第9章 大气边界层概述
台风形成的大气边界层过程

台风形成的大气边界层过程引言台风是一种强烈的热带气旋,对于许多沿海地区来说都是一种常见的自然灾害。
了解台风形成的过程对于预测和防范台风具有重要意义。
台风形成的过程包括大气边界层的一系列复杂变化。
本文将探讨台风形成过程中大气边界层的关键环节。
大气边界层的概述大气边界层是指地球表面与自由大气之间的区域,它对于气候模式和天气系统的形成至关重要。
大气边界层的特征包括温度、湿度、气压和风速的变化。
在台风形成过程中,大气边界层的变化起着重要作用。
大气边界层的结构大气边界层通常可以分为三个层次:地面层、混合层和准静止层。
1.地面层:指离地表约1.5公里以下的区域,受到地表影响最为显著。
地面层的温度和湿度变化较大。
2.混合层:位于地面层之上,高度约为1.5公里至4公里。
混合层内的气体混合程度较高,温度和湿度的变化相对较小。
3.准静止层:位于混合层之上,高度约为4公里至15公里。
准静止层内的气体流动较为缓慢,温度和湿度的变化相对较小。
台风形成的过程台风形成的过程需要满足一系列气象条件和动力过程。
1. 气象条件台风形成的气象条件包括足够高的海水温度、弱的垂直风切变和足够的湿度。
这些条件有助于产生热带扰动,为台风的形成提供了基础。
2. 热带扰动热带扰动是台风形成的前兆。
当气象条件合适时,海洋表面上的热量会导致空气的上升,形成一个低压区域。
这个低压区域会吸引周围空气进一步上升,并逐渐形成一个热带扰动。
3. 热带扰动的增强热带扰动在与海洋表面的相互作用中逐渐增强。
海水蒸发导致热量释放到大气中,进一步加强了热带扰动。
此时,热带扰动会逐渐形成一个闭合的环流,也称为热带低压。
4. 台风的形成当热带低压进一步发展并且达到一定标准时,它会被升级为台风。
台风的形成与大气边界层的变化密切相关。
大气边界层的水汽能量提供了台风形成所需的燃料。
4.1 气流的对称性台风形成过程中,大气边界层内的气流逐渐变得对称。
气流的旋转围绕着台风的中心,并且逐渐向上升高。
大气边界层

大气边界层气流过地面时,地面上各种粗糙元,如草、沙粒、庄稼、树木、房屋等会使大气流动受阻,这种摩擦阻力由于大气中的湍流而向上传递,并随高度的增加而逐渐减弱,达到某一高度后便可忽略。
此高度称为大气边界层厚度,它随气象条件、地形、地面粗糙度而变化,大致为300~1000米。
直接受到地表作用力影响的大气对流层,有时也称为行星边界层。
这些作用力包括摩擦,加热,蒸发,蒸散和地形影响等。
大气边界层的厚度随时间空间变化而有明显差异,可由数百公尺至一,二公里。
大气边界层之上成为自由大气。
白天地表受到太阳照射加热,温度升高;晚上则因为地表长波辐射冷却作用而降温,使得接近地表的气温呈现日变化,这种日变化是陆地上大气边界层的主要特征。
由于海水的比热大,以及海洋上层海水强烈的混合作用,使得海水表面温度日变化不明显,所以海上大气边界层的日变化也不明显。
气温日变化的振幅大小随着高度的增加而很快减小,自由大气的日变化则很小。
乱流旺盛也是大气边界层的重要特性。
无论在陆上或海上,在高压区域因为气流沉降,边界层厚度通常比在低压区小。
在陆上高压区域,大气边界层的日夜演化,结构常比较清晰,主要包括混合层,剩余层和稳定边界层。
日出后地表受热,热空气上升,冷空气下降,对流逐渐加强,各种性质近乎均匀的混合,古称之为混合层,也称为对流边界层。
在混合层内为不稳定的大气,其乱流主要有对流作用主导。
日出后混合层很快发展,到了下午一,二点左右,混合层高度达到最高。
日落后,地表受热停止,使得混合层内的乱流强度减弱,原来为不稳定的大气,逐渐转为中性的大气;此为白天混合层的残余,故称之为剩余层。
日落后,地表以长波辐射冷却,逐渐降温,在地表形成逆温,发展成为夜间地面逆温层,这一层大气非常稳定,故称之为稳定边界层,层内的乱流强度很微弱。
在稳定边界层之上即为剩余层。
夜间地面的风通常是微风或静风,但在稳定边界层顶常会出现很强的风速,这种现象称为夜间低层喷流。
无论在混合层或稳定边界层,从地表到约十分之一边界层厚度附近的热通量,水气通量和应力随高度的变化不大,这一层被称为地面层,或等通量层。
大气边界层

