大学物理06刚体力学剖析

合集下载

大学物理课件第3章-刚体

大学物理课件第3章-刚体
究力的平衡和静力问题。
刚体的分类总结
根据是否可以发生平动或转动, 可以将刚体分为可动刚体和固定 刚体两类。不同类型的刚体在研 究力和运动关系时具有不同的应
用场景和特点。
02
刚体的运动
平动
01
02
03
平动定义
刚体在运动过程中,其上 任意两点都保持相对位置 不变的运动。
平动特点
刚体上任意两点在运动过 程中保持相对位置不变, 刚体整体做平行移动,没 有发生旋转。
刚体的稳定性
总结词
刚体的稳定性是指刚体在外力作用下保 持原有平衡状态的能力。
VS
详细描述
刚体的稳定性是指刚体在外力作用下保持 原有平衡状态的能力。如果外力较小,刚 体能够恢复到原来的平衡状态,则称该平 衡状态是稳定的。反之,如果外力较小, 刚体不能恢复到原来的平衡状态,则称该 平衡状态是不稳定的。刚体的稳定性可以 通过对平衡状态的稳定性进行分析来确定 。
刚体的性质总结
刚体的性质包括不发生形变、具有无限大的弹性和重心位 置不变。这些性质使得刚体成为研究力和运动关系的理想 化模型。
刚体的分类
可动刚体
可动刚体是指可以发生平动或转 动的刚体。这类刚体通常用于研 究物体的运动状态和力的作用效
果。
固定刚体
固定刚体是指形状和大小始终不 变的刚体。这类刚体通常用于研
06
刚体的应用
刚体在日常生活中的应用
钟表
钟表内部的齿轮、指针等都是刚 体,其运动规律符合刚体的运动
定理。
ቤተ መጻሕፍቲ ባይዱ
交通工具
自行车、汽车、火车等交通工具中 的轮子、轴承等都是刚体,其运动 规律符合刚体的运动定理。
家居用品
家具如椅子、桌子等,其结构大多 由刚体组成,符合刚体的运动定理 。

大学物理刚体力学总结

大学物理刚体力学总结

大学物理刚体力学总结大学物理刚体力学总结大学物理刚体力学总结篇一:大学物理力学总结大学物理力学公式总结 ? 第一章(质点运动学)1. r=r(t)=x(t)i+y(t)j+z(t)k Δr=r(t+Δt)- r(t) 一般地|Δr|?Δr2. v= a= dt dx d??d?? d2??dt3. 匀加速运动:a=常矢 v0=vx+vy+vz r=r0+v0t+at2 ????4. 匀加速直线运动:v= v0+at x= v02 v2-v02=2ax 215. 抛体运动:ax=0 ay=-g vx=v0cs vy=v0sinθ-gt x=v0csθ?t y=v0sinθ?tgt2 216. 圆周运动:角速度= dt Rdθ v 角加速度dt dω 加速度 a=an+at 法相加速度an==Rω2 ,指向圆心 Rv2 切向加速度at=Rα ,沿切线方向dt d??7. 伽利略速度变换:v=v’+u ? 第二章(牛顿运动定律)1. 牛顿运动定律: 第一定律:惯性和力的概念,惯性系的定义第二定律:F=, p=mv dtd?? 当m为常量时,F=ma 第三定律:F12=-F21 力的叠加原理:F=F1+F2+……2. 常见的几种力:重力:G=mg 弹簧弹力:f=-kx3. 用牛顿定律解题的基本思路:1) 认物体 2) 看运动 3) 查受力(画示力图) 4) 列方程(一般用分量式) ? 第三章(动量与角动量)1. 动量定理:合外力的冲量等于质点(或质点系)动量的增量,即 Fdt=dp2. 动量守恒定律:系统所受合外力为零时, p= ??????=常矢量3. 质心的概念:质心的位矢 rc= ???????? 离散分布) m 或 rc = ??dmm (连续分布)4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=mac5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。

6. 质点的角动量:对于某一点, L=r×p=mr×v7. 角动量定理:M= dtd?? 其中M 为合外力距,M=r×F,他和L 都是对同一定点说的。

刚体的转动惯量(大学物理--刚体部分)解析ppt课件

刚体的转动惯量(大学物理--刚体部分)解析ppt课件
第二节 转动惯量
1
一、转动惯量 刚体的动能等于各 质点动能之和。
2
刚体的动能 与平动动能比较
相当于描写转动惯性的物理量 转动惯量的定义: 单位: 千克 ·米2
3
§4.刚体的转动惯量/ 一、转动惯量
转动惯量
4
§4.刚体的转动惯量/ 二、转动惯量的计算
刚体的转动惯量与哪些物理量有关? ①.与刚体质量有关。 ②.与质量对轴的分布有关。 ③.与轴的位置有关。
细棒转轴通过中 心与棒垂直
l
细棒转轴通过端 点与棒垂直
14
§4.刚体的转动惯量\ 三、典型刚体的转动惯量
2r
2r
球体转轴沿直径
球壳转轴沿直径
15
§4.刚体的转动惯量/ 三、典型刚体的转动惯量
四、平行轴定理 定理表述: 刚体绕平行于质心轴的转动惯 量 J,等于绕质心轴的转动惯量 JC 加上刚 体质量与两轴间的距离平方的乘积。
二.质量连续分布刚体的转动惯量计算
1.计算公式
5
§轻杆的 b 处 3b 处各系质量 为 2m和 m 的质点,可绕 o 轴转动,求: 质点系的转动惯量J。 解: 由转动惯量的定义
6
§4.刚体的转动惯量\ 二、转动惯量的计算
例2:长为 l、质量为 m 的匀质细杆,绕与 杆垂直的质心轴转动,求转动惯量 J。
建立坐标系,坐标原点选在边缘处。分 割质量元 dm ,长度为 dx ,
9
§4.刚体的转动惯量/ 二、转动惯量的计算
10
§4.刚体的转动惯量/ 二、转动惯量的计算
例4:半径为 R 质量为 M 的圆环,绕垂直 于圆环平面的质心轴转动,求转动惯量J。 解: 分割质量元 dm 圆环上各质量元到 轴的距离相等,

大学物理刚体归纳总结

大学物理刚体归纳总结

大学物理刚体归纳总结在大学物理学习中,刚体是一个重要的概念,广泛应用于力学、动力学和静力学等领域。

本文将对刚体的定义、特点以及相关定理进行归纳总结,旨在帮助读者更好地理解和掌握刚体的基本知识。

一、刚体的定义和特点刚体是指可以看作一个整体、无论受到什么力都能保持形状不变的物体。

在实际应用中,我们常常将刚体简化为点、线或面,以便进行研究和计算。

刚体具有以下特点:1. 形状不变性:无论刚体受到外力的作用,其形状都不会发生改变。

2. 外力作用点的变化不引起内部构件间相对位置的改变:即刚体内各个质点之间的相对位置保持不变。

3. 刚体内各个质点之间的相对位置保持不变:即刚体内构件间的距离和角度不会发生变化。

二、刚体的运动学性质1. 刚体的平动:刚体作平动时,刚体上每个点的速度都相同,且方向相同。

2. 刚体的转动:刚体作转动时,刚体上的各点绕着同一条轴旋转。

这个轴称为刚体的转轴,刚体绕转轴的转动速度相同。

刚体平衡的条件是力矩的和等于零。

力矩是由力对刚体产生的转动效果,其大小与力的大小、作用点到转轴的距离和力的夹角相关。

四、刚体静力学定理与公式1. 雅可比定理:在刚体有多个力作用时,可以将这些力简化为只有一个力等效,该力的大小、方向和作用点都与原有多个力相同,这个力称为合力。

2. 力的合成定理:当刚体上有多个力作用时,可以将这些力合成为一个结果力,该力等效于原有多个力的合力。

3. 力矩的平衡条件:对于处于平衡状态的刚体,刚体上力矩的和必须等于零。

4. 平衡条件的应用:根据刚体平衡条件,可以解决各种与刚体平衡有关的问题,如悬挂物体的平衡、天平的平衡等。

五、刚体动力学定理与公式1. Euler定理:刚体绕固定轴的转动,转动惯量与角加速度和转矩之间存在关系,即转动惯量等于转矩与角加速度的比值。

2. 动量定理:外力矩与刚体的角动量之间存在关系,外力矩等于刚体的角动量关于时间的变化率。

3. 动能定理:刚体的动能与角速度和转动惯量之间存在关系,动能等于转动惯量与角速度平方的乘积的一半。

大学物理_第06章 刚体力学

大学物理_第06章  刚体力学

接触点相同线速度时: 1r1 2r2
联立解得:
1
J1
J1 ( r1 r2
)2
J2
0
2
r1 r2
J1
J1
(
r1 r2
)2
J
2
0
书上177页
解: dm
2 rdr
m2 rdr R2
2mrdr R2
df
2mrdr R2
g
dM
r
2mrdr R2
g et
2mr 2dr R2
g
M
R
dM
0
R 0
2mr 2 dr R2
dm dV
其中、、分别为质量线密度、面密度和体密度。
转动惯量
2). 转动惯量的计算:
质点、圆环、圆筒绕中心轴转动
z
z
Rm
oR m
R
m
o
质点的转动惯量为
Jo mR2
对于匀质圆环和薄圆筒,因各质元到轴的垂直距
离都相同,则有
Jo mR2
圆盘、圆柱绕中心轴转动
对于质量为m、半径为R、厚为l 的均匀圆盘取半径为 r宽
需要一个动力学方程 — 角动量定理
角动量定理: M dL
dt
转轴转动角动量表达式:
Mz
dLz dt
转轴分量角动量定理表达式:
n
Lz z mi (xi2 yi2 ) z J i1
转动定律:
Mz
dLz dt
d (J)
dt
J
d
dt
J
z v
r
P
当刚体绕固定轴转动时,刚体对该轴的转动惯量与角加速 度的乘积等于外力对此轴的合力距。 — 定轴转动定律

