MATLAB 数值计算(2)
matlab2_matlab教程
![matlab2_matlab教程](https://img.taocdn.com/s3/m/006b2569a98271fe910ef966.png)
x1+2x2+3x3=1 2x1+3x2+4x3=2 a=[1 2 3;2 3 4];b=[1;2]; x=a\b x= 1.00 0 x=
x1 1 2 3 1 x2 = 2 3 4 2 x3
a
x = b
x=pinv(a)b
0.83 0.33
0
-0.17
六、微分方程求解
微分方程求解的仿真算法有多种,常用 的有Euler(欧拉法)、Runge Kutta(龙 格-库塔法。 Euler法称一步法,用于一阶微分方程
a=[1 2 3;4 5 6;7 8 9]; b=[2 4 6;1 3 5;7 9 10]; a.*b ans = 2 8 18 4 15 30 49 72 90
a=[1 2 3;4 5 6;7 8 9]; b=[2 4 6;1 3 5;7 9 10];
a*b ans = 25 55 85
37 85 133
二、数据的保存与获取
把matlab工作空间中一些有用的数 据长久保存下来的方法是生成mat数 据文件。 save —— 将工作空间中所有的变 量存到matlab.mat文件中。 默认文件名
save data——将工作空间中所
有的变量存到data.mat文件中。
save data a b ——将工作空间 中a和b变量存到data.mat文件中。
rand —— 随机矩阵
eye —— 单位矩阵
zeros ——全部元素都为0的矩阵
ones ——全部元素都为1的矩阵
还有伴随矩阵、稀疏矩阵、魔方 矩阵、对角矩阵、范德蒙等矩阵的创 建,就不一一介绍了。
注意:matlab严格区分大小写字母,因
此a与A是两个不同的变量。 matlab函数名必须小写。
Matlab中常用的数值计算方法
![Matlab中常用的数值计算方法](https://img.taocdn.com/s3/m/846b3a4fa517866fb84ae45c3b3567ec102ddcd1.png)
Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。
Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。
本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。
一、数值积分数值积分是通过数值方法来近似计算函数的定积分。
在Matlab中,常用的数值积分函数是'quad'和'quadl'。
'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。
下面是一个使用'quad'函数计算定积分的例子。
假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。
我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。
二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。
在科学研究和工程应用中,常常需要求解微分方程的数值解。
在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。
'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。
下面是一个使用'ode45'函数求解常微分方程的例子。
假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。
我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。
三、非线性方程求解非线性方程是指方程中包含非线性项的方程。
在很多实际问题中,我们需要求解非线性方程的根。
如何使用MATLAB进行数值计算
![如何使用MATLAB进行数值计算](https://img.taocdn.com/s3/m/c878f381fc0a79563c1ec5da50e2524de518d0a4.png)
如何使用MATLAB进行数值计算使用MATLAB进行数值计算一、引言数值计算是现代科学与工程领域中不可或缺的一部分,它能够解决许多实际问题,包括求解方程、优化问题和模拟实验等。
而MATLAB作为一种功能强大的数值计算软件,被广泛应用于各个领域。
本文将介绍如何使用MATLAB进行数值计算,并结合实例进行说明。
二、MATLAB基础首先,我们需要了解MATLAB的基本操作和语法,以便能够熟练运用。
MATLAB使用矩阵和数组来存储和处理数据,因此,熟悉矩阵和数组操作是非常重要的。
MATLAB中的矩阵和数组是通过方括号来定义的,例如:A = [1 2 3; 4 5 6; 7 8 9]表示一个3x3的矩阵A,其中每个元素由空格或分号隔开。
我们可以使用括号或索引来访问矩阵中的元素。
例如,要访问矩阵A的第二行第三列的元素,可以使用A(2,3)。
MATLAB提供了大量内置的数学函数,包括算术运算、三角函数、指数和对数函数等。
这些函数可以直接应用于矩阵和数组,简化了数值计算的过程。
三、方程求解方程求解是数值计算中的一个重要任务,MATLAB提供了多种方法来求解方程,包括代数方法和数值方法。
1. 代数方法对于一些简单的方程,例如一元一次方程或二次方程,可以直接使用MATLAB内置的解方程函数进行求解。
例如,对于一元一次方程ax + b = 0,可以使用solve函数来求解。
代码示例:syms x;eqn = a*x + b == 0;sol = solve(eqn, x);其中,syms x;指定x为符号变量,eqn为方程表达式,sol为方程的解。
2. 数值方法对于一些复杂的方程,无法用解析方法求解。
这时,可以使用数值方法来近似求解。
MATLAB提供了多种数值求解方法,包括二分法、牛顿法和割线法等。
这些方法可以通过迭代逼近的方式求解方程的根。
代码示例:f = @(x) x^2 - 4;x0 = 2;x = fzero(f, x0);其中,f为方程的表达式,x0为初始猜测值,x为方程的根。
