A,AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( ) A. 0

30 B. 0

90

C. 060

D.随点的变化而变化

5.直线l 与平面α所成的角为0

30,,,,l A m A m αα=⊂∉则m 与l 所成角的取值范围是

.

V

C

B

A

相关文档
最新文档