大学刚体知识点总结

大学刚体知识点总结

大学刚体知识点总结一、刚体的概念和基本性质1. 刚体的基本概念刚体是指在运动或受力作用时,其内部各个部分之间的相对位置保持不变的物体。

刚体的定义包括两个方面:一是刚体的形状和大小在所讨论的现象中不发生改变;二是刚体内各点的相对位置在所讨论的现象中也不发生改变。

这意味着刚体是刚性的,并且不会发生形变。

2. 刚体的基本性质(1)刚性:刚体的所有部分在相互作用下保持相对位置不变,不发生相对位移或形变,这就是刚体的基本性质之一。

(2)刚体的自由度:刚体的自由度是指刚体可以自由运动的最少独立坐标数。

刚体的自由度可以通过不同类型的运动来描述,包括平动、转动和复合运动。

(3)刚体的质心:刚体的质心是指一个质点,它等效于整个刚体对于外力的作用。

在某些情况下,刚体可以看作是一个质点,其运动和受力可以通过质心来描述。

二、刚体的平动1. 刚体的平动运动在刚体的平动运动中,刚体上的各个点都以相同的速度和方向移动。

平动运动可以通过刚体的速度和加速度来描述,它是刚体运动的一种常见形式。

2. 刚体的平动运动描述(1)刚体的平动速度:刚体上的各个点的速度大小和方向相同,这就是刚体的平动速度。

刚体的平动速度可以通过质点运动方程或者质心运动方程来描述。

(2)刚体的平动加速度:刚体上的各个点的加速度大小和方向相同,这就是刚体的平动加速度。

刚体的平动加速度可以通过质点加速度方程或者质心加速度方程来描述。

(3)刚体的平动运动学问题:刚体的平动运动学问题包括刚体的位移、速度、加速度等相关内容,它们可以通过运动学方法来解决。

三、刚体的转动1. 刚体的转动运动在刚体的转动运动中,刚体围绕固定轴旋转。

转动运动是刚体运动的另一种常见形式,它可以通过角度和角速度来描述。

2. 刚体的转动运动描述(1)刚体的角度和角速度:刚体围绕固定轴旋转时,可以通过角度和角速度来描述。

角度是指刚体围绕轴线旋转的角度,角速度是指刚体围绕轴线旋转的角度变化率。

(2)刚体的转动惯量:刚体围绕轴线旋转时,需要通过转动惯量来描述其转动惯性。

大学物理课件第3章-刚体

大学物理课件第3章-刚体
大学物理课件第3章-刚体
刚体力学是大学物理课程的重要组成部分。它涵盖了刚体的定义、运动学、 动力学、静力学、力学、弹性和应用等多个方面内容,为学习者提供了全面 的知识体系。
刚体的定义
刚体的概念
刚体是指具有固定形状和 大小,并且内部各点相对 位置保持不变的物体。
理想刚体的定义
理想刚体是指无限刚度、 无限强度、不变形且能够 保持自身形状和大小的物 体。
刚体的动力学
刚体的动量
刚体的动量是其质 量乘以速度,刚体 受到外力时动量会 发生变化。
刚体的角动量
刚体的角动量是其 惯性矩乘以角速度, 刚体绕固定轴旋转 时角动量会发生变 化。
刚体的动能
刚体的动能是其质 量乘以速度的平方, 与速度和质量有关。
刚体的动力学定 理
动力学定理描述了 刚体受力和加速度 之间的关系,F = ma。
实际刚体的特点
实际刚体在外力作用下会 发生微小的形变,但变形 较小,可以近似看作刚体。
刚体的运动学
1
刚体的运动状态
刚体可以既进行平动运动,也可以进行转动运动。
2
刚体的平动运动
刚体的平动运动包括直线运动和曲线运动,由质心位置和速度决定。
3
刚体的转动运动
刚体的转动运动包括绕固定轴的转动,由角位移和角速度决定。
刚体的静力学
1 刚体的平衡条件
刚体在平衡状态下,力 矩和力的合力为零。
2 刚体的平衡性质
刚体在平衡状态下,质 心位置不变,不会发生 任何运动。
3 刚体的平衡实例
如天平平衡ቤተ መጻሕፍቲ ባይዱ桥梁平衡 等实际应用中,刚体的 平衡性质起到重要作用。
刚体的力学
刚体的受力分析
通过力的分析,可以确定刚体 受力的大小、方向和作用点。