第06章_MATLAB数值计算_参考解答
![第06章_MATLAB数值计算_参考解答](https://img.taocdn.com/s3/m/e3ab9ce0172ded630b1cb672.png)
%可参见教材第 157 页例 6.19
运行结果: dx =
000
%当 x=pi/2 时单独计算 x=pi/2; f=inline('sin(x).^2+cos(x).^2'); dx=diff(f([x, pi]))/(pi/2)
dx = 0
(2) 程序设计: clear all; close all; clc; x=1:3; f=inline('sqrt(x.^2+1)'); dx=diff(f([x, 4]))
运行结果:
U= 1.0e-004 * -0.0675
0.1715
fmin = 1.9920e-010
(2) 程序设计: clear all; close all; clc; f=inline('-sin(x)-cos(x.^2)'); fmax=fminbnd(f, 0, pi)
%用内联函数,求负的最小值 %注意函数名 f 不加单引号'
高教社刘卫国《MATLAB 程序设计与应用》(第二版)习题参考解答
第 6 章:MATLAB 数值计算
教材 P189 习题六
第 6 章 MATLAB 数值计算
1. 利用 MATLAB 提供的 randn 函数生成符合正态分布的 10×5 随机矩阵 A,进行如下操 作:
(1) A 各列元素的均值和标准方差。 (2) A 的最大元素和最小元素。 (3) 求 A 每行元素的和以及全部元素之和。 (4) 分别对 A 的每列元素按升序、每行元素按降序排列。 答:
运行结果: P=
0
15.0000
7.0000 -3.5000
0.5000 -2.0000 -2.0000
matlab数值计算方法
![matlab数值计算方法](https://img.taocdn.com/s3/m/e7461004b207e87101f69e3143323968011cf4f8.png)
Matlab提供了多种数值计算方法,以下是其中一些常用的方法:
1. 整数计算:Matlab中的计算方式和计算器类似,可以直接输入数值然后加上运算符进行运算。
2. 小数计算:小数计算的方式和整数相似。
3. 分数计算:Matlab可以切换至分数模式,这一点较计算器等具有较大优势。
4. 赋值运算:Matlab中除了和计算器一样直接运算,还能进行赋值运算,直接将其中一个值赋值后,带入运算即可。
5. 多重赋值运算:Matlab在数值计算的时候,还支持多重赋值计算。
这样可以很方便的求解列出的问题。
以上内容仅供参考,建议查阅Matlab官方文档获取更全面和准确的信息。
数值计算与MATLAB第二章
![数值计算与MATLAB第二章](https://img.taocdn.com/s3/m/2705195abe23482fb4da4cdb.png)
第二章非线性方程求根习题2-11. 试寻找f(x)= x 3+6.6 x2-29.05 x +22.64=0的实根上下界,及正根所在的区间,区间长度取1。
解:由笛卡儿符号规则知,f(x)=0可能有二个正根或无正根f(-x)= -x 3+6.6 x2+29.05 x +22.64=0即x 3 -6.6 x2-29.05 x -22.64=0f(-x)=0有一个正根,因此,f(x)=0有一个负根。
由定理2-3,f(x)=0的正根上界f(x)=0的负根下界x0123456 6.39f(x)++-+++++正根所在区间为(1, 2),(2, 3)。
2.你能不利用多项式的求导公式,而借鉴于余数定理的思想,构造出P n(x)=a0x n+a1x n-1+...+a n-1x+a n在x0这点上的导数值的算法吗?习题2-21.用二分法求方程x2-x-1=0的正根,要求准确到小数点后第一位a F(a)b F(b)x F(x)0-1211-11-121 1.5-0.251.5-0.2521 1.750.31251.5-0.25 1.750.3125 1.6250.3015625 1.5-0.25 1.6250.015625 1.5625-0.12109375 1.5625-0.12104375 1.6250.015625 1.59375-0.053710937 1.59375-0.053710937 1.6250.015625 1.609375-0.019287109 1.609375-0.019287109 1.6250.015625 1.6171875-0.001892089 1.6171875-0.001892089 1.6250.015625 1.621093750.006851196 1.6171875-0.001892089 1.621093750.006851196 1.6191406250.002175738 1.6171875-0.001892089 1.619140620.002475738 1.6181640630.000290904X*=1.618K=5X*=1.593752.试证明用试位法(比例求根法),求在区间[0, 1]内的一个根必然收敛。
MATLAB第二讲__数值计算和符号计算
![MATLAB第二讲__数值计算和符号计算](https://img.taocdn.com/s3/m/c98feae0102de2bd960588c2.png)
(4)数值运算中必须先对变量赋值;符号运算无须事先对变 量赋值,但必须先定义,运算结果以标准的符号表达 式形式给出。
Matlab基础应用 21
2.2.2 符号运算中的运算符
(1)基本运算符 符号矩阵:‚+”,‚-”,‚*‛,‚\”, ‚/”, ‚^”, ‚ ’ ” 符号数组:‚.*”,‚./”,‚.\‛,‚.^”, ‚.’ ” (2)关系运算符 运算符只有‚==”,‚~=”。
Matlab基础应用 7
1.3.4 多项式乘除运算(续)
例4: a(x)=x2+2x+3; b(x)=4x2+5x;求c=a(x)*b(x)。 解: >>a=[1 2 3];b=[4 5 0]; >>c=conv(a,b) c= 4 13 22 15 0 >>[d,r]=deconv(c,a) d= 4 5 0 r= 0 0 0 0 0
注意: 方法一只创建了符号表达式,没有创建符号变量; 而方法二既创建了符号表达式,又创建符号变量.
