数学史知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•埃及数学

1.古埃及的数学知识常常记载在纸草书上。

2.古埃及数学的知识,主要来源于莱茵德纸草书和莫斯科纸草书。

3.数学史上三大数学危机是:无理数的发现、无穷小是“ 0”吗?、悖论的产生。

4.最早采用位值制记数的国家或民族是美索不达米亚。

5.. 在代数和几何这两大传统的数学领域,古代美索不达米亚的数学成就主要在苏美尔人还会分数、加减乘除四则运算和解一元二次方程,发明了10 进位法和16进位法。他们把圆分为360度,并知道π近似于3。甚至会计算不规则多边形的面积及一些锥体的体积。方外,他们能够卓有成效地处理相当一般的解一元二次方程。

•古希腊数学

1.欧几里得欧几里得,古希腊数学家,被称为“几何之父” 。他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人。两千年来有关欧几里得几何原本第五公设的争议,导致了非欧几何的诞生。(五条公理 1. 等于同量的量彼此相等;

2. 等量加等量,其和相等;

3. 等量减等量,其差相等;

4. 彼此能重合的物体是全等的;

5. 整体大于部分。五条公设 1. 过两点能作且只能作一直线; 2. 线段(有限直线)可以无限地延长; 3. 以任一点为圆心, 任意长为半径, 可作一圆; 4. 凡是直角都相等; 5. 同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。)

2.阿基米德

阿基米德,古希腊哲学家、数学家、物理学家。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10 余种,多为希腊文手稿。阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。

3.以“万物皆数”为信条的古希腊数学学派是毕达哥拉斯学派。

4.古希腊的三大闻名几何尺规作图问题是化圆为方、倍立方体、三等分角。

5.古希腊开论证几何学先河的是爱奥尼亚学派(代表人物:泰勒斯)

6.古希腊数学家丢番图的《算术》是一本问题集,特别以不定方程的求解而著称。所谓“不定方程”是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。

7.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为帕波斯。

•中世纪的中国数学

1.周髀算经

在现存的中国古代数学著作中,《周髀算经》是最早的一部。卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。(我国最早记载勾股定理,中国历史上最早完成勾股定理证明的数学家是三国时期的赵爽

。)

我国古代著作《周髀算经》中的“髀”是指竖立的表或杆子

2.九章算术

第一章“方田”:田亩面积计算;提出了各种多边形、圆、弓形等的面积公式;分数的

通分、约分和加减乘除四则运算的完整法则。后者比欧洲早1400 多年。

第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比

例分配法则,称为衰分术;

第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。这是世界上最早的多位数和分数开方法则。它奠定了中国在高次方程数值解法方面长期领先世界的基础。

第四章“少广”:已知面积、体积,反求其一边长和径长等;第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;(《九章算术》中的“阳马”是指一种特殊的棱锥)

第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15 世纪末以后才形成类似的全套方法。

第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。

第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17 世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7 世纪印度的婆罗摩及多才认识负数。

第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c 分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3 世纪的丢番图才取得相近的结果,这已比《九章算术》晚约 3 个世纪了。勾股章还有些内容,在西

方却还是近代的事。例如勾股章最后一题给出的一组公式,在国外到19 世纪末才由美国的数论学家迪克森得出。

《九章算术》是中国古代第一部数学专著,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,

不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。要注意的是《九章算术》没有作者,它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084 年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。可以说,《九章算术》是中国为数学发展做出的又一杰出贡献。

3.我国古代数学家刘徽用来推算圆周率的方法叫割圆术,用来计算面积和体积的一条基本原理是原理。

4.世界上第一个把π计算到3.1415926

相关文档
最新文档