大学物理刚体力学

大学物理刚体力学

大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。

而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。

本文将探讨大学物理中的刚体力学。

一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。

在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。

刚体具有以下特性:1、内部质点无相对位移。

2、刚体不发生形变,形状和体积保持不变。

3、刚体在运动过程中,内部任意两质点间的距离保持不变。

二、刚体力学的基础知识1、刚体的运动形式刚体的运动形式包括平动、转动和振动。

平动是指刚体沿直线作均匀速度的运动;转动是指刚体绕某轴线作角速度变化的运动;振动是指刚体在平衡位置附近作往复运动的周期性运动。

2、刚体的动力学基础动力学是研究物体运动状态变化的原因和规律的科学。

在刚体力学中,动力学的基本方程包括牛顿第二定律、动量定理和动能定理等。

这些方程为我们提供了分析刚体运动状态变化的基本工具。

三、刚体的转动惯量转动惯量是描述刚体转动惯性大小的物理量。

它与刚体的质量、形状和大小有关。

在物理学中,转动惯量是研究刚体转动规律的重要参数。

通过计算转动惯量,我们可以了解刚体在受到外力矩作用时角速度变化的规律。

四、刚体的角动量角动量是描述物体绕某轴线旋转的物理量,与物体的质量、速度和半径有关。

在刚体力学中,角动量是一个非常重要的概念。

它可以帮助我们理解刚体在受到外力矩作用时的角速度变化规律。

同时,角动量守恒定律也是刚体力学中的一个重要定律。

在已知刚体的质量、转动惯量和角动量的基础上,我们可以建立刚体的动力学方程。

动力学方程可以帮助我们分析刚体在受到外力作用时的运动状态变化规律。

对于复杂的动力学问题,我们通常需要借助数学软件进行数值模拟和分析。

六、总结在大学物理中,刚体力学是一个相对独立且具有重要应用价值的领域。

大学物理刚体部分知识点总结

大学物理刚体部分知识点总结

【最新】大学物理刚体局部知识点总结大学物理刚体局部知识点总结一.刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动.2.刚体平行移动.刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移.刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线.刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小.方向都相同.3.刚体绕定轴转动.刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动.刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律.角速度ω表示刚体转动快慢程度和转向,是代数量,.,当α与ω.角速度也可以用矢量表示,角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动.角加速度也可以用矢量表示,.绕定轴转动刚体上点的速度.加速度与角速度.角加速度的关系:.速度.加速度的代数值为.传动比.二.转动定律转动惯量转动定律力矩相同,假设转动惯量不同,产生的角加速度不同与牛顿定律比拟:转动惯量刚体绕给定轴的转动惯量J等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和.定义式质量不连续分布质量连续分布物理意义转动惯量是描述刚体在转动中的惯性大小的物理量.它与刚体的形状.质量分布以及转轴的位置有关.计算转动惯量的三个要素:(1)总质量;(2)质量分布;(3)转轴的位置(1)J与刚体的总质量有关几种典型的匀质刚体的转动惯量刚体细棒〔质量为m,长为l〕细棒〔质量为m,长为l〕转轴位置过中心与棒垂直过一点与棒垂直转动惯量Jml212ml23细环〔质量为m,半径为R〕过中心对称轴与环面垂直细环〔质量为m,半径为R〕圆盘〔质量为m,半径为R〕圆盘〔质量为m,半径为R〕球体〔质量为m,半径为R〕薄球壳〔质量为m,半径为R〕平行轴定理和转动惯量的可加性1〕平行轴定理直径过中心与盘面垂直直径过球心过球心mR2mR22mR22mR242mR252mR23设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,那么可以证明I与Ic之间有以下关系IIcmd22〕转动惯量的可加性对同一转轴而言,物体各局部转动惯量之和等于整个物体的转动惯量.IIcmd2ozdcrcirimi三角动量角动量守恒定律1.质点的角动量〔AngularMomentum〕描述转动特征的物理量o1〕概念一质量为m的质点,以速度v运动,相对于坐标原点O的位置矢量为r,定义质点对坐标原点O的角动量为该质点的位置矢量与动量的矢量积,即LrPrmv角动量是矢量,大小为L=rmvsinα式中α为质点动量与质点位置矢量的夹角.角动量的方向可以用右手螺旋法那么来确定.角动量的单位:kg.m2.s-12.质点的角动量定理〔TheoremofAngularMomentum〕〔1〕质点的转动定律问题:讨论质点在力矩的作用下,其角动量如何变化.设质点的质量为m,在合力F的作用下,运动方程为dvdmvFmamdtdt用位置矢量r叉乘上式,得dmvrFrdt考虑到dddrrmvrmvmvdtdtdtdr和vvv0dtd得rFrmvdt由力矩M=rFd和角动量的定义式LrmvdtdL得M=dt表述:作用于质点的合力对参考点O的力矩,等于质点对该点O的角动量随时间的变化率,有些书将其称为质点的转动定律〔或角动量定理的微分形式〕. 这与牛顿第二定律FP/t在形式上是相似的,其中M对应着F,L对应着P.〔2〕冲量矩和质点的角动量定理把上式改写为MtLMdt为力矩和作用时间的乘积,叫作冲量矩.对上式积分得t2MtLL21t1t2式中L1和L2分别为质点在时刻t1和t2的角动量,Mt为质点在时间间隔t2-t1内t1所受的冲量矩.质点的角动量定理:对同一参考点,质点所受的冲量矩等于质点角动量的增量.成立条件:惯性系3.质点的角动量守恒定律〔LawofConservationofAngularMomentum〕假设质点所受的合外力矩为零,即M=0,那么L=rmv=恒矢量这就是角动量守恒定律:当质点所受的对参考点的合外力矩为零时,质点对该参考点的角动量为一恒矢量.说明:(1)质点的角动量守恒定律的条件是M=0,这可能有两种情况:合力为零;合力不为零,但合外力矩为零.四.力矩做功和刚体绕定轴转动的动能定理力矩的功设:;转盘上的微小质量元Δm在力F作用下以R为半径绕O轴转动,在dt时间内转过角度d,对应位移dr,路程ds,此时F所做的元功为dAFdrFtdsFtrddAMd那么总功为AMd12dFtdror1刚体绕定轴转动的转动动能Ek1112222mvmrIiiii2i2i2动能定理由于刚体的大小.形状不变,其上任何两质点间没有相对位移.即:Ai0刚体作为一个特殊的质点系,此质点系的动能定理为AeEk2Ek1刚体定轴转动的动能定理θθ2Mdθ11212Iω2Iω122合外力矩对绕定轴转动的刚体所作的功等于刚体转动动能的增量.扩展阅读:大学物理第一册知识点第一局部力学〔分数分布22.2%〕第一章〔分数分布6.9%〕1运动学方程〔1〕由位置矢量式写分量式(1-1-1)〔2〕由运动学方程求位移(7-2-1)〔3〕由运动学方程求速度〔2-1-4〕〔9-2-1〕〔4〕由运动学方程求加速度〔2-1-4〕(6-1-1)〔9-2-1〕2牛顿运动定律〔1〕积分法解一维变力ff(_)〔1-2-1〕〔2〕积分法解一维变力ff(v)〔2-2-1〕3动量定理〔1〕冲量计算(6-2-1)〔2〕求动量增量〔8-1-1〕〔9-1-4〕4动能定理变力的功计算(3-2-1)〔10-2-1〕5角动量定理〔1〕判断对不同参考点角动量(6-1-3)(7-1-1)〔2〕判断力矩方向〔9-3〕〔3〕合力与力矩〔9-1-3〕6综述模型方法的要点与应用〔第一章第四节〕〔1-4〕第二章〔分数分布4.2%〕1保守力与非保守力的区分〔3-1-1〕2质点系内力的功之和不为零(7-1-4)3质点系内力矩之和为零〔2-1-1〕4机械能守恒定律〔9-1-2〕5动量守恒定律〔10-1-1〕第三章〔分数分布11.1%〕1定轴转动〔1〕几个物理量〔3-1-4〕(5-1-1)〔2〕角量与线量关系(7-1-2)〔3〕匀变速转动规律〔8-2-1〕〔9-1-1〕2转动惯量数学表达式〔8-1-2〕3转动动能定理〔1〕转动动能计算(7-1-3)〔2〕摩擦力矩简单计算〔2-1-2〕4定轴转动中的角动量守恒(5-2-1)5固体的弹性〔1〕胡克定律简单应用〔3-1-3〕(4-1-1)(6-1-2)〔8-1-3〕〔2〕应力定义表达与公式〔10-1-3〕6理想流体〔1〕定义表达〔10-1-4〕〔2〕定常流定义表达〔8-1-4〕〔3〕流量〔10-1-2〕〔4〕连续性方程简单应用〔2-1-3〕(6-1-4)第二局部场〔分数分布33.3%〕第四章〔分数分布11.1%〕1库仑定律内容与应用〔3-1-6〕2场强〔1〕偶极子中垂线场强计算〔1-2-2〕〔2〕带电圆线圈轴线上一点及圆心处电场〔8-2-2〕〔3〕无限大带电平面的场强公式(3-2-2)3高斯定理〔1〕数学表达式(4-1-2)〔2〕用高斯定理求带电球壳的场强〔2-2-2〕〔3〕用高斯定理求无限大带电平面的场强(3-2-2)〔4〕用高斯定理求无限长带电直线或圆柱体场强(6-2-3)〔5〕电荷.场强与通量的关系(5-1-2)4静电场环路定理〔1〕点电荷的电势〔1-1-2〕〔3-1-5〕〔2〕带电圆环中心的电势公式(7-2-2) 〔3〕带电圆环轴线上电势的积分计算(5-2-2)5静电场是有源无旋场公式表述〔8-1-5〕第五章〔分数分布11.1%〕1洛伦兹力〔1〕磁场中电荷螺旋线运动参数计算(6-2-2)〔2〕霍尔效应现象(5-1-4)〔10-1-5〕〔3〕霍尔电场场强与电势差的计算〔9-2-2〕2安培定律〔1〕安培力方向的判断方法〔1-1-4〕〔2〕带电半圆导线受力公式(3-2-3)〔3〕带电直线受力〔7-2-3〕〔4〕单匝与多匝带电线圈的磁矩公式(4-1-3)〔5〕带电平面线圈受磁力矩定性分析(6-1-5)(7-1-5)3毕-沙定律〔1〕数学形式(5-1-3)〔2〕无限长载流直导线旁一点的磁场公式(5-2-3)〔3〕导线组合:无限长载流直导线延长线.半无限长载流直导线旁一点及圆弧电流圆心处的磁场的积分计算〔8-2-3〕〔4〕圆电流圆心处的磁场公式〔1-1-3〕〔5〕半圆电流圆心处的磁场公式〔10-2-2〕4磁高斯定理非均匀磁场磁通量的积分计算〔2-2-3〕5用类比法分析静电场与稳恒磁场相关知识点的关系(6-4)6无源有旋场〔10-4〕第六章〔分数分布11.1%〕1法拉第电磁感应定律〔1〕感应电流方向判断〔2-1-5〕〔2〕感应电动势方向判断〔3-1-7〕〔3〕载流导线旁运动线圈电动势(4-1-5)2自感与互感〔1〕互感电动势数学表达式〔9-4〕〔2〕互感电动势的简单计算(4-1-4)3动生电动势〔1〕动生电动势的微观机理(5-1-5)〔2〕金属棒在载流长直导线旁运动的动生电动势〔1-2-3〕〔10-2-3〕4感生电动势圆柱面内外感生电场的计算〔9-2-3〕5位移电流〔1〕位移电流密度矢量的数学表达式〔9-1-5〕〔2〕位移电流的实质〔1-1-5〕 6麦克斯韦两个假设〔3-1-8)〔7-4〕7矢量场研究方法〔8-4〕第三局部光〔分数分布29.2%〕第九章〔分数分布5.6%〕1谐振动〔1〕振幅.周期与频率的计算〔1-1-7〕〔8-1-6〕〔2〕由振动曲线分析初相.特征量(6-1-6)(7-1-6)〔3〕由振动曲线写振动方程(4-1-6)(5-1-7)2旋转矢量法求初相.相位差(3-3)3两个同方向.同频率谐振合成合振幅的计算(5-2-4)第十章〔分数分布8.3%〕1平面谐波波函数〔1〕波动物理量〔9-1-6〕〔2〕计算波线上两点相位差〔1-2-4〕〔3〕由波形曲线确定初相(5-1-6)〔4〕计算频率.波长〔2-1-7〕〔5〕由波源振动写波动表达式(6-1-7)〔6〕由波函数写某点振动表达式〔8-1-7〕 2波的叠加相长干预.相消干预的条件(7-1-7)3驻波〔1〕原点为两行波波峰的驻波方程〔10-1-6〕〔2〕相位突变的定量表述(4-1-7)) 第十一章〔分数分布6.9%〕1相干〔波〕光源的条件〔1-1-8〕2分波前干预〔杨氏干预〕〔1〕明纹位置及相邻明纹间隔计算(7-1-8)〔9-2-4〕〔2〕有遮挡杨氏干预明纹移动规律〔2-2-4〕(3-1-9)〔8-1-8〕〔3〕用杨氏干预测波长.折射率.膜厚方法〔1-3〕(5-4).〔10-3〕(6-3)2分振幅干预〔均匀薄膜〕〔1〕增透膜的物理原理.相位突变(3-1-10)〔2-1-8〕〔2〕增透膜设计〔8-3〕〔3〕增反膜的物理原理.最小厚度计算〔7-2-4〕3劈尖干预〔1〕空气劈干预条纹的计算(6-2-4)〔2〕劈尖参数变化引起条纹变化规律〔10-1-7〕4牛顿环条纹的变化〔9-1-7〕第十二章〔分数分布5.6%〕1单缝夫琅禾费衍射〔1〕惠-菲原理内容(4-1-8)〔2〕一级〔明〕暗纹位置确实定〔1-1-6〕2圆孔衍射〔1〕瑞利准那么的内容与应用〔2-1-6〕〔9-1-8〕〔2〕最小分辨角〔10-1-8〕3光栅衍射〔1〕光栅方程及应用(6-1-8)〔8-2-4〕〔2〕白光入射光栅的衍射规律(5-1-8) 第十三章〔分数分布2.8%〕1马吕斯定律(5-3)〔10-2-4〕2布儒斯特角的计算与测量(3-2-5)〔7-3〕第四局部〔分数分布15.3%〕第十四章〔分数分布5.6%〕1功等温.等压.等容.绝热过程功的计算(7-1-9)〔8-2-5〕2热量等温.等压.等体过程热量的计算〔9-2-5〕3写出绝热过程方程式(4-1-9)(6-2-5)4正循环过程及效率计算〔1-2-5〕〔10-2-5〕第十五章〔分数分布2.8%〕1卡略循环〔1〕四过程的根本特征〔2-1-10〕〔2〕循环效率的计算(5-1-10)〔8-1-9〕3热二律〔1〕克劳修斯表述(6-1-9)〔2〕开尔文表述(4-1-10)〔3〕熵增原理的适应范围〔10-1-9〕第十六章〔分数分布6.9%〕1理想气体的微观模型的内容(7-1-10)2压强公式〔1-1-9〕3温度公式(6-1-10)〔10-1-10〕4分子自由度(3-2-4)5分子的平均能量计算(5-2-5)〔7-2-5〕6理想气体的热力学能计算〔2-2-5〕7理想气体摩尔热容计算〔1-1-10〕8麦克斯韦分子速率分布〔1〕速率分布曲线与温度的关系〔8-1-10〕〔2〕速率分布曲线与元素的关系〔9-1-10〕〔3〕三种特征速率的计算公式(5-1-9)〔9-1-9〕〔4〕三种特征速率的比拟〔2-1-9〕。