Matlab基础应用 19
2.1.3 创建符号矩阵
使用sym和syms命令创建
例4: A=sym(‘[a,b;c,d]’) A= [ a, b] [ c, d] syms f g h k B=[f,g;h,k] B=
%方法二
Name Size Bytes Class a 1x1 126 sym object b 1x1 126 sym object c 1x1 126 sym object f2 1x1 146 sym object x 1x1 126 sym object Grand total is 20 elements using 650 bytes
实验3 MATLAB 数值计算(2)
![实验3 MATLAB 数值计算(2)](https://img.taocdn.com/s3/m/5f475cc508a1284ac8504397.png)
实验3 MATLAB 数值计算(2)
目的和要求:
(1)了解多项式的运算。
(2)熟练掌握MATLAB二维曲线的绘制。
内容和步骤:
1.多项式的运算式的运算
(1)多项式的运算。
已知表达式G(x)=(x-4)(x+5)(x2-6x+9), 展开多项式形式;求导;并计算当x在[0,20]范围变化时G(x)的值;计算出G(x)=0的根。
多项式相乘conv;
求导polyder;
计算零点,即求根roots
解:
展开为多项式
求导:
求零点:
(2)多项式的拟合和插值。
x在[0,20]范围内,计算多项式y=x4-5x3-17x2+129x-180 的值y;并根据x和y进行二阶、三阶和四阶拟合。
并绘出拟合曲线。
对多项式y进行插值,计算在5.5处的值。
多项式拟合p=ployfit(x,y,n)
插值yi=interp1(x,y,xi,’method’)
2.绘制二维曲线
绘制的图形窗口分割为一行两列,窗口左上角画一正弦曲线,y=sin(2t),t:[0.2π];窗口右上角画3条衰减的单边指数曲线y=e-t, y=e-2t,和y=e-3t, t:[0,2]。
在图上添加标题,将3条曲线用不同的线型,并添加图例。
第二章matlab02数值运算功能2
![第二章matlab02数值运算功能2](https://img.taocdn.com/s3/m/5f852e48e518964bcf847c69.png)
2.4.3矩阵的关系和逻辑运算 矩阵的关系和逻辑运算
1.矩阵的关系运算符:<, >, <=, >=, = =, ~= 矩阵的关系运算符: 矩阵的关系运算符 • 矩阵之间的每个元素进行比较,运算结果 矩阵之间的每个元素进行比较, 为与原矩阵大小一样的由0 为与原矩阵大小一样的由0和1组成的矩阵 注意:1=<a<=2错误 注意: 错误 例: 1<=a<=2正确 = 正确
• •
§2.4 矩阵的运算
矩阵的数学运算 矩阵的点(数组 运算 矩阵的点 数组)运算 数组 矩阵的关系和逻辑运算
2.4.1矩阵的数学运算 矩阵的数学运算
矩阵运算符 含义 A’ 矩阵转置 A+B 矩阵相加 A-B 矩阵相减 A*B 矩阵相乘 A/B 矩阵相除(右除) 矩阵相除(右除) B\A 矩阵相除(左除) 矩阵相除(左除) A^n A阵的 n次幂 阵的 次幂
x X = y z
10 B = 5 −1
要解上述的联立方程式, 要解上述的联立方程式,可利用矩阵左除 \ 做运 时要求A、 的行数相等 相等。 算,即:X=A\B, 左除时要求 、B的行数相等。 , 左除时要求
如果将原方程式改写成 X*A=B,且令 X, A 和 B , 分别为
如何在MATLAB中进行数值计算
![如何在MATLAB中进行数值计算](https://img.taocdn.com/s3/m/dd5eafd1162ded630b1c59eef8c75fbfc77d9482.png)
如何在MATLAB中进行数值计算在科学计算领域,MATLAB被广泛应用于数值计算,它提供了强大而简便的工具和函数,可以帮助科学家们进行复杂的数学计算和数据分析。
本文将介绍如何在MATLAB中进行数值计算,并探讨一些常用的技巧和技术。
MATLAB中的数值计算是通过矩阵和向量运算来实现的,因此熟悉矩阵运算和向量操作是使用MATLAB进行数值计算的关键。
首先,让我们来看看如何定义和操作矩阵和向量。
在MATLAB中,可以使用矩阵和向量来存储和操作多个数值。
矩阵是一个二维数组,而向量是一个一维数组。
通过使用方括号和逗号来定义矩阵和向量。
例如,以下是一个3x3的矩阵的定义:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];可以通过使用A(i, j)的形式来访问矩阵中的元素,其中i和j分别表示行和列的索引。
例如,要访问第二行第三列的元素,可以使用A(2, 3)。
向量可以通过类似的方式定义,只需要使用一个维度。
例如,以下是一个包含5个元素的行向量的定义:v = [1, 2, 3, 4, 5];可以使用v(i)的形式来访问向量中的元素,其中i表示索引。
例如,要访问第四个元素,可以使用v(4)。
在进行数值计算时,通常需要进行一些基本的运算,如加法、减法、乘法和除法。
在MATLAB中,这些运算可以直接应用于矩阵和向量。
加法运算可以使用加号来实现。
例如,要将两个矩阵A和B相加,可以使用以下代码:C = A + B;减法运算可以使用减号来实现。
例如,要将矩阵A减去矩阵B,可以使用以下代码:D = A - B;乘法运算可以使用乘号来实现。
例如,要将矩阵A乘以矩阵B,可以使用以下代码:E = A * B;除法运算可以使用除号来实现。
例如,要将矩阵A除以矩阵B,可以使用以下代码:F = A / B;除了基本的运算,MATLAB还提供了很多其他的函数和工具箱,可以帮助进行更复杂的数值计算和数据分析。
例如,MATLAB提供了一些常用的数学函数,如幂函数、指数函数、对数函数、三角函数等等。
第二章 MATLAB的数值计算(修改版)