湍流的产生
机械湍流( mechanical Turbulence) 热力湍流( thermal Turbulence )或对流湍 流(convective turbulence) 惯性湍流(inertial Turbulence)
机械湍流( mechanical Turbulence)
由风切变产生 风切变产生的原因:地面摩擦力,地形建筑 等障碍物的阻挡等。
9.4.4 The Marine Boundary Layer
9.4.4 The Marine Boundary Layer
9.4.4 The Marine Boundary Layer
9.4.5 Stormy Weather
9.4.5 Stormy Weather
9.4.5 Stormy Weather
惯性湍流(inertial Turbulence)
由大湍涡产生,湍流串级(turbulent cascade) Small eddies can also be generated along the edges of larger eddies, a process called the turbulent cascade, where some of the inertial energy of the larger eddies is lost to the smaller eddies
湿度通量
Байду номын сангаас
9.2.4 The Global Surface Energy Balance
9.2.4 The Global Surface Energy Balance
9.3 Vertical Structure 垂直结构
9.3.1 Temperature
第9章 大气边界层

高度(m)
2000 1000
0
云层
混合层(ML)
表面层(SL)
夹卷层
自由大气(FA)
盖顶逆温
剩余层(RL)
夹 卷 层混合层
稳定(夜间)边界层
(ML)
表面层(SL) 表面层(SL)
中午noon
日落sunset
午夜midnight 日出sunrise 中午noon
陆上高压区大气边界层由三部分组成:大涡对流混合层;含有原 先混合层空气的残余层;具有间隙性湍流的夜间稳定边界层。
• 对流层大气其余部分统称为 自由大气。
1 边界层定义
对流层是从地面往上直达11 千米平均高度,但通常只有 最低2000米才直接被下垫面 改变; 定义:大气边界层指的是地 面往上到1000-2000米高度的 这一大气层。
边界层定义
由于它与地球表面直接接触,所以地球表 面的强迫力如摩擦力、蒸发和蒸腾、热传 递、污染物排放以及地形引起的流的变化 等可以对它产生直接的影响,其响应时间 尺度为1小时或者更小。
2 风和气流
• 气流或者风可以分为三大类:平均风、湍流、波。
u u u u • 各种物理量如水汽、热量、动量和污染物等输送
在水平方向上主要靠风来实现;而垂直方向上主 要靠湍流;
平均风 波 湍流
风和气流
平均风:可以产生很快的水平输送或平流;摩擦 力使平均风在近地面处达到最小值;量级:水平风 为2到10米(m)每秒垂直风为几毫米(mm)到几厘 米(cm)(小) 波:一般在夜间边界层观测到波;波对动量和能 量输运起重要作用;来源于平均风剪切(切边)、 平均风经过障碍物时产生等等
)
kg污 m2s
或
kg污 m2s重新定义成运动学形式,
边界层的概念和特点

边界层的概念和特点边界层是指在地球物理学中,大气界面和地面之间的一层气体。
在气象学上,边界层是指从地面到一定高度范围内,风速、温度、湿度等各种大气参数发生显著变化的区域。
边界层的高度通常为未来数小时预报所需要的范围内。
1. 逐渐递减的风速:在边界层内,风速逐渐递减。
开始时,风速最大并且逐渐降低。
具体的风速变化取决于地面和大气层的性质和情况。
2. 温度和湿度梯度:边界层内的温度和湿度呈现出明显的梯度变化。
一般来说,地面处温度最高,高层温度逐渐降低。
除此之外,空气湿度在边界层内也会发生变化。
具体变化也是因地而异的。
3. 乱流增大:边界层内的乱流比较显著。
在这里空气流动不是平稳的,而是发生着强烈的乱流。
气体不能在水平方向上自由扩散,而是在各种水平方向逐渐混合。
4. 光学特性不同:由于边界层内存在着大量悬浮的尘埃和气体,它具有不同于上层大气的光学特性。
这使得大气边界层对光的透过率发生了变化。
边界层在气象、环境科学、气候变化等领域具有重要意义。
较为典型的是它与交通工具有关的影响。
由于边界层内的风速变化大,乱流强,而车辆在受到这种影响的同时会发生摩擦热,从而可以推测车辆的燃油效率、稳定性和舒适性。
在电力行业,边界层的变化也会影响线路的温度和表面附着物的变化,从而影响电力传输的效率和稳定性。
同样,边界层的湿度和风速也会对农业和林业造成影响。
总之,边界层是一个非常重要和复杂的概念。
对于气象学家、大气化学家、环境工程师、天气预报员、交通工程专家等专业人士来说,了解边界层的基本原理、特点和影响就显得尤为重要。
第9章 大气边界层