第六章刚体动力学_大学物理

第六章刚体动力学_大学物理

第七章机械振动刚体转动的角坐标、角位移、角速度和角加速度的概念以及它们和有关线量的关系刚体定轴转动的动力学方程,熟练使用刚体定轴转动定律刚体对固定轴的角动量的计算,正确应用角动量定理及角动量守恒定理掌握刚体的概念和刚体的基本运动理解转动惯量的意义及计算方法,会利用平行轴定理和垂直轴定理求刚体的转动惯量掌握力矩的功,刚体的转动动能,刚体的重力势能等的计算方法了解进动现象和基本描述§6.1 刚体和自由度的概念一. 力矩力是引起质点或平动物体运动状态(用动量描述)发生变化的原因.力矩则是引起转动物体运动状态(用动量聚描述)发生变化的原因.将分解为垂直于z 轴和平行于z 轴的两个力及,如右图.由于不能改变物体绕z 轴的转动状态,因此定义对转轴z 的力矩为零.这样,任意力对z 轴的力矩就等于力对z 轴的力矩,即力矩取决于力的大小、方向和作用点.在刚体的定轴转动中,力矩只有两个指向,因此一般可视为代数量.根据力对轴的力矩定义,显然,当力平行于轴或通过轴时,力对该轴的力矩皆为零.讨论:(1)力对点的力矩.(2) 力对定轴力矩的矢量形式力矩的方向由右螺旋法则确定.(3) 力对任意点的力矩,在通过该点的任一轴上的投影,等于该力对该轴的力矩.例: 已知棒长L,质量M,在摩擦系数为μ 的桌面转动(如图)求摩擦力对y 轴的力矩.解: 以杆的端点O 为坐标原点,取Oxy坐标系,如图在坐标为x 处取线元dx,根据题意,这一线元的质量和摩擦力分别为则该线元的摩擦力对y轴的力矩为积分得摩擦力对y轴的力矩为注: 在定轴转动中,力矩可用代数值进行计算,例如二. 刚体对定轴的转动定律实验证明: 当力矩M为零时,则刚体保持静止或匀速转动,当存在M时,角加速度β与M成正比,而与转动惯量J 成反比,即.也可写成国际单位中k=1.若设作用在刚体上的外力对z轴的力矩总和为合外力矩,刚体对z 轴的转动惯量为J, 则有上式表明,刚体绕定轴转动时,刚体对该轴的转动惯量与角加速度的乘积,等于作用在刚体上所有外力对该轴的力矩的代数和.该式称为刚体绕定轴转动微分方程,也称转动定律.讨论:(1) M 正比于β ,力矩越大,刚体的β越大(2) 力矩相同,若转动惯量不同,产生的角加速度不同(3) 与牛顿定律比较,转动定律的理论证明:如右图,在刚体上任取一质量元,作用在质量元上的力可以分为两类:表示来自刚体意外一切力的合力(称外力),表示来自刚体内各质点对该质量元作用力的合理(称内力).刚体绕定轴Z 转动过程中,质量元以为半径作圆周运动,按牛顿第二定律,有将此矢量方程两边都投影到质量元的圆轨迹切线方向上,则有再将此式两边乘以,则得对固定轴的力矩对所有质量元求和,则得等式右边第一项为合外力矩;第二项为所有内力对z 轴的力矩总和,由于内力总是成对出现,而且每对内力大小相等、方向相反,且在一条作用线上,因此内力对z 轴的力矩的和恒等于零.又.则有即证.三. 转动惯量刚体对某Z 轴的转动惯量,等于刚体上各质点的质量与该质点到转轴垂直距离平方的乘积之和,即事实上刚体的质量是连续分布的,故上式中的求和可写为定积分,即刚体对轴转动惯量的大小决定于三个因素,即刚体的质量、质量对轴的分布情况和转轴的位置.(1) J 与刚体的总质量有关例 1 两根等长的细木棒和细铁棒绕端点轴转动惯量解:在如图的棒上取一线元dx,则积分得其转动惯量为显然,本题中,则(2) J 与质量分布有关例2 圆环绕中心轴旋转的转动惯量解: 在如图的圆环上取一线元dl,则积分得其转动惯量为例3 圆盘绕中心轴旋转的转动惯量解: 在如图的圆盘上取一宽为dr的圆环带,令,则质量元则积分得圆盘的转动惯量为(3) J 与转轴的位置有关例 4 均匀细棒绕端点轴转动惯量解: 在如图棒上取一线元dx,积分得棒的转动惯量为例 5 均匀细棒对通过中心并与棒垂直得轴的转动惯量解: 如图,以杆的中心O为坐标原点,取Oxz坐标系.积分得棒对z轴的转动惯量为四. 平行轴定理及垂直轴定理1. 平行轴定理设刚体得质量为M,质心为C,刚体对通过质心某轴z(称为质心轴)得转动惯量为.如有另一与z 轴平行的任意轴,且z和两轴间的垂直距离L.刚体对轴的转动惯量设为,则可以证明:.即刚体对任意轴(轴)的转动惯量等于刚体对通过质心并与该轴平行的轴(z轴)的转动惯量加上刚体的质量与两轴间垂直距离L平方的乘积.这个结论称为平行轴定理.例1 : 求均匀细棒的转动惯量.解: 如图,已知均质杆对质心轴z 的转动惯量为,为通过杆的一端、且与z 轴平行的轴的转动惯量,按平行轴定理有2.垂直轴定理如右图所示, x、y轴在刚体内, z轴垂直于刚体.则刚体对z 轴的转动惯量等于其对x、y轴的转动惯量之和此即为垂直轴定理.例求对圆盘的一条直径的转动惯量解:以圆盘圆心C为坐标圆点,建立xyz 坐标系如右图.易求得圆盘对z 轴的转动惯量为根据垂直轴定理,有又则五. 转动定律的应用举例例1 一轻绳绕在半径r =20 cm 的飞轮边缘,在绳端施以F =98 N 的拉力,飞轮的转动惯量J =0.5 kg·m 2,飞轮与转轴间的摩擦不计,(如图)求: (1) 飞轮的角加速度(2) 如以重量P =98 N 的物体挂在绳端,试计算飞轮的角加速度解: (1) 根据转动定律,有(2) 分别对物体和飞轮进行受力分析,如图所示,根据牛顿运动定律和转动定律,有,因为,所以有例2一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 在直棒上取如图的质量元dm ,则积分得整个直棒重力对轴O的力矩为又故由上式可以看出,重力对整个棒的合力矩等于重力全部集中于质心所产生的力矩.则角加速度为:又, 则杆下摆至角速度为例3圆盘以在桌面上转动,受摩擦力而静止求到圆盘静止所需时间解:在圆盘内取一半径为r 的,厚度为dr 的环带, 其质量为该环带的摩擦力对质心轴的力矩为积分得圆盘的摩擦力力矩为由转动定律得所以,得则例4如图一个刚体系统,已知转动惯量,现有一水平作用力作用于距轴为处求轴对棒的作用力(也称轴反力)解: 设轴对棒的作用力为N,分解为.由转动定律得由质心运动定理得解得打击中心则思考题1. 刚体可有不止一个转动惯量吗? 除了刚体的形状和质量以外,要求它的转动惯量,还要已知什么信息?2.能否找到这样一个轴,刚体绕该轴的转动惯量比绕平行于该轴并通过质心的轴的转动惯量小?3.刚体在力矩作用下绕定轴转动,当力矩增大或减小时,其角速度和角加速度将如何变化?4.猫有一条长长的尾巴,它习惯于在阳台上睡觉,因而从阳台上掉下来的事情时有发生.长期的观察表明猫从高层的楼房的阳台掉到楼外的人行道上时,受伤的程度将随高度的增加而减少,据报道有只猫从32层楼掉下来,也仅仅只有胸腔和一颗牙齿有轻微的损伤.为什么会这样呢?(点击图片播放动画)§ 6.2 绕定轴转动刚体的动能动能定理一. 转动动能刚体I 绕定轴z 转动,转动惯量,某时刻t ,角速度ω ,角加速度为β,设想刚体是由大量质点组成,现研究质量为的质点i,如图.显然,质点i 的速度为,由质点动能的定义知,质量i 的动能为由于动能为标量且永为正,故整个刚体的动能E等于组成刚体所有质点动能的算数和,即即绕定轴转动刚体的动能,等于刚体对转动的转动惯量于其角速度平方乘积的一半. 将刚体绕定轴转动的动能与质点的动能加以比较,再一次看出转动惯量对应于质点的质量,即转动惯量是刚体绕轴转动惯性大小的量度.二.力矩的功力的累积过程——力矩的空间累积效应功的定义如图,设绕定轴z 转动刚体上P 点作用有一力,现研究刚体转动时力在其作用点P 的元路程ds 上的功.由图易得即作用在定轴转动刚体上的力的元功,等于该力对转轴的力矩于刚体的元角位移的乘积.这也称为力矩的元功.力矩作功的微分形式对一有限过程刚体从角坐标到的过程中,力矩对刚体所作的功为若力矩M为常数,则上式可以进一步写成既作用在定轴转动刚体上的常力矩在某一转动过程中对刚体所作的功,等于该力矩与刚体角位移的乘积.讨论:(1) 合力矩的功(2) 力矩的功就是力的功(3) 内力矩作功之和为零三. 转动动能定理——力矩功的效果力矩的元功此式表示绕定轴转动刚体动能的微分,等于作用在刚体上所有外力元功的代数和.这就是绕定轴转动刚体的动能定理的微分形式. 若定轴转动的刚体在外力作用下,角速度从变到,则由微分式,可得到式中A 表示刚体角速度从变到这一过程中,作用于刚体上的所有外力所作功的代数和. 上式表明,绕定轴转动刚体在任一过程中动能的增量,等于在该过程中作用在刚体上所有外力所作功的总和.这就是绕定轴转动刚体的动能定理的积分形式.刚体的机械能等于刚体的动能、重力势能之和.