![第二章 MATLAB的数值计算(修改版)](https://img.taocdn.com/s3/m/9f565d49a8956bec0975e3be.png)
2.2.3 矩阵的基本运算
矩阵的乘(*)运算
规则: A矩阵的列数必须等于B矩阵的行数 标量可与任何矩阵相乘。 例如: a=[1 2 3;4 5 6;7 8 0];b=[1;2;3];c=a*b c =14 32 23
2.2.3 矩阵的基本运算
矩阵的除运算 矩阵除的运算在线性代数中没有,有矩阵逆的运算,在matlab中有两种 矩阵除运算即左除和右除 左除‚\”: 相当于Ax=B的解,x=A-1B。 右除‚/”:相当于xA=B的解,x=BA-1 此外,矩阵也可和常数进行除运算,此时常数只能作为除数
方法二 冒号生成 基本格式:x=x1:step:x2 x=x1:x2 比如: D = 4:0.5:9 E = 5:9
2.1.3 向量的运算
与数的运算 比如: A = 0:9; B = A-1 C = A*2 点积运算 指两个向量在其中一个向量方向上的投影的乘积。 dot(a,b) a,b必须同维 比如: A = 0:3; B = 1:4; C = dot(A,B)
注意:MATLAB函数名必须小写
2.2.2 矩阵的修改
方法一:直接修改 可用键找到所要修改的矩阵,用键移动到要修改的矩阵元素上即 可修改。 方法二: 指令修改 可以用A(,)= 来修改。 比如: 对于A=[1 2 3;4 9 6;7 8 9],若将其中的9修改为5,则可以通过上述的两 种方法: 法一不用介绍; 方法二可使用A(2,2)=5来修改
特征多项式的特点:
(1)特征多项式一定是n+1维的 (2)特征多项式第一个元素一定是1
根据多项式对应的全部根可建立其特征多项式: poly —— 产生特征多项式系数向量
已知一个多项式的全部根X求多项式系数的函数是poly(X),该函数返回以X为 全部根的一个多项式P,当X是一个长度为m的向量时,P是一个长度为m+1的 向量。
1.Matlab数值运算功能
![1.Matlab数值运算功能](https://img.taocdn.com/s3/m/0936d643852458fb770b56ea.png)
向量的乘除运算
a. 向量的乘法运算
点乘运算的运算符为 .*, 其意义为两个向量的对应 元素进行乘法运算,例如
a=[1 2], b=[3 4] 则c=a.*b=[3 8]
^ 为向量的乘方运算,例如
c=a.^2=[1 4]
b. 向量的除法运算
Matlab与科学计算
点积、叉积和混合积
X = inv(E) X= -2.0000 1.0000 1.5000 -0.5000 (8)矩阵元素的赋值与运算
Matlab允许用户对矩阵的单个元素进行赋值和操作,Matlab 此时命 令方式为 X(i,j)=变量名
Matlab与科学计算
( 9)矩阵的指数和对数运算 expm(a), expm1(a), expm2(a), expm3(a) logm(a) ( 10)矩阵的开方运算 sqrtm(m) 注意:以上函数如果去掉最后的‘m’,都变成只对 矩阵中的每个元素进行相应的运算。 ( 11)矩阵的行列式运算: a1=det(a)
在matlab的命令窗口键入以下字符 >> a = [1 2 3 4 5 6 9 8 7] a= 1 2 3 4 5 6 9 8 7
希望得到元素从0到20,步距为2的一个向量,只需键入以下命令即可
>> t = [0:2:20] t= 2 4 6 8 10 12 14 16 18 20
Matlab与科学计算
》x=258×369 x= 95202
Matlab与科学计算
变量
(1)变量的命名:变量的名字必须以字母开头(不超 过19个字符),之后可以是字母、数字或下划线;变 量名区分字母的大小写;变量中不能包含有标点符号。 (2)一些特殊的变量 ans:用于结果的缺省变量名 i、j:虚数单位 pi:圆周率 eps:计算机的最小数(相对精度) inf:无穷大 realmin:最小正实数 realmax:最大正实数 nan:不定量(not a number) (3)变量操作
第2章 MATLAB数值计算
![第2章 MATLAB数值计算](https://img.taocdn.com/s3/m/852aca8483d049649b665839.png)
第2章 MATLAB数值计算MATLAB的数学计算=数值计算+符号计算其中符号计算是指使用未定义的符号变量进行运算,而数值计算不允许使用未定义的变量。
2.1 变量和数据2.1.1数据类型数据类型包括:数值型、字符串型、元胞型、结构型等数值型=双精度型、单精度型和整数类整数类=无符号类(uint8、uint16、uint32、uint64)和符号类整数(int8、int16、int32、int64)。
2.1.2数据1. 数据的表达方式▪可以用带小数点的形式直接表示▪用科学计数法▪数值的表示范围是10-309~10309。
以下都是合法的数据表示:-2、5.67、2.56e-56(表示2.56×10-56)、4.68e204(表示4.68×10204)2. 矩阵和数组的概念在MATLAB的运算中,经常要使用标量、向量、矩阵和数组,这几个名称的定义如下:▪标量:是指1×1的矩阵,即为只含一个数的矩阵。
▪向量:是指1×n或n×1的矩阵,即只有一行或者一列的矩阵。
▪矩阵:是一个矩形的数组,即二维数组,其中向量和标量都是矩阵的特例,0×0矩阵为空矩阵([])。
▪数组:是指n维的数组,为矩阵的延伸,其中矩阵和向量都是数组的特例。
3. 复数复数由实部和虚部组成,MATLAB用特殊变量“i”和“j”表示虚数的单位。
复数运算不需要特殊处理,可以直接进行。
复数可以有几种表示:z=a+b*i或z=a+b*jz=a+bi 或z=a+bj(当b 为标量时) z=r*exp(i*theta)● 得出一个复数的实部、虚部、幅值和相角。