?
这些通量可以通过除以湿空气密度而重新定义成运动学形式,
运动学通量 符号 ~ M M 单位
质量 热量 湿度 动量 污染物
a ~ QH QH a C pa
R ~ R
F
a ~ F
~ a
a
m s m K s kg w m kg a s m m s s kg 污 m kg a s
(1)混合层(ML)
• 混合层主要生成机制是对流,所以在晴天,ML的 发展依 赖于地面的太阳加热。(?) • 混合层顶部的稳定层作用?---顶盖,限制对流---卷挟带 • 整个混合层的风都是次地转风,风速分布?(风速向下递 减,在近地面处趋近于零) • 水汽混合比随高度增加而减小,为什么? • 大部分污染物是靠近地球表面
风
垂直输运 厚度
表面层中近似为对数风速廓线,通常 为次地转的,并与等压线相交
湍流占优势 变化于100米到3公里之间,陆上有日 变化
几乎是地转的
平均风和积云尺度占优势 变化小,在8-18公里之间, 时间变化慢
进一步体会边界层重要性:
每天预报实际上是边界层预报; 污染物积聚在边界层中; 雾发生在边界层中; 气团实际上是地球不同部分大气边界层;
边界层厚度与结构
Subsidence(下沉) updrafts Divergence(辐散) 高压(H) (上升)
Convergence(辐合) 低压(L)
低压区边界层 高度如何确定?
边界层厚度与结构
• • • • • • • • • BL(Boundary Layer)边界层 CL(Cloud Layer)云层 FA(Free Atmosphere)自由大气 IBL(Internal Boundary Layer)内边界层 ML(Mixed Layer)混合层 RL(Residual Layer)剩余层 SBL(Stable Boundary Layer)稳定边界层 SCL(Subcloud Layer)云下层 SL(Surface Layer)表面层:占边界层10%的底部区域
大气边界层概述

夜间边界层温度垂直分布的演变
2001年1月27日-28日逆温生消的演变过程
300
250
高 200 度 150
1999/10/5 08:00,北京 露点和大气温度垂直分布
不稳定
稳定(逆温)
不稳定边界层风、温廓线
稳定边界层风、温廓线
夜间稳定边界层比起白天的对流边界层来有显著的不 同,特别是,夜间经常在很低的高度上出现较强的逆温, 严重阻碍了物质和能量的扩散。因此研究夜间逆温层的演 变规律,尤其是确定逆温层顶的高度如何随时间演变,是
生态边界层示意图
一个关键的问题是如何定义边界层的上界,这也是一 个很困难的问题。有时,上界很明显,例如逆温盖,在盖 子以下大气受下垫面影响很大,而在盖子以上则未受影响。 但在通常情况下这种明显的界限是不存在的,下垫面的作 用随高度的增加只是缓缓减弱。一般地,类似于流体动力 学中边界层厚度的定义,定义大气边界层的上界为在这个 界面上 ,由地面作用导致的湍流动量通量以及热通量均减 小到地面值的很小一部分,例如1%。但有时 也以逆温层顶 作为大气边界层上界。
大气边界层概述
王成刚 大气物理系
与流体力学中称固壁附近的边界层为“平板边界层”、 “机翼绕流边界层”等类似,大气边界层也常常被称为“行 星边界层”,因为它是处于旋转的地球上的。当大气在地表 上流动时,各种流动属性都要受到下垫面的强烈影响,由此 产生的相应属性梯度将这种影响向上传递到一定的高度,不 过这一高度一般只有几百米到一二公里,比大气运动的水平 尺度小得多。在此厚度范围内流体的运动具有边界层特征。 在大气边界层中的每一点,垂直运动速度都比平行于地面的 水平运动速度小得多,而垂直方向上的速度梯度则比水平方 向上的大得多。此外,由于地球自转的影响,水平风速的大 小在随高度变化的同时,风向也随之变化。
大气边界层概述