其中的重力势能为故刚体的机械能又可表示为刚体的机械能守恒,则有对于包括刚体的系统,功能原理和机械能守恒定律仍成立.例1一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 易得杆摆至角时对O 轴的力矩为由动能定理,重力矩作的功得又,由此得即例2图示装置可用来测量物体的转动惯量.待测物体A 装在转动架上,转轴Z 上装一半径为r的轻鼓轮,绳的一端缠绕在鼓轮上,另一端绕过定滑轮悬挂一质量为m 的重物.重物下落时,由绳带动被测物体A绕Z 轴转动.今测得重物由静止下落一段距离h .所用时间为t .求物体 A 对Z 轴的转动惯量.设绳子不可伸缩,绳子、各轮质量及轮轴处的摩擦力矩忽略不计.待测物 A 的机械能:重物m 的机械能:由机械能守恒得:又则可得故,物体 A 对Z 轴的转动惯量为思考题1.两个重量相同的球分别用密度为的金属制成,今分别以角速度绕通过球心的轴转动,试问这两个球的能量之比多大?§ 6.3 动量矩和动量矩守恒定律一. 质点动量矩( 角动量) 定理和动量矩守恒定律1.质点的动量矩设一质点在平面S ,如图所示.在时刻t,质点的动量为,对某固定点O质点的位矢为,则质点对O点的动量矩(或质点对O点的角动量)定义为: 位矢和动量的矢积,即根据矢积定义,质点对O点动量的大小为:指向由右螺旋法则确定.(可以证明,质点对某点的动量矩,在通过该点的任意轴上的投影就等于质点对该轴的动量矩)特例:质点作圆周运动时,说明: (1) 质点的动量矩与质点的动量及位矢(取决于固定点的选择)有关(2) 当质点作平面运动时,质点对运动平面内某参考点O 的动量矩也称为质点对过O 垂直于运动平面的轴的动量矩例一质点m ,速度为v ,如图所示A、B、C 分别为三个参考点,此时m 相对三个点的距离分别为.求此时刻质点对三个参考点的动量矩解: 质点对某点的动量矩, 在通过该点的任意轴上的投影就等于质点对该轴的动量矩2. 质点的动量矩定理质点为m 的质点,在力的作用下运动,某一时刻t ,质点相对固定点O 的位矢为,速度为,按上述质点动量矩的定义,有两边对时间求导,得由于,故上式右边第二项为零,而第一项中,因此,上式右边第二项是作用在质点上所有力的合力对O 点的力矩,即此式表明,在惯性系中,质点对任意固定点O的动量矩对时间的导数,等于作用在质点上所有力的合力对同一点O 的力矩.这就是质点动量矩定理.质点动量矩定理的微分形式:质点动量矩定理的积分形式:质点所受合力矩的冲量矩等于质点的动量矩的增量说明:(1) 冲量矩是质点动量矩变化的原因(2) 质点动量矩的变化是力矩对时间的积累结果质点动量矩定理也可直接用来求解质点动力学问题,特别是质点在运动过程中始终和一个点或一根轴相关联的问题,例如单摆运动,行星运动等问题.3. 质点动量矩守恒定律在质点动量矩定理可以看出,当作用在质点上的合力对固定点的力矩恒为零时,质点对该点的动量矩为常矢量,即若时,=常矢量这就是质点动量守恒定律.讨论:(1) 动量矩守恒定律是物理学的基本定律之一,它不仅适用于宏观体系,也适用于微观体系, 且在高速低速范围均适用(2) 通常对有心力:过O 点,M= 0, 动量矩守恒.例如由动量矩守恒定律可导出行星运动的开普勒第二定律行星对太阳的位矢在相等的时间内扫过相等的面积例发射一宇宙飞船去考察一质量为M 、半径为R 的行星, 当飞船静止于空间距行星中心4R 时,以速度发射一质量为m 的仪器.要使该仪器恰好掠过行星表面求θ 角及着陆滑行的初速度多大解:由引力场(有心力)系统的机械能守恒得由质点的动量矩守恒得则所以有二. 刚体定轴转动的动量矩定理和动量矩守恒定律1. 刚体定轴转动的动量矩刚体以角速度ω 绕定轴z转动时,刚体上任意一点均在各自所在的垂至于z轴的平面那作圆周运动,如图.由于刚体上任一质点对z轴的动量矩都具有相同的方向(或者说都具有相同的正负号),因此整个刚体对z轴的动量矩应为各质点对z轴的动量矩之和,即上式表明,绕定轴转动刚体对z 轴的动量矩,等于刚体对该轴的转动惯量与角速度的乘积.2. 刚体定轴转动的动量矩定理将动量矩表达式对时间求导,得由于刚体对给定轴的转动惯量是一常量,因此利用前面讲过的转动定律,可以将上式进一步写成上式表明,绕定轴转动刚体对z轴的动量矩对时间的导数,等于作用在刚体上所有外力对z轴的力矩的代数和.这就是刚体绕定轴转动情况下的动量矩定理.动量矩定理微分形式:将上式两边乘以dt并积分,得动量矩定理积分形式:,分别表示在时刻转动刚体对z轴得动量矩,成为在时间内对z 轴得冲量矩.冲量矩表示了力矩在一段时间间隔内的积累效应.上式表明,定轴转动刚体的动量矩在某一时间间隔内的增量,等于同一时间间隔内作用在刚体上的冲量矩.3. 刚体绕定轴转动的动量矩守恒定律当作用在定轴转动刚体上的所有外力对转轴的力矩代数和为零时,根据动量矩定理式,刚体在运动过程中动量矩保持不变(守恒),即=0时,=常量.以上的讨论是对绕定轴转动的刚体进行的.对绕定轴转动的可变形物体来说,如果物体上各点绕定轴转动的角速度相同,即可用同一角速度来描述整个物体的转动状态,则某一时刻t , 物体对转动轴的动量矩也可表示为该物体在时刻t 对同一轴的转动惯量与角速度的乘积.只是由于物体上各点相对于轴的位置是可变的,所以对轴的转动惯量不再是一个常量,可表示为可以证明,这是可变形物体对转轴的动量矩对时间的导数仍然等于作用于该可变形物体的所有外力对同一轴的力矩的代数和,即仍成立. 这时如果作用在可变形物体上所有外力对该轴的力矩的代数和恒为零,则在运动过程中,可变形物体对转轴的动量矩保持不变(守恒).更一般地说,如果作用在质点系上所有外力对某一固定轴的力矩之和为零,则质点系对该轴的动量矩保持不变,这是动量矩守恒定律的更为一般的表述形式.动量矩守恒定律在实际生活中及工程中有着广泛的应用.例如花样滑冰的表演者可以容过伸展或收回手脚(改变对轴的转动惯量)的动作来调节旋转的角速度.例一长为l 的匀质细杆,可绕通过中心的固定水平轴在铅垂面内自由转动,开始时杆静止于水平位置.一质量与杆相同的昆虫以速度垂直落到距O点l /4 处的杆上,昆虫落下后立即向杆的端点爬行,如图所示.若要使杆以匀角速度转动.求昆虫沿杆爬行的速度解:设杆和昆虫的质量均为m ,昆虫与杆碰后以共同的角速度转动.昆虫落到杆上的过程为完全非弹性碰撞,对于昆虫和杆构成的系统,和外力矩为零,动量矩守恒,故有化简此式可得杆的转动角速度,即由题可知,此后杆以此角速度作匀速转动.设碰后t 时刻,杆转过角,昆虫爬到距O 点为r的位置处, 此时,昆虫和杆系统所受合外力矩为根据动量定理,有由题设不变,所以其中的值为带入上式有因此,为了使保持不变,昆虫的爬行速率应为说明:此题使一个系统绕定轴转动问题.在解此题的过程中应用了动量矩定理,该定理与刚体绕定轴转动定律的区别.三. 进动如图为一玩具陀螺,我们发现如果陀螺不绕自身对称轴旋转,则它将在起重力对质点O的力矩作用下翻到.但是当陀螺以很高的转速绕自身对称轴(称作自转或自旋)时,尽管陀螺仍然受重力矩作用,陀螺却不会翻到.陀螺的重力对O点的力矩作用结果将使陀螺的自转轴沿虚线所示的路径画出一个圆锥面来.我们称陀螺高速旋转时,其轴绕铅直轴的转动为进动.陀螺绕其对称轴以角速度高速旋转,如下图.对固定点O,它的动量矩L 可近似(未计进动部分的动量矩)表示为作用在陀螺上的力对O 点的力矩只有重力的力矩.显然, 垂至于动量矩矢量,按动量矩定理→可见在极短的时间内,动量矩的增量与d与平行, 也垂直于.这表明,在dt 时间内,陀螺在重力矩作用下,其动量矩的大小未变,但方向却改变了(方向绕铅直轴z 转过了dθ角)事实上,由于,带入动量矩定理式中.得所以,若陀螺自转角速度保持不变,则进动角速度也应保持不变.实际上由于各种摩擦阻力矩的作用,将使不断减小,与此同时,进动角速度Ω 将逐渐增大,进动将变得不稳定.以上的分析是近似的,只适用于自转角速度比进动角速度Ω 大得多得情况.因为有进动的存在,陀螺的总动量矩除了上面考虑到的因自转运动产生的一部分外,尚有进动产生的部分.只有在时,才能不计及因进动而产生的动量矩.思考题1. 如果一个质点在作直线运动,那么质点相对于那些点动量矩守恒?2. 如果作用在质点上的总力矩垂直于质点的动量矩,那么质点动量矩的大小和方向会发生变化吗?3. 当刚体转动的角速度很大时,作用在上面的力及力矩是否一定很大?4. 一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸平,他和转台的转动角速度是否改变?5. 试说明: 两极冰山的融化是地球自转速度变化的原因之一.。