a=real(z) %计算实部 b=imag(z) %计算虚部 r=abs(z) %计算幅值 theta=angle(z) %计算相角 说明:复数z 的实部a=r*cos(θ); 复数z 的虚部b=r*sin(θ); 复数z 的幅值22b a r +=;复数z 的相角theta=arctg(b/a),以弧度为单位。
Matlab(R2009a版)-第2讲 数值运算
![Matlab(R2009a版)-第2讲 数值运算](https://img.taocdn.com/s3/m/890365a0284ac850ad0242c0.png)
MATLAB2009从入门到精通课程主要内容•第1章MATLAB简介•第2章数值运算•第3章单元数组和结构•第4章字符串•第5章符号运算•第6章MATLAB绘图基础•第7章程序设计•第8章计算方法的MATLAB实现•第9章优化设计•第10章SIMULINK仿真初探第2章数值运算•本章将介绍MATLAB2009的数值计算功能,首先讲述MATLAB中的运算符,然后讲述包括MATLAB的向量、矩阵和数组,并介绍他们之间的运算。
此外,还介绍了一些特殊的矩阵数据结构。
另外,还对MATLAB中的多项式的运算以及多项式拟合作了详细介绍。
2.1 MATLAB中的变量•MATLAB中的变量必须以字母打头,之后可以是任意字母、数字或下划线,变量名区分字母大小写,变量名不超过19个字符,默认变量名为ans。
除此之外还包含一些特殊的变量。
•who命令能够显示变量的信息;•whos命令能够显示变量的详细信息。
•matlab中同样支持复数变量,表示方法为a=m+ni(j)。
当n是表达式时,n与i(j)之间必须要加乘号。
另外也可以用complex(x,y)来产生复数。
•在循环程序段中一般不把i和j作为变量名称,以免生成数据时发生误解。
•>> a=1+2i• a =• 1.0000 + 2.0000i •>> b=1+3*i• b =• 1.0000 + 3.0000i•>> a=sin(2)+cos(2)*i• a =•0.9093 -0.4161i•>> b=sin(2)+cos(3)i•??? b=sin(2)+cos(3)i•|•Error: Unexpected MATLAB expression.•>> x=sin(2);•>> y=cos(3);•>> a=complex(x,y)• a =•0.9093 -0.9900i•>> b=complex(x)• b =•0.9093•>> a=i+2i• a =•0 + 3.0000i •>> b=i+2*i • b =•0 + 3.0000i•>> i=5;•>> a=i+2i• a =• 5.0000 + 2.0000i •>> b=i+2*i• b =•15•>> i=5;•>> a=5+i • a =•10•>> b=5+1*i • b =•10•>> i=5;•>> a=5+2i• a =• 5.0000 + 2.0000i •>> a=5+2*i• a =•152.2 MATLAB的数值运算基础2.3 数组及向量运算•由数学知识可知,数组和矩阵有着不同的概念。
2 matlab的数值运算
![2 matlab的数值运算](https://img.taocdn.com/s3/m/8d1b430f76c66137ee0619ed.png)
下次运行matlab时即可用load指
令调用已生成的mat文件。
load —— load data —— load data a b ——
即可恢复保 存过的所有 变量
mat文件是标准的二进制文件,
还可以ASCII码形式保存。
三、矩阵运算
1. 矩阵加、减(+,-)运算
规则:
相加、减的两矩阵必须有相同的行和 列两矩阵对应元素相加减。 允许参与运算的两矩阵之一是标量。 标量与矩阵的所有元素分别进行加 减操作。
二、数据的保存与获取
把matlab工作空间中一些有用的数 据长久保存下来的方法是生成mat数 据文件。 save —— 将工作空间中所有的变 量存到matlab.mat文件中。 默认文件名
save data——将工作空间中所
有的变量存到data.mat文件中。
save data a b ——将工作空间 中a和b变量存到data.mat文件中。
3.conv,convs多项式乘运算
例:a(x)=x2+2x+3; b(x)=4x2+5x+6; c = (x2+2x+3)(4x2+5x+6) a=[1 2 3];b=[4 5 6]; c=conv(a,b)=conv([1 2 3],[4 5 6]) c = 4.00 13.00 28.00 27.00 18.00 p=poly2str(c,'x') p = 4 x^4 + 13 x^3 + 28 x^2 + 27 x + 18
直接修改 可用键找到所要修改的矩阵,用键 移动到要修改的矩阵元素上即可修改。 指令修改 可以用A(,)= 来修改。
MATLAB数值计算
![MATLAB数值计算](https://img.taocdn.com/s3/m/a30bc0395727a5e9856a614b.png)
字符串的转换
double num2str int2str mat2str str2num 字符串转换为数值代码 数字转换为字符串 整数转换为字符串 矩阵转换为字符串 转换字符串为数字
矩阵与常数的运算 常数与此矩阵的各元素之间进行运算。 注意:进行数除时,常数通常只能做除数。 >>A=[2 1 -3 -1;3 1 0 7;-1 2 4 -2;1 0 -1 矩阵的逆运算 5]; 函数 inv >>inv(A)
ans = -0.0471 0.5882 -0.2706 0.3882 -0.3529 0.4824 -0.2235 0.2941 -0.0353 -0.0353 -0.0588 0.0471 -0.9412 0.7647 -0.4706 0.2941
矩阵的基本函数运算