各种条件下的大气边界层专项观测实验
青藏高原
南沙
北极
淮河
内蒙
高精度梯度测量系统
近地面综合梯度观测
观测非均匀边界层
• 超声阵列测量( HATS计划)
• 观测飞机 • 带平衡陀螺仪的汽艇 • 闪烁仪等
• 遥感观测
热量通量观测
辐射观测
青藏高原:在珠峰进行边界层气象和化学物质测量
北极:斯瓦尔巴德地区开展边界层观测试验
测量平均时间 2~60min
遥感仪器及技术指标
无线电声雷达 (RASS)
意大利Irone公司
最高探测高度 1000m
最低探测高度 100m
垂直空间分辨率 10m
测量范围
-30~40℃
精度
0.1℃
测量平均时间 3~30min
法国 REMTECH 公司最先进的低 层大气风速、温 度廓线测量仪
国际上最先进的边界层雷达(LAP5000)
大气边界层概述
王成刚 大气物理系
与流体力学中称固壁附近的边界层为“平板边界层”、 “机翼绕流边界层”等类似,大气边界层也常常被称为“行 星边界层”,因为它是处于旋转的地球上的。当大气在地表 上流动时,各种流动属性都要受到下垫面的强烈影响,由此 产生的相应属性梯度将这种影响向上传递到一定的高度,不 过这一高度一般只有几百米到一二公里,比大气运动的水平 尺度小得多。在此厚度范围内流体的运动具有边界层特征。 在大气边界层中的每一点,垂直运动速度都比平行于地面的 水平运动速度小得多,而垂直方向上的速度梯度则比水平方 向上的大得多。此外,由于地球自转的影响,水平风速的大 小在随高度变化的同时,风向也随之变化。
大气边界层内运动的主要特点就是其湍流性,大气 边界层的Reynolds数是相当大的,流体几乎总是处于湍 流状态,而且湍流度很大,可达20%左右。水平均匀地 面上的大气边界层结构可以简单地区分为上下两层,其 中近地面50~100m范围内的一层称为“近地层”或“常 通量层”(该层底部实质上也含有一个厚度非常小的粘性 次层,但通常不予考虑),其中湍流动量通量可以认为是 常值,平均水平风速服从对数律,这一特性是风洞中用
边界层重要知识点归纳

边边界界层层重重要要知知识识点点归归纳纳第第一一章章大气边界层的定义:大气的最低部分受下垫面(地面)影响的层次,或者说大气与下垫面相互作用的层次。
大气边界层的厚度差异很大,平均厚度为地面以上约1km 的范围,以湍流运动为主要特征。
还可细分为近地层(大气边界层下部约1/10的厚度内)和Ekman 层。
大气边界层的主要特征:(1)大气边界层的主要运动形态一般是湍流:不规则性和脉动性(2)大气边界层的日变化:气象要素的空间分布具有明显的日变化。
【大气边界层湍流:①机械湍流:风切变,机械运动;②热力湍流:辐射特性的差异;】大气边界层的分层:(1)粘性副层(微观层)(2)近地层(常通量层)(3)Ekman 层(上部摩擦层)【(1).粘性副层(微观层):分子输送过程处于支配地位,分子切应力远大于湍流切应力。
(2).近地层(常通量层):大气受地表动力和热力影响强烈,气象要素随高度变化激烈,运动尺度小,科氏力可略。
(3).Ekman 层(上部摩擦层):在这一层里,湍流粘性力、科氏力和气压梯度力同等重要,需要考虑风随高度的切变。
】大气边界层厚度:边界层厚度的时空变化很大,空间范围从几百米到几千米。
海洋上:由于海水上层强烈混合使海面温度日变化很小。
陆地上,边界层具有轮廓分明、周日循环发展的结构。
大气边界层结构:(1)混合层: (2)残留层:日落前半小时,湍流在混合层中衰减形成的空气层,属中性层结。
(3)稳定边界层:夜间,与地面接触的残留层底部逐渐变为稳定边界层。
其特点为在静力稳定大气中有零散的湍流,虽然夜间近地面层风速常常减弱或静风,但高空200m 左右,风却由于低空急流或夜间急流能达到超地转风。
第二章湍流:流体运动杂乱而无规律性(运动具有脉动性),不同层次的流体质点发生激烈的混合现象,流体质点的运动轨迹杂乱无章,其对应的物理量随空间激烈变化。
雷诺数:——湍流判据,特征Re 数定义: =特征惯性力/特征粘性力;它表示了流体粘性在流动中的相对重要性:(1)Re 》1,粘性力相对小(可忽略),大Re 数流体,弱粘性流;(2)Re 《1,惯性力相对小(可忽略),小Re 数流体,强粘性流; ν/Re UL ≡(3)Re=1,二者同等重要,一般粘性流;湍流的基本特征:(1)随机性;(2)非线性;(3)扩散性;(4)涡旋性;(5)耗散性湍流的定量描述:湍流运动的极不规则性和不稳定性,并且每一点的物理量随时间、空间激烈变化,湍流的杂乱无章极随机性可以用概率论及数理统计的方法加以研究。
大气边界层名词解释