大学物理第三章刚体力学

大学物理第三章刚体力学

第三节 定轴转动的动能定理
1. 力矩的功
dA F dl F cos dl F cos rd Frsin d Md
A Md
1 2
d
dl
r

F

dA d M M 功率为: P dt dt
2.转动动能
刚体中任一质元 mi 动能:
1 1 2 2 2 mi vi mi ri 2 2
因此,刚体的转动动能:
ri
vi
1 1 2 2 2 2 Ek mi ri mi ri 2 2
1 2 Ek J 2
3.刚体做定轴转动时的动能定理
d dA Md J d J d d t 2 1 1 2 2 A dA J d J 2 J 1 1 2 2 1 2 1 2 A J 2 J 1 2 2
刚体各质元的角量相同,线量一般不同。 对刚体的运动描述,要注意角量、线量的特点。 对于定轴转动任意一点线速度与角速度、线加速度与角加 速度的关系:
v r
at r an r 2
刚体作匀变速转动时, 0 t 有以下的运动方程: 1 2 0 0t t 2 2 2 0 2 0
定轴转动角动量定理:作定轴转动的刚体所受的对轴的的 冲量矩等于系统角动量的增量。
对于绕固定点的转动,可以做如下变化
dL M dt
t2 dL Mdt L2 L1 M t1 dt t2 是力矩在t1 到t2时间内的冲量矩。 M d t
t1
3.角动量守恒定律 ������ = 0 , ������������ = 0 , ������ = const. ������������ ������2 = ������1 ������2 ������ 2 = ������1 ������ 1 若系统合外力矩为零,则系统的角 动量守恒。 ——自然界重要的普遍规律

转动力学刚体在大学物理中的运动分析

转动力学刚体在大学物理中的运动分析

转动力学刚体在大学物理中的运动分析转动力学是大学物理中的一个重要分支领域,研究的是刚体在转动运动下的力学性质和规律。

刚体指的是在运动过程中形状和大小不变的物体。

一、刚体的基本概念和特性刚体是指在外力作用下,各点之间相对位置不变的物体。

刚体可以看作由无穷多个质点组成,质点之间的距离始终保持不变。

在刚体的运动过程中,刚体内部各点都具有相同的转动角度和转动速度。

二、刚体的转动中心和转动轴刚体的转动中心是指在转动过程中,仍然保持位置不变的点。

对于一个刚体而言,转动中心可以是任意点,但通常选择质量分布均匀的位置作为转动中心。

刚体绕着转动轴进行转动,转动轴可以是任意直线,刚体绕转动轴旋转的角速度是一致的。

三、刚体转动的基本量刚体转动的角位移是刚体绕转动轴转过的角度,用Δθ表示。

刚体转动的角速度是指角位移随时间的变化率,用ω表示。

刚体转动的角加速度是指角速度随时间的变化率,用α表示。

四、刚体的转动惯量刚体的转动惯量是刻画刚体难以改变其转动状态的物理量。

刚体的转动惯量与刚体质量的分布有关,质量分布越分散,转动惯量越大。

转动惯量用I表示,单位是kg•m²。

对于简单形状的刚体,可以根据几何形状和质量分布求解转动惯量。

五、刚体的转动动力学刚体的转动动力学是研究刚体在受力作用下转动运动规律的学科。

刚体所受的合外力矩等于刚体转动惯量与刚体角加速度的乘积。

即M = Iα,其中M表示合外力矩,I表示刚体转动惯量,α表示刚体的角加速度。

根据这个关系,可以求解刚体在受力作用下的转动加速度和转动角速度。

六、刚体的转动定律刚体的转动定律包括角动量定理和角动量守恒定律。

角动量定理指出,刚体所受的合外力矩等于刚体角动量的变化率。

角动量守恒定律指出,在没有外力矩作用下,刚体的初始角动量等于其最终角动量。

这两个定律为研究刚体的转动运动提供了基本的理论依据。

七、刚体转动的应用刚体转动的运动规律和性质在实际中有着广泛的应用。

例如,汽车的方向盘、舞蹈中的旋转动作、田径项目中的标枪投掷等都涉及到刚体的转动运动。

第五章 刚体力学剖析

第五章 刚体力学剖析
第五章 刚体力学
§5-1 刚体的运动 §5-2 刚体动力学
§5-3 定轴转动刚体的角动量守恒 定律
§5-1 刚体的运动
一. 刚体的平动与转动 1. 刚体
内部任意两点的距离在运动过程中始终保持 不变的物体,即运动过程中大小和形状都不发生 变化 的物体。
• 刚体是实际物体的一种理想的模型
刚体的任意运动都可视为某一点的平动和绕 通过该点的轴线的转动。
2. 平动
运动过程中刚体内任意一条直线在运动过程中始终保 持方向不变。
由图知 r j ri rij 式中 r ij为恒矢量,所以
dr j dt
dri , dt
d2r j dt 2
d2rj dt 2
即 v j vi , a j ai
特点:刚体内所有的点具有相同的位移、速度和加速度。 --刚体上任一点的运动规律即代表刚体的平动规律。
解: 先求对z轴的转动惯量:
dJ r2dm
dm 2 rdr
J 2 R r3dr 0 R4 1 mR2 22
O r dr R
而 J z J x J y
由于对称性: J x J y

Jx
Jy
1 2
J
z
1 mR 2 4
三. 力矩的功
1. 力矩 的功 dAi Fi dri Fi cos i dl i
M
z d
d(1 2
J2 )
Jd
Mz
d
dt
J
d
dt
Mz
J
d
dt
J
刚体所受的对于某定轴的合外力矩等于刚体对此 定轴的转动惯量与刚体在此合外力矩作用下所获得
的角加速度的乘积。——定轴转动定律
M z J

力学中的刚体运动分析

力学中的刚体运动分析

力学中的刚体运动分析力学是物理学中研究物体运动的学科。

刚体是力学中的一个重要概念,它是指一个具有刚性的物体,其形状和大小在运动过程中保持不变。

刚体运动分析是力学研究中的一个关键领域,它帮助我们理解物体在空间中的运动规律和机理。

在刚体运动分析中,我们首先需要了解刚体的基本性质。

刚体的几何属性可以用质心、质量和惯性矩阵等物理量来描述。

质心是刚体的重心,它是由刚体内各个质点的质量加权平均得到的。

质量则是刚体的总质量,它是各个质点质量之和。

而惯性矩阵则描述了刚体在不同坐标系下的惯性特性,它对刚体的转动运动起到重要作用。

刚体的运动可以分为平动和转动两种。

平动是指刚体整体沿直线运动,而不改变其形状。

转动则是刚体围绕某一轴线旋转运动。

刚体的平动运动可以通过牛顿定律来描述,牛顿第二定律告诉我们,物体的加速度与受到的作用力成正比,与物体的质量成反比。

通过施加外力,刚体可以在空间中做各种复杂的平动运动。

刚体的转动运动则需要引入转动惯量和转动力矩等概念。

转动惯量是描述刚体对于旋转运动的惯性特性,它类似于质量在平动运动中的作用。

转动力矩则是使刚体转动的力矩,它与外力和刚体的转动惯量之间存在着特定的关系。

刚体的运动可以进一步细分为平动加转动的运动。

这种运动模式在现实生活中非常常见,例如一个滚动的车轮或是飞行中的飞机。

在这种情况下,刚体既有平动运动,也有绕固定轴线的转动运动。

平动和转动运动之间相互耦合,需要使用一些特殊的方法来进行分析。

在刚体运动分析中,我们还需要考虑约束条件的影响。

约束条件可以视为对刚体运动自由度的限制,它使得刚体只能在特定的方式下运动。

常见的约束条件包括固定轴线、守恒角动量等。

通过约束条件的引入,我们可以简化问题并找到更具体的解答。

总之,刚体运动分析是力学研究中的一个重要领域,它帮助我们理解物体在空间中的运动规律和机理。

通过对刚体的平动和转动运动进行分析,我们可以揭示物体运动背后的力学规律,并且可以应用于现实生活中的各种场景。

《物理刚体力学》课件

《物理刚体力学》课件
体质量乘以角速 度乘以旋转半径。
角动量守恒的条 件:刚体在运动 过程中,不受外 力矩作用,或者 外力矩的矢量和 为零。
角动量守恒的应用: 在物理学、工程学 等领域,角动量守 恒定律被广泛应用 于分析刚体的运动 状态和设计机械设 备。
刚体的振动与波 动
体育器材:篮球架、足球 门、单杠等体育器材的结 构和支撑
医疗设备:手术床、轮椅、 担架等医疗设备的支撑和 连接
电子产品:手机、电脑、 电视等电子产品的外壳和 框架
刚体在体育运动中的应用
篮球:篮球架、篮球板等设备都是 刚体,它们需要承受运动员的撞击 和冲击。
田径:田径运动中的起跑器、跳高 杆等设备也是刚体,它们需要承受 运动员的撞击和冲击。
刚体在工程中的应用:设计、制造和维护各种机械设备,如汽车、飞机、桥梁等
刚体在生物力学中的应用:研究人体骨骼、肌肉等组织的力学性能,为医疗、康复等领域提 供科学依据
感谢您的观看
汇报人:PPT
添加标题
添加标题
添加标题
添加标题
转动惯量:刚体转动时,其转动惯 量与质量、形状、转动轴的位置有 关。
转动定律的局限性:转动定律只适 用于刚体,不适用于非刚体。
刚体的转动惯量
定义:刚体转动惯量是刚体转动时,其角动量与角速度的比值 公式:I=mr^2,其中m是刚体质量,r是刚体到转轴的距离 应用:刚体的转动惯量在物理学、工程学等领域有广泛应用 影响因素:刚体的形状、质量分布、转轴位置等因素都会影响其转动惯量
消失
基本假设:物体 在受到外力作用 时,其运动状态 保持不变,即物 体在受到外力作 用时,其速度、 加速度和位置保
持不变
局限性:刚体 力学只适用于 刚体,不适用 于流体、弹性 体等非刚体物