特征值函数 函数 [x,y]=eig(A) 可以给出特征值和特征向量的值 x为特征向量矩阵,y为特征值矩阵。
矩阵的基本运算
加减运算 要求两矩阵必须同阶。
>>a=[1 2 3;2 3 4; 3 4 5]; >>b=[1 1 1;2 2 2;3 3 3]; >>c=a+b
c=
2 4 6 3 5 7 4 6 8
乘法
要求a为i×j阶, b为j×k阶时, ab才能相乘。
>>e=[b,[5 5 5]'] e= 1 2 3 1 2 3 1 2 3 5 5 5
>>b{2} ans =
第6章_MATLAB数值计算_part2
![第6章_MATLAB数值计算_part2](https://img.taocdn.com/s3/m/0b5621c3195f312b3169a565.png)
6.2.2 数值积分
b a b
f ( x)dx p1 ( x)dx (b a )
a
b
f (a ) f (b) 2 ab
( f (a) 4 f ( ) f (b)) 数值积分方法 6 2 n 1 求解定积分的数值方法多种多样, h T f ( a ) f ( b ) 2 f ( a kh ) n 如简单的梯形法、辛普生 2 k 1 (Simpson)• 法、牛顿-柯特斯 h S ( f (x ) 4 f (x ) f ( x 1)) (Newton-Cotes)法等都是经常采 6 用的方法。 h f (a) 4 f ( x ) 2 f ( x ) f (b) 基本思想 6
第6章 MATLAB数值计算
6.1 6.2 6.3 6.4 6.5 数据处理与多项式计算 数值微积分 线性方程组求解 最优化问.1 数值微分(导数) 不关心微分的形式和性质,只关心该微分在一串离散点 的近似值以及所计算的近似值有多大的误差。 MATLAB下求数值导数的两种方法:
I e
0
1
x2
dx
2 被积函数由一个表格定义
在科学实验和工程应用中,函数关系往往是不知道 的,只有实验测定的一组样本点和样本值,这时, 就无法使用quad函数计算其定积分。 在MATLAB中,对由表格形式定义的函数关系的求 定积分问题用trapz(X,Y)函数。 其中向量X、Y定义函数关系Y=f(X)。
值得一提的是,当已知给出的样本数N0不是2 的幂次时,可以取一个N使它大于N0且是2 的幂次,然后利用函数格式fft(X,N)或 fft(X,N,dim)便可进行快速傅立叶变换。这 样,计算速度将大大加快。 相应地,一维离散傅立叶逆变换函数是ifft。 ifft(F)返回F的一维离散傅立叶逆变换; ifft(F,N)为N点逆变换;ifft(F,[],dim)或 ifft(F,N,dim)则由N或dim确定逆变换的点数 或操作方向。
matlab数值计算实验报告
![matlab数值计算实验报告](https://img.taocdn.com/s3/m/6ac38017ae45b307e87101f69e3143323968f5b3.png)
matlab数值计算实验报告Matlab数值计算实验报告一、实验目的本次实验的目的是通过使用Matlab软件进行数值计算,掌握Matlab的基本操作和数值计算方法,了解数值计算的基本原理和方法,提高数学建模和计算能力。
二、实验内容本次实验主要包括以下内容:1. Matlab基本操作:包括Matlab软件的安装、启动、界面介绍、基本命令和语法等。
2. 数值计算方法:包括数值积分、数值微分、线性方程组的求解、非线性方程的求解、插值和拟合等。
3. 数学建模:通过实际问题的建模,运用Matlab进行数值计算,得到问题的解答。
三、实验步骤1. Matlab基本操作(1)安装Matlab软件:根据官方网站提供的下载链接,下载并安装Matlab软件。
(2)启动Matlab软件:双击Matlab图标,启动Matlab软件。
(3)界面介绍:Matlab软件界面分为命令窗口、编辑器窗口、工作区窗口、命令历史窗口、变量编辑器窗口等。
(4)基本命令和语法:Matlab软件的基本命令和语法包括数学运算、矩阵运算、逻辑运算、控制语句等。
2. 数值计算方法(1)数值积分:使用Matlab中的quad函数进行数值积分,求解定积分。
(2)数值微分:使用Matlab中的diff函数进行数值微分,求解函数的导数。
(3)线性方程组的求解:使用Matlab中的inv函数和\运算符进行线性方程组的求解。
(4)非线性方程的求解:使用Matlab中的fsolve函数进行非线性方程的求解。
(5)插值和拟合:使用Matlab中的interp1函数进行插值和拟合。
3. 数学建模(1)实际问题的建模:选择一个实际问题,将其转化为数学模型。
(2)运用Matlab进行数值计算:使用Matlab进行数值计算,得到问题的解答。
四、实验结果通过本次实验,我掌握了Matlab的基本操作和数值计算方法,了解了数值计算的基本原理和方法,提高了数学建模和计算能力。
在实际问题的建模和运用Matlab进行数值计算的过程中,我深刻体会到了数学建模和计算的重要性,也发现了Matlab在数学建模和计算中的重要作用。
如何在MATLAB中进行数值计算
![如何在MATLAB中进行数值计算](https://img.taocdn.com/s3/m/f2a0779f51e2524de518964bcf84b9d529ea2c55.png)
如何在MATLAB中进行数值计算MATLAB是一种用于数值计算和科学计算的程序设计语言和环境。
它提供了各种函数和工具箱,用于处理数值计算问题,包括线性代数、数值积分、数值微分、常微分方程求解、优化、插值等。
下面将介绍如何在MATLAB中进行数值计算的基本步骤和常用函数。
首先,启动MATLAB软件,创建一个新的脚本文件(.m文件),用于编写和保存MATLAB代码。
1.数值计算基础在MATLAB中进行数值计算的基本单位是矩阵和向量。
可以使用MATLAB提供的各种函数来创建和操作矩阵和向量。