大气边界层名词解释
大气边界层是指地球表面与大气中的空气交互作用的区域,它是大气层中最接近地球表面的一层。
大气边界层的高度通常在地表上方数百米到数千米之间,具体高度取决于地理条件和气象因素。
在大气边界层内,地表的热量和湿度通过辐射、传导、对流等方式与大气中的空气进行交换。
这种交换过程对于气象、气候和环境等方面都具有重要影响。
大气边界层可以分为几个子层,包括地面边界层、对流层和边界层顶。
地面边界层是最接近地表的一层,受到地形、地表特征和太阳辐射等因素的影响,其性质和特征会随着时间和地点的变化而变化。
对流层是地面边界层上方的一层,其中存在着强烈的对流运动,这些对流运动对大气的混合和能量传递起着重要作用。
边界层顶是大气边界层与上层大气相接触的界面,其高度因地区和季节而异。
大气边界层的研究对于气象学、气候学、环境科学和空气质量管理等领域都具有重要意义。
通过深入了解大气边界层的结构和特
征,可以更好地理解和预测天气现象、空气污染扩散、气候变化等问题,为人类社会的发展和生活提供科学依据。
大气边界层风速垂直分布规律研究

大气边界层风速垂直分布规律研究大气边界层是指地面以上到几百至一千米高度范围内的大气层,其中包括对人类生活和人类活动有重要影响的对流层和一部分平流层。
大气边界层的风速垂直分布规律,对于气象学和气候学的研究具有重要意义。
在大气边界层内,风速的垂直分布是受到多种因素的影响的。
其中,地面摩擦对于低空风速分布起着重要作用。
在接触地面的近地层,由于地面粗糙度的影响,风速呈现较低的分布情况。
随着高度的增加,地面摩擦逐渐减弱,致使风速逐渐增加。
这种垂直分布在地面上表现为一个边界层,被称为大气边界层。
另外,大气边界层的风速垂直分布还受到大气的水平运动和垂直运动的影响。
水平运动主要指的是大尺度天气系统的运动,例如气压系统、流线型等。
这些运动将对流层内的风场产生巨大的影响,从而影响大气边界层的风速分布。
垂直运动主要指的是对流层内的垂直气流,例如热对流和辐射对流。
这些垂直运动可以使大气边界层内的风场发生剧烈的变化,从而改变风速的垂直分布。
此外,季节变化也对大气边界层的风速垂直分布产生影响。
在夏季,由于高温和大气的不稳定性,大气边界层内的对流活动非常活跃。
这将导致风速垂直分布出现明显的峰值,即风速在一定高度范围内较大,往上下降较快。
而在冬季,由于气温较低且大气较为稳定,大气边界层内的对流活动较为减弱,导致风速垂直分布变得较为平坦。
大气边界层风速垂直分布的研究对于气象学和气候学具有重要意义。
首先,了解大气边界层的风速垂直分布规律可以帮助我们更好地理解大气环流系统的形成和演变过程。
其次,风速的垂直分布对于气象灾害的预测和防范具有重要意义。
例如,大尺度的下沉气流会导致风速在一定高度范围内显著减小,这往往会造成局地的沙尘暴等灾害事件。
最后,对于可再生能源的开发和利用来说,了解大气边界层内风速的垂直分布规律可以帮助我们更好地规划和建设风力发电场。
综上所述,大气边界层风速垂直分布的研究是气象学和气候学中的一个重要课题。
地面摩擦、大气水平运动、垂直运动以及季节变化等因素都可以影响大气边界层的风速垂直分布。
边界层概念及特点