刚体运动的力学分析

刚体运动的力学分析

刚体运动的力学分析力学是研究物体运动的学科,而刚体运动作为力学中的一个重要分支,旨在研究刚体的运动规律。

刚体是指不受内部力矩影响的物体,即无论外力如何作用,刚体的形状和大小都保持不变。

在力学中,刚体运动可以通过其质心的运动来描述,接下来我们来探讨刚体运动的力学分析。

一、刚体运动的基本概念与假设刚体运动的基本概念涉及质心、位移、速度和加速度等概念。

质心是指刚体的总质量在空间中的一个几何中心,可以看作是刚体的一个集中质量点。

位移是指质心由初始位置到末位位置的有向距离,可以用矢量表示。

速度是指质心的位移对时间的导数,而加速度是指速度对时间的导数。

在刚体运动的分析中,我们常常假设刚体为理想刚体,即无摩擦、无弹性变形和无空气阻力等。

这样的假设可以简化运动分析,使得问题的解决更加简便。

二、刚体平动与刚体转动刚体运动可以分为平动和转动两种形式。

平动是指刚体沿直线或曲线轨迹运动,质心的速度和加速度相等。

而转动则是指刚体围绕固定轴线旋转,并且质心的速度和加速度为零。

对于平动的刚体,其运动规律可以通过牛顿第二定律来描述。

根据牛顿第二定律,刚体受到的合外力等于质量与加速度的乘积。

因此,我们可以利用牛顿第二定律和动力学方程来求解刚体的运动状态。

对于转动的刚体,其运动规律则需要借助力矩的概念。

力矩是指力对于某一轴线产生的转动效应,它等于力的大小与力臂的乘积。

力臂是指力的作用线到轴线的垂直距离。

三、刚体的旋转惯量与转动定律旋转惯量是刚体对于转动的惯性性质,它表示刚体的质量分布对于其转动的影响。

旋转惯量的计算需要考虑刚体的质量和几何形状。

例如,对于圆盘状的刚体,其旋转惯量与质量和半径的平方成正比。

与旋转惯量相关的是转动定律,它描述了刚体围绕轴线转动时力矩、角加速度和旋转惯量之间的关系。

根据转动定律,力矩等于转动惯量和角加速度的乘积。

这样,我们可以通过转动定律来研究刚体的转动行为。

四、刚体运动的应用与挑战刚体运动的力学分析不仅仅是理论上的研究,它在工程和日常生活中也有着广泛的应用。

大学物理课件 理论力学 第六章 刚体的平面运动

大学物理课件 理论力学 第六章 刚体的平面运动
刚体运动时,其上任一点到某一固定平面的距离始终保持不 变.也就是说,刚体上任一点都在与某固定平面平行的平面内运 动.这种运动称为刚体的平面运动.
2
例如: 曲柄连杆机构中连杆AB的运动, A点作圆周运动,B点作直线运动,AB 杆的运动既不是平动也不是定轴转动, 而是平面运动.
注意: (1)平面运动刚体内各点的运动是不同 的; (2)不能把平面运动与平动混为一谈。
3
请 看 动 画
4
二、刚体的平面运动可以简化为平面图形S在其自身平面内的 运动
A1A2作平动 A点代表A1A2的运动 ...... S代表刚体的运动
因此,在研究平面运动时, 不需考虑刚体的形状和尺寸,只 需研究平面图形的运动,确定平 面图形上各点的速度和加速度.
5
三.运动方程
为了确定平面图形的运动,取静系Oxy,在图形上任取一 点O’(称为基点),并取任一线段O’A,只要确定了O’A的位
平面图形的运动可以看成是绕它的一系列速度瞬心作瞬时转动。 注意:速度瞬心的加速度不为于零。 4.确定速度瞬心位置的方法
①已知图形上一点的速度vA 和图形角
速度,则速度瞬心
AI vA / , AI vA 且I在 vA顺转向绕A点转90º的方向一侧。
②已知一平面图形在固定面上作无滑动的
滚动(或称纯滚动), 则图形与固定面的 接触点I为速度瞬心。
18
⑤已知某瞬时图形上A,B两点的速度方向相 同,且不与AB连线 垂直.
此时, 图形的瞬心在无穷远处,图形的角
速度 =0, 图形上各点速度相等, 这种情况称
为瞬时平动. (此时各点的加速度不相等)
对④(a)的情况,若vA=vB, 也是瞬时平动.
19
例如: 曲柄连杆机构在图示位置时,连杆BC作瞬时平动.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚体力学1、(0981A15) 一刚体以每分钟60转绕z 轴做匀速转动(ω 沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i 157.0 125.6 94.2++=v (B) j i 8.18 1.25+-=v (C) j i 8.18 1.25--=v (D) k 4.31=v [ ]2、(5028B30)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB . (C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]3、(0148B25)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ]4、(0153A15) 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少.(C) 不会改变. (D)如何变化,不能确定. [ ]5、(0165A15)均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]6、(0289A10)关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]7、(0291B25) 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ] 8、(0292A15)一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ ]9、(0499A15)如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为41mg cos θ. (B) 为21mg tg θ (C) 为mg sin θ. (D) 不能唯一确定. [ ]10、(0646A15)两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ]11、(5265B25)有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]12、(5401B25)有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]13、(0500C50)如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为 41mg cos θ. (B)为21mg tg θ. (C) 为 mg sin θ. (D) 不能唯一确定. [ ]14、(5641B30)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ]15、(0126A20)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]16、(0132A20)光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 17、(0133A20) 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v . (B) MLm 23v . (C) ML m 35v . (D) ML m 47v . [ ]O v 俯视图v 俯视图18、(0137A30)光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A) 12v l . (B) l32v . (C) l 43v . (D) lv 3. [ ] 19、(0197A15)一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]20、(0228A20)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ]21、(0230B30)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ]22、(0247A15) 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]23、(0294A15)刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]24、(0677A15)一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ]25、(0772A20)如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω 0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ ] 26、(5030B30)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的.(C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ]27、(5640B25)一个物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变大,遇冷时角速度变小.(C) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变小,遇冷时角速度变大. [ ]28、(5643A20)有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmR J J +. (B) ()02ωR m J J +.(C)02ωmR J . (D) 0ω. [ ] 二、填空题:1、(0110A15)一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20rad/s , 再转60转后角速度为ω2=30 rad /s ,则角加速度β =_____________,转过上述 60转所需的时间Δt =________________.2、(0111A10)利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为 0.1m 的轮子,真空泵上装一半径为0.29m 的轮子,如图所示.如果电动机的转速为1450 rev/min ,则真空泵上的轮子的边缘上 一点的线速度为__________________,真空泵的转速为____________________.3、(0290A10)半径为r =1.5 m 的飞轮,初角速度ω 0=10 rad · s -1,角加速度 β=-5 rad · s -2, 则在t =___________时角位移为零,而此时边缘上点的线速度v =___________.4、(0302A10)可绕水平轴转动的飞轮,直径为1.0 m ,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s 内绳被展开10 m ,则飞轮的角加速度为________________.5、(0645A10)绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角 速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s时间内飞轮所转过的角度θ =___________________.6、(0977A15)一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s ,再转60圈后转速变为15 rev/s .则由静止达到10 rev/s 所需时间t = ________;由静止到10 rev/s 时圆盘所转的圈数N =________.7、(0980B25)一飞轮作匀减速转动,在5 s 内角速度由40π rad ·s -1减到10π rad ·s -1,则飞轮在这5 s 内总共转过了________________圈,飞轮再经______________的时间才能停止转动.8、(0982A10)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则 飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度 a n =_______________.9、(0983A15)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了________圈.10、(0146A15)一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转动.使棒从水平位置自由下摆,棒是否作匀角加速转动?________________.理由是_______ 0.1m 0.29m______________________________________________________________________ _____________________________________________________.11、(0147A15)决定刚体转动惯量的因素是________________________________________________________________________________________________12、(0149A20)一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图所示.现将杆由水平位置无初转 速地释放.则杆刚被释放时的角加速度β0=____________,杆与水平方向夹角为60°时的角加速度β =________________.13、(0150B25)质量为20 kg 、边长为1.0 m的均匀立方物体,放在水平地面上.有一拉力F 作用在该物体一顶边的中点,且与包含该顶边的物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若要使该立方体翻转 90°,则拉力F 不能小于___________________.14、(0152A20)一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆 转到水平位置时,该系统所受到的合外力矩的大小M =________________,此时该系统角加速度的大小β =________________.15、(0240A15)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的 制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________.16、(0243A15)如图所示,一质量为m 、半径为R 的薄圆盘,可绕通过其一直径的光滑固定轴A A '转动,转动惯量J =mR 2 / 4.该圆盘从静止开始在恒力矩M 作用下转动,t 秒后位于圆盘边缘上与轴A A '的 垂直距离为R 的B 点的切向加速度a t =_____________,法向加速度a n =_____________.17、(0244A15)一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N · m ,轮子对固定轴的转动惯量为J =15 kg · m 2.