例如,可以使用"zeros"函数创建一个全零的矩阵,使用"ones"函数创建一个全一的矩阵,使用"rand"函数生成一个随机矩阵。
2.线性代数计算MATLAB提供了丰富的线性代数函数,用于处理线性方程组、矩阵运算和特征值计算等问题。
例如,可以使用"inv"函数计算矩阵的逆,使用"det"函数计算矩阵的行列式,使用"eig"函数计算矩阵的特征值和特征向量。
3.数值积分MATLAB提供了多种数值积分方法,用于计算函数的定积分。
可以使用"quad"函数进行一维数值积分,使用"quad2d"函数进行二维数值积分,使用"quad3d"函数进行三维数值积分。
4.数值微分MATLAB提供了多种数值微分方法,用于计算函数的导数和偏导数。
可以使用"diff"函数计算函数的导数,使用"gradient"函数计算函数的梯度,使用"hessian"函数计算函数的Hessian矩阵。
5.常微分方程求解MATLAB提供了多种数值方法,用于求解常微分方程组。
可以使用"ode45"函数求解一阶常微分方程,使用"ode15s"函数求解刚性常微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值计算MATLAB 数值计算第四章MATLAB1主要内容基本数据运算数据统计与分析数据插值与曲线拟合多项式计算数值微积分线性方程组求解非线方与问求解非线性方程与最优化问题求解2常微分方程的数值求解多项式计算N次多项式表示为–P(x)=a 0x n +a 1x n-1+a 2x n-2…a n-1x+a nMatlab中n次多项式用一个长度为n+1的行向量(系数向量)表示–[a a …a n-1a [01n 1n ]多项式的四则运算–多项式的加减运算»系数向量的加减运算要求次数相同不足时用“»要求次数相同,不足时用“0”补起——向量化处理»例54322()352756f x x x x x x =−+−++3()353g x x x =+−多项式乘法运算–函数conv(P1,P2)用于求多项式P1和P2的乘积。
这里,P1、P2是两个多项式系数向量 多项式除法运算–函数[Q,r]=deconv(P1,P2)用于对多项式P1和P2作除法运算。
其中Q 返回多项式P1除的商式的余式这里仍是多项式系数向量以P2的商式,r 返回P1除以P2的余式。
这里,Q 和r 仍是多项式系数向量。
–deconv 是conv 的逆函数,即有P1=conv(P2,Q)+r 。
5432−− 例–求f(x)+g(x)、f(x)-g(x)。
2()352756()353f x x x x x xg x x x =+++=+−–求f(x)×g(x)、f(x)/g(x)。
–f=[3,-5,2,-7,5,6];g=[3,5,-3];g1=[0,0,0,g];–f+g1%求f(x)+g(x)f+g1 %求f(x)+g(x)–f-g1 %求f(x)-g(x)–conv(f,g) %求f(x)*g(x)[]()求()/()商式送余式送4–[Q,r]=deconv(f,g) %求f(x)/g(x),商式送Q,余式送r。
多项式的导函数–p=polyder(P):求多项式P的导函数l d(P)求多项式多项式求值–MATLAB 提供了两种求多项式值的函数:polyval 与polyvalm ,它们的输入参数均为多项式系数向量P 和自变量x 。
–两者的区别在于前者是代数多项式求值,而后者是矩阵多项式求值。
代数多项式求值–Y=polyval(P,x)–若为一数值,则求多项式在该点的值;若x 为数值,则求多项式在该点的值;若x 为向量或矩阵,则对向量或矩阵中的每个元素求其多项式的值。
矩阵多项式求值–polyvalm 函数用来求矩阵多项式的值,其调用格式与polyval 相同,但含义不同。
–polyvalm 函数要求x 为方阵,它以方阵为自变量求多项式的值。
polyval 与polyvalm 的区别–设A 为方阵,P 代表多项式x 3-5x 2+8,那么polyvalm(P,A)的含义是:A*A*A-5*A*A+8*eye(size(A))6–polyval(P,A)的含义是:A.*A.*A-5*A.*A+8*ones(size(A))以多项式x4+8x3-10为例,取一个2×2矩阵为自变量分别用polyval和polyvalm计算该多项式的值。
l l l l计算该多项式的值–A=[1,8,0,0,-10]; % 多项式系数–x=[-1,1.2;2,-1.8] % 给出一个矩阵x–y1=polyval(A,x) % 计算代数多项式的值–y2=polyvalm(A,x) % 计算矩阵多项式的值7多项式求根n次多项式具有n个根,当然这些根可能是实根,也可能含有若干对共轭复根–MATLAB提供的roots函数用于求多项式的全部根,其调用格式为:x=roots(P)»其中P为多项式的系数向量,求得的根赋给向量x,即x(1),x(2),…,x(n)分别代表多项式的n个根。
–P=poly(x)»若x为具有n个元素的向量,则poly(x)建立以x为其根的多项式,且将该多项式的系数赋给向量P。
8例已知52.7543)(235+−−+=x x x x x f (1) 计算f(x)=0 的全部根。
(2)f(x)=0的根构造一个多项式(2) 由方程f(x)0的根构造个多项式g(x),并与f(x)进行对比。
命令如下命令如下:P=[3,0,4,-5,-7.2,5];X=roots(P) %求方程f(x)=0的根G=poly(X)%G=poly(X) %求多项式g(x)9主要内容基本数据运算 数据统计与分析 数据插值与曲线拟合 多项式计算 数值微积分 线性方程组求解非线方与问求解 非线性方程与最优化问题求解10 常微分方程的数值求解数值微分的两种方法g()对()进行逼近插值或拟合,然后用逼近函数g()–用多项式或样条函数g(x)f(x)进行逼近(插值或拟合),然后用逼近函数g(x)在点x处的导数作为f(x)在点x处的导数–用f(x)在点x处的某种差商作为其导数在MATLAB中,没有直接提供求数值导数的函数,只有计算向前差分的函数diff,其调用格式为:–DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,…,n-1–DX=diff(X,n):计算X的n阶向前差分。