边界层概念及特点边界层是地球大气层中的一个重要区域,位于地面和大气中的对流层之间。
这个区域的特点是空气的运动非常复杂,甚至可以说是混乱不堪。
因此,边界层的研究一直是大气科学研究的重要领域之一。
在此,我们将重点介绍边界层的概念及其特点。
一、概念边界层也称境界层,是指地面和大气层之间的一个非常薄的区域,距离地面高度约为20-2000米。
在这个区域中,气流的方向和速度都会发生剧烈的变化,形成了一系列的涡旋和湍流动。
这些涡旋和湍流动会影响大气层中的气象现象,例如气温、风向、风速等。
二、特点1.湍流流动边界层中的气流非常不稳定,容易形成湍流。
湍流在空气中形成了不规则的涡旋运动,导致了空气的动能和温度的混合,从而使得温度和其他气象参数分布变得非常复杂。
因此,边界层中的天气现象也就难以预测。
2.垂直差异边界层中的气象参数随着高度的增加而发生明显的变化。
通常可以将边界层分为三个部分:表层、中间层和上层。
表层高度为0-10米,通常受到地表温度的影响,会形成相对暖的气流。
中间层高度为10-1000米,受到太阳辐射的影响较大,温度分布呈现出一定的周期性变化。
上层高度为1000-2000米,稳定的气流运动主要由大气层中的高空风流所驱动。
3.表面效应由于地表的特殊性质,边界层中的气象参数会受到地表效应的影响。
例如,当地表温度很高时,气流运动会形成相对暖的气流,从而导致大气透明度变差。
这种影响不仅涉及到日常的天气变化,还会对气候变化和大气层污染等方面产生影响。
4.气体混合当空气在不同的速度和方向下运动时,它们会相互混合。
这种混合使得边界层中的气体分子运动难以预测。
这种混合是由于边界层中涡旋的形成和气流的不规则运动所致。
5.散卡效应散卡效应是边界层中另一个非常重要的效应。
它指的是当空气流动速度增大时,越来越多的空气分子被抛到了边界层的外层,也就是远离地面的上层大气层中。
因此,地面与空气中的物质和能量交换也减少了。
这种效应常常被称为“瓶颈效应”,对边界层的研究和预测具有很大的困难性。
大气边界层结构及其与气象现象的关系

大气边界层结构及其与气象现象的关系大气边界层是指从地面开始到大气中高度约为20公里的一层空间,它是地球上各种气象现象的重要发生地。
大气边界层的结构和特性对于理解和预测天气变化以及气候演变起着重要的作用。
本文将从大气边界层的结构入手,分析其与常见气象现象的关系。
一、大气边界层的结构大气边界层的结构呈现多层分布,从地面向上分别为地面层、对流层、平流层和中性层。
各层的特性和气候现象与其结构密切相关。
1. 地面层地面层是大气边界层的最底层,厚度约为100-200米。
它直接受到地表的热状况、地形和植被等因素的影响。
在地表层中,气温和湿度的变化剧烈,大气动力学力量较强,垂直混合强烈。
地面层常常产生雾、霾等天气现象。
2. 对流层对流层是大气边界层的第二层,大约高度在10公里以内。
它是气象现象最活跃的层次,气象要素随高度的变化相对较小。
由于太阳辐射和地表的热状况不均匀,对流层中产生了大量的对流运动,形成云、降水等现象。
风向、风速的变化明显。
3. 平流层平流层是对流层之上的一层,高度约在10-20公里之间。
平流层稳定,温度随高度变化不大,并且风向和风速相对稳定。
这一层通常没有云层的形成,降水少。
4. 中性层中性层是大气边界层的最顶层,高度在20公里之上。
大气中的各种气象现象几乎不再发生,很少产生明显的变化。
二、大气边界层与气象现象的关系大气边界层的结构和特性直接影响着气象现象的发展和演变。
以下是大气边界层与几种常见气象现象的关系:1. 降雨大气边界层的对流层是降水的主要形成层次。
当对流层中的气温不规则分布,湿度较大时,容易形成对流云,进而产生降雨。
2. 大风大风通常与较大的垂直风切变有关,而垂直风切变也是大气边界层结构的重要特征之一。
当大气边界层中垂直风切变较大时,容易形成强风。
3. 雾、霾地面层是雾和霾的主要发生层次。
在地面层,气温、湿度以及大气动力学力量的影响导致了雾、霾等现象的产生。
4. 逆温层逆温层是大气边界层的一个现象,指的是大气温度随高度逐渐升高的层次。
大气边界层