在 t =10 s 内,轮子的角速度由ω =0增大到ω=10 rad/s ,则M r =_____________.18、(0543A10) 如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为____________. 19、(0546B30)m R ' S ′一长为l 、重W 的均匀梯子,靠墙放置,如图.梯子下端连一劲度系数为k 的弹簧.当梯子靠墙竖直放置时,弹簧处于自然长度.墙和地面都是光滑的.当梯子依墙而与地面成θ 角且处于平衡状态时,(1) 地面对梯子的作用力的大小为__________________.(2) 墙对梯子的作用力的大小为________________________. (3) W 、k 、l 、θ应满足的关系式为______________________. 20、(0551A15)一作定轴转动的物体,对转轴的转动惯量J =3.0 kg·m 2,角速度ω 0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ =_________________.21、(0552A15)一个作定轴转动的轮子,对轴的转动惯量J = 2.0kg ·m 2,正以角速度0ω作匀速转动.现对轮子加一恒定的力矩M = -12N ·m ,经过时间t=8.0s 时轮子的角速度ω=-0ω,则0ω=________________.22、(0553A15)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__________.23、(0559A20) 一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O 轴转动.系统绕O轴的转动惯量J =____________.释放后,当杆转到水平位置 时,刚体受到的合外力矩M =______________;角加速度β ________________.24、(0647A10)如图所示,一轻绳绕于半径r = 0.2 m 的飞轮边缘,并施以F =98 N的拉力,若不计轴的摩擦,飞轮的角加速度等于39.2 rad/s 2,此飞轮的转动惯量为___________________________.25、(0675A10)一可绕定轴转动的飞轮,在20 N ·m 的总力矩作用下,在10s 内转速由零均匀地增加到8 rad/s ,飞轮的转动惯量J =______________.26、(0676A10)一定滑轮质量为M 、半径为R ,对水平轴的转动惯量J =21MR 2.在滑轮的边缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承间无摩擦.物体下落的加速度为a ,则绳中的张力 T =_________________.27、(0683A20)如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J.若不计摩擦,飞轮的角加速度β =_______________.28、(0684A20)半径为R 具有光滑轴的定滑轮边缘绕一细绳,绳的下端挂一质量为m 的物体.绳的质量可以忽略,绳与定滑轮之间无相对滑动.若物体下落的加速度为a ,则定滑轮对轴的转动惯量J =______________________.29、(0685A20)如图所示,滑块A 、重物B 和滑轮C 的质量分别为m A 、m B 和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J =21m C R 2.滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑 动.滑块A 的加速度a =________________________.30、(5031C45)转动着的飞轮的转动惯量为J ,在t =0时角速度为ω 0.此后飞轮经历制动过程.阻力矩M 的大小与角速度ω 的平方成正比,比例系数为k (k 为大于0的常量).当031ωω=时,飞轮的角加速度β = ___________.从开始制动到031ωω=所经过的时间t =__________________.31、(5402A20)一根均匀棒,长为l ,质量为m ,可绕通过其一端且与其垂直的固定轴在竖直面内自由转动.开始时棒静止在水平位置,当它自由下摆时,它的初角速度等于__________,初角加速度等于__________.已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml . 32、(5642B25)一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为μ,则杆转动时受的摩擦力矩的大小为________________.33、(0125B30)一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度ω=__________________.34、(0139A15)定轴转动刚体的角动量(动量矩)定理的内容是_______________________________________________________________________________________________, 其数学表达式可写成_________________________________________________. 动量矩守恒的条件是________________________________________________.35、(0144B25)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度ω0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度ω与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml ) 36、(0229A20)有一半径为R 的匀质圆形水平转台,可绕通过盘心O 且垂直于盘面的竖直固定轴OO '转动,转动惯量为J .台上有一人,质量为m .当他站在离转轴r 处时(r <R ),转台和人一起以ω1的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度ω2=__________________________.37、(0235B35) 长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为231Ml ,开始时杆竖直下垂,如图所示.有一质量为m 的子弹以水平速度0v 射入杆上A 点,并嵌在杆中,OA =2l / 3,则子弹射入后瞬间杆的角速度ω =__________________________.38、(0236B30)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入 后棒的角速度ω =_____________________.39、(0248A10)力矩的定义式为______________________________________________.在力矩作用下,一个绕轴转动的物体作__________________________运动.若系统所 受的合外力矩为零,则系统的________________________守恒.40、(0296A20)一转台绕竖直固定光滑轴转动,每10 s 转一周,转台对轴的转动惯量为1200 kg ·m 2.质量为80kg 的人,开始时站在台的中心,随后沿半径向外跑去,问当 人离转台中心2m 时,转台的角速度为__________________.41、(0305A10) 长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直 下垂,一子弹水平地射入杆中.则在此过程中,_____________系统对转轴O的_______________守恒. 42、(0542B25) 质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为31l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为___________________.43、(0556A20)一个质量为m 的小虫,在有光滑竖直固定中心轴的水平圆盘边缘上,沿逆时针方向爬行,它相对于地面的速率为v ,此时圆盘正沿顺时针方向转动,相对于地面的角速度为ω .设圆盘对中心轴的转动惯量为J .若小虫停止爬行,则圆盘的角速度为______________________________________.m 0v 俯视图m 2m l R 俯视图如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结.开始时B 轮静止,A 轮以角速度ωA 转动,设在啮合过程中两飞轮不受其它力矩的作用.当两轮连结在一起后,共同的角速度为ω.若A 轮的转动惯量为J A ,则B 轮的转动惯J B =_______________.45、(0650A20)一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量J =21MR 2.当圆盘以角速度ω0转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上.子弹射入后,圆盘的角速度ω=______________.46、(0651A10)地球的自转角速度可以认为是恒定的.地球对于自转轴的转动惯量J =9.8×1037 kg ·m 2.地球对自转轴的角动量L =__________________.47、(0678B25)一个圆柱体质量为M ,半径为R ,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m 、速度为v 的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度ω=____________________________.(已知圆柱体绕固定轴的转动惯量J =221MR ) 48、(0679B25)一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度为ω=__________________.49、(0680B25)一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度ω =__________________________.50、(0681B25)两个质量都为100 kg 的人,站在一质量为200 kg 、半径为3 m 的水平转台的直径两端.转台的固定竖直转轴通过其中心且垂直于台面.初始时,转台每5 s转一圈.当这两人以相同的快慢走到转台的中心时,转台的角速度ω =__________________.(已知转台对转轴的转动惯量J =21MR 2,计算时忽略转台在转轴处的摩擦).51、(0682B25)质量为M = 0.03 kg 、长为l = 0.2 m 的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定轴转动,其转动惯量为M l 2 / 12.棒上套有两个可沿棒滑动的小物体,它们的质量均为m = 0.02 kg .开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r = 0.05 m ,棒以 0.5π rad/s 的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度ω =______________________.如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.53、(0774A20) 判断图示的各种情况中,哪种情况角动量是守恒的.请把序号填在横线上的空白处 ___________________________.(1) 圆锥摆中作水平匀速圆周运动的小球m ,对竖直轴OO '的角动量.(2) 光滑水平桌面上,匀质杆被运动的小球撞击其一端,杆与小球系统,对于通过杆另一端的竖直固定光滑轴O 的角动量.(3) 绕光滑水平固定轴O 自由摆动的米尺,对轴O 的角动量.(4) 一细绳绕过有光滑轴的定滑轮,滑轮一侧为一重物m ,另一侧为一质量等于m的人,在人向上爬的过程中,人与重物系统对转轴O 的角动量.54、(0776B25)如图所示,有一长度为l ,质量为m 1的均匀细棒,静止平放在光滑水平桌面上,它可绕通过其端点O ,且与桌面垂直的固定光滑轴转动,转动惯量J =31m 1l 2.另有一质量为m 2、水平运动的小滑块,从棒的侧面沿垂直于棒的方向与棒的另一端A 相碰撞,并被棒反向弹回,碰撞时间极短.已知小滑块与细棒碰撞前后的速率分别为v和u ,则碰撞后棒绕O 轴转动的角速度ω =________________.三、计算题:1、(0114A20)一半径为r 的圆盘,可绕一垂直于圆盘面的转轴作定轴转动.现在由于某种原因转轴偏离了盘心O ,而在C 处,如图所示.若A 、B 是通过CO 的圆盘直径上的两个端点,则A、B两点的速率将有所不同.现在假定圆盘转动的角速度ω 是已知的,而v A 、v B 可以通过仪器测出,试通过这些量求出偏心距l .2、(0116A20)一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间?3、(0119B35)已知一定轴转动体系,在各个时间间隔内的角速度如下:ω=ω0 0≤t ≤5 (SI)ω=ω0+3t -15 5≤t ≤8 (SI)ω=ω1-3t +24 t ≥8 (SI)m (3)(2)(4)式中ω0=18 rad /s(1) 求上述方程中的ω1.(2) 根据上述规律,求该体系在什么时刻角速度为零.4、(0120A15)一作匀变速转动的飞轮在10s 内转了16圈,其末角速度为15 rad /s ,它的角加速度的大小等于多少?5、(0122A20)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度ω作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v -和C A v v -.如果该圆盘只是单纯地平动,则上述的速度之差应该如何?6、(0112C50) 质量为M 的匀质圆盘,可绕通过盘中心垂直于盘的固定光滑轴转动,转动惯量为21M r 2.绕过盘的边缘挂有质量为m ,长为l 的匀质柔软绳索(如图).设绳与圆盘无相对滑动,试求当圆盘两侧绳长之差为S 时,绳的加速度的大小. 7、(0115B40)有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量).8、(0123B30)如图所示,一圆盘形工件K 套装在一根可转动的固定轴A 上,它们的中心线互相重合,圆盘的内外直径分别为D 和D 1.该工件在外力矩作用下获得角速度ω 0,这时撤掉外力矩,工件在轴所受的阻力矩作用下最后停止转动,其间经过了时间t .试求轴所受的平均阻力.这里圆盘工件绕其中心轴转动的转动惯量为m (D 2+21D ) / 8,m 为圆盘的质量.轴的转动惯量忽略不计.9、(0124B30)一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径) .10、(0155A20) 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.。

相关文档
最新文档