例如,diff(X,2)=diff(diff(X))–DX=diff(A,n,dim):计算矩阵A的n阶差分,dim=1时(缺省状态),按列计算差分;dim=2,按行计算差分。
例设x由[0,2π]间均匀分布的10个点组成,求sin x的1~3阶差分–X=linspace(0,2*pi,10);–Y=sin(X);–DY=diff(Y); %计算Y的一阶差分–D2Y=diff(Y,2); %计算Y的二阶差分,也可用命令diff(DY)计算–D3Y=diff(Y,3); %计算Y的三阶差分,也可用diff(D2Y)或diff(DY,2)11数值积分基本原理–求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)法、牛顿-柯(p )特斯(Newton-Cotes)法等都是经常采用的方法。
它们的基本思想都是将整个积分区间[a,b]分成n 个子区间[x i ,x i+1],i=1,2,…,n ,其中x 1=a ,x n+1=b 。
这样求定积分问题就分解为求和问题。
数值积分的实现–变步长辛普生法[I,n]=quad(‘fname ’,a,b,tol,trace)其中fname是被积函数名。
a和b分别是定积分的下限和上限。
tol用来控制积分精度,缺省时取tol=0.001。
trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。
返回参数I即定积分值,n为被积函数的调用次数牛顿柯斯特法–牛顿-柯斯特法[I,n]=quad8(‘fname ’,a,b,tol,trace)–Lobbato法——高精度[I n]=quadl(‘’a b tol trace)[I,n]quadl(fname ,a,b,tol,trace)–被积函数由一个表格定义trapz(X,Y) 其中向量X 、Y 分别代表样本点和样本值,定义函数关系Y=f(X)二重定积分12–I=dblquad(’fname ’,a,b,c,d,tol,trace)fname为描述被积函数的字符串变量,定义有两种方式–建立关于被积函数的函数文件function ex=ex(x)ex=exp(-x.^2);e e p(^2);–使用语句函数(内联函数) Inline()»inline(),第一个变量为被积函数本身,第二个变量为自变量,也可i li()第个变量为被积函数本身第二个变量为自变量也可以带多个自变量g=inline('exp(-x.^2)'); %定义一个语句函数g(x)=exp(-x^2)13例用两种不同的方法求定积分–方法一:先建立一个函数文件ex.m :∫−=102dxe I x 方法先建个函数文件function ex=ex(x)ex=exp(-x.^2);然后在命令窗口输入命令:MATLAB 命令窗口,输入命令:format long I=quad('ex',0,1) %注意函数名应加字符引号I =0.74682418072642I=quadl('ex',0,1)I =0.74682413398845–方法二:也可不建立关于被积函数的函数文件,而使用语句函数(内联函数)求解命令如,命令如下:g=inline('exp(-x.^2)'); %定义一个语句函数g(x)=exp(-x^2)I=quadl(g,0,1) %注意函数名不加引号14I =0.74682413398845format short主要内容基本数据运算数据统计与分析数据插值与曲线拟合多项式计算数值微积分线性方程组求解非线方与问求解非线性方程与最优化问题求解15常微分方程的数值求解线性方程组求解对于线性方程组AX=b ,设A为m×n的矩阵,则根据m和n的关系,可以将方程组分类:关系可以将方程组分类–当m = n时,恰定方程组,可以求得精确解–当m > n时,超定方程组,可以求得最小二乘解。
–当m < n时,欠定方程组,可以求得基础解,该解最多有m个非零元素16求解恰定方程组求解恰定方程组方法一:利用左除运算符直接求解:x=A\b方法二:利用矩阵求逆解法,即x=inv(A)*b方法三:利用LU分解法求解–LU分解分解就是将个矩阵表示为个交换下角矩阵和个角矩»矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。
»线性代数中已经证明,只要方阵A是非奇异的,LU分解总是可以进行的–MATLAB提供的lu函数用于对矩阵进行LU分解,其调用格式为:分解其调用格式为»[L,U]=lu(A):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足A=LU。
注意,这里的矩阵A必须是方阵。
»[L,U,P]=lu(A):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PA=LU。
当然矩阵A同样必须是方阵。
–LU分解后,线性方程组Ax=b的解x=U\(L\b)或x=U\(L\Pb),这样可以大大提实现分解后线性方程组A b U\(L\b)U\(L\Pb)这样可以大大提高运算速度。
17例用LU 分解求解线性方程组⎪⎪⎧−=+−=+−+97513524321x x x x x x x 命令如下:⎪⎪⎩⎨=−−+=−+046624321432421x x x x x x x A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';[,,,];[L,U]=lu(A);x=U\(L\b)18一般来说,对维数不高,条件数不大的矩阵,前述三种解法所得的结果差别不大。