列出三阶量方程,则 出现四阶量, 建立二阶量和平均量之间 的关系,称为一阶闭合 (first-order closure), 梯度输送理论( gradienttransfer theory ),K理论 ( K-theory ),K闭合, 混合长理论( mixinglength theory )
不同高度处温度的时间序列
瞬时值 平均值
( instantaneous valuev)
扰动值 方差 variance
速度方差基本不随时间变化,湍流 是平稳的。速度方差在空间上是均 匀的,即 湍流是各 向同性的(isotropic)。
协方差
9.1.3 Turbulence kinetic energy and turbulence intensity 湍能和湍流强度
9.1.4 Turbulent transport and fluxes 湍流输送和通量
热通量(heat flux)
热通量大于零,热量向上输送。 热通量小于零,热量向下输送。
9.1.5 Turbulence closure 湍流闭合
建立关于平均量的大气运动和热力学方程组, 称为雷诺平均方程(Reynolds averaging)
潜热通量
B:波恩比(Bowen ratio),感热和潜热之比。 B经常根据试验获得 the Bowen ratio ranges from about 0.1 over tropical oceans, through 0.2 over irrigated crops, 0.5 over grassland, 5.0 over semi-arid regions, and 10 over deserts.
浅谈大气边界层 .ppt

几个相关概念:
湍流: 湍流 是区别于层流的不规则随机流动。流场中任意一点 的物理量,如速度、温度、压力等均有快速的大幅 度起伏,并随时间和空间位置而变化,各层流体间 有强烈的混合 气压梯度力: 气压梯度力:作用在流体内正比于压力梯度的力。 单位距离间的气压差叫做气压梯度,由此产生促使 大气由高气压区流向低气压区的力,称为气压梯度 力。气压梯度力垂直于等压线,指向低压。 地转风:水平气压梯度力与水平科里奥利力平衡下 空气的水平运动。
ห้องสมุดไป่ตู้
大气边界层
大气边界层的高度随气象条件、地形和地面粗糙度 的不同而有差异,这一层正是人们从事社会实践和 生活的主要场所,地面上建筑物和构筑物的风荷载 和结构响应等正是大气边界层内空气流动的直接结 果。
大气边界层的特点:
其性质主要决定于地表面的动力和热力作用 贴地层的主要特点: 贴地层的主要特点: 分子粘性力起主要作用;主要运动形式:分子扩散 分子粘性力起主要作用;主要运动形式: 近地层的主要特点: 近地层的主要特点: 湍流摩擦力和气压梯度力其主要作用, 湍流摩擦力和气压梯度力其主要作用,科氏力可忽 略 风向几乎不变,但风速随高度增加。 风向几乎不变,但风速随高度增加。 物理量通量的输送几乎不随高度变化 物理量的垂直梯度远大于物理量的水平梯度 湍流运动明显,地气相互作用强烈,调整较快, 湍流运动明显,地气相互作用强烈,调整较快,呈 准定常。 准定常。
基本手段:
a) 观测手段
b) 参数化近似
很遗憾的是, 很遗憾的是,湍流问题到目前还没有得到彻 底的解决! 底的解决! 因此很多与湍流有关的问题, 因此很多与湍流有关的问题,我们也无法 直接用精确的数学公式进行表达, 直接用精确的数学公式进行表达,不得不 采用近似的公式来描述! 采用近似的公式来描述!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
这些通量可以通过除以湿空气密度而重新定义成运动学形式,
运动学通量 符号 ~ M M 单位
质量 热量 湿度 动量 污染物
a ~ QH QH a C pa
R ~ R
F
a ~ F
~ a
a
m s m K s kg w m kg a s m m s s kg 污 m kg a s
(2)剩余层
(3)稳定边界层
4 边界层厚度与结构
• 1 在海洋上方,边界层厚度的时空变化相对陆地要慢。这是由于海洋 上部很强的混合,海面温度日变化极小。因此一个缓慢变化的海面温 度意味着一个缓慢变化的强迫力对边界层底的作用;
• 2 海洋上面的边界层厚度大多数变化是由海面的天气尺度和中尺度过 程的垂直运动以及不同气团的平流造成的。 • 3 无论在陆地还是海洋上,边界层的共同特征是高压区比低压区薄 (P171)。(?)
1
边界层定义
对流层是从地面往上直达11 千米平均高度,但通常只有
最低2000米才直接被下垫面
改变; 定义:大气边界层指的是地
面往上到1000-2000米高度的
这一大气层。
边界层定义
由于它与地球表面直接接触,所以地球表 面的强迫力如摩擦力、蒸发和蒸腾、热传 递、污染物排放以及地形引起的流的变化 等可以对它产生直接的影响,其响应时间 尺度为1小时或者更小。 边界层虽然很薄,但是人类和其它生物活 动主要区域,所以一直是大气科学研究重 点课题。 下图给出对流层下部温度变化一个例子。 近地面气温日变化比较明显,而自由大气 则没有什么日变化。
3
湍流输送
定义: • 湍流是叠加在平均风速上的阵性流现象,远可以认为是由作不规则旋 转运动的涡旋所组成。 • 通常情况,湍流由许多大小不同的涡相互叠加而成。 • 这些不同尺度涡旋的相对强度就是湍流谱。
① 边界层湍流由来自地面的强迫力产生。例如:晴天时,地面受太阳 辐射加热,使得温暖的热泡上升,这些热泡即大涡旋; ② 边界层(ABL)的厚度相当于最大涡旋的尺度,即直径100-3000米; 最小的涡旋量级只有几毫米(mm),考虑分子粘性的耗散效应,所 以很弱。 ③ 边界层通过湍流作用来响应地面强迫力的变化;
• (1) 运动学通量和湍流通量
– 定义:通量是指单位时间内通过单位面积所传输的量。质量、热 量、动量和污染物的通量
通量 符号 单位
质量 热量 湿度 动量 污染物
~ M
~ QH
~ R
~ F
~
kg a m2 s J 2 m s kg w m2 s kg a (ms 1 ) 2 ms kg污 或 kg污 m m2 s s m2 s
风速表示质量和动量通量;温度和风速表示表示热量; 比湿(q)和风速表示水汽通量。
~ Q W m 2,求热量运动学通量QH • 设热量通量 H 365 ~ • 解: QH QH C P
365 1.21 1005 0.30K m / s
4 边界层厚度与结构
(1)混合层
第九章 大气边界层
本章主要内容
01 边界层定义 02 风和气流
03 湍流输送
04 边界层厚度与结构
05 微气象学
06 边界层意义
07边界条件和表面强迫力
08 海陆风环流
大气边界层Leabharlann • 地球表面是大气圈一个边界。
在这个边界上输运过程改变 着100米到3000米厚的最低层 大气,形成所谓边界层。 • 对流层大气其余部分统称为 自由大气。
2000 云层 夹卷层 自由大气(FA) 盖顶逆温
(m) 高度
1000 混合层(ML)
剩余层(RL)
夹 卷 层混合层
0
表面层(SL)
(ML) 稳定(夜间)边界层 表面层(SL) 表面层(SL)
米(cm)(小)
波:一般在夜间边界层观测到波;波对动量和能 量输运起重要作用;来源于平均风剪切(切边)、
平均风经过障碍物时产生等等
湍流:湍流是边界层区别于大气其余部分的特征 之一。在近地面湍流发生的频率相当高;对流云中 有湍流;在急流附近强风剪切造成晴空湍流。大气 湍流和波动叠加在平均场上,表现为风的起伏和扰 动。
边界层定义
• 地面因辐射而增温和冷却,从而通过传输强迫边界层发生变化。湍流是其中 重要运输过程,有时候也用湍流来定义边界层。
• 相应时间尺度约为1小时或者更小。这并不意味着这段时间内边界层达到平衡,
只是表示至少已经开始。 • 边界层中研究中包括晴天积云和层积云2种。晴天积云与边界层中热泡关系密 切;层积云在边界层上部,温度较低使水汽凝结。 • 雷暴能够将边界层空气抽吸入云层或铺设冷的下层空气罩而使边界层在几分
钟内发生变化。
2
•
风和气流
气流或者风可以分为三大类:平均风、湍流、 波。
u u u u
平均风 波 湍流
• 各种物理量如水汽、热量、动量和污染物等输送
在水平方向上主要靠风来实现;而垂直方向上 主要靠湍流;
风和气流
平均风:可以产生很快的水平输送或平流;摩擦
力使平均风在近地面处达到最小值;量级:水平风 为2到10米(m)每秒垂直风为几毫米(mm)到几厘
边界层厚度与结构
Subsidence(下沉) updrafts Divergence(辐散) 高压(H) (上升)
Convergence(辐合) 低压(L)
低压区边界层 高度如何确定?
边界层厚度与结构
• • • • • • • • • BL(Boundary Layer)边界层 CL(Cloud Layer)云层 FA(Free Atmosphere)自由大气 IBL(Internal Boundary Layer)内边界层 ML(Mixed Layer)混合层 RL(Residual Layer)剩余层 SBL(Stable Boundary Layer)稳定边界层 SCL(Subcloud Layer)云下层 SL(Surface Layer)表面层:占边界层10%的底部区域