高考数学立体几何大题的八大解题技巧
高中立体几何解题技巧

高中立体几何解题技巧高中立体几何解题技巧高中立体几何解题技巧篇1一、平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
二、空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
三、三视图问题(1)熟悉常见几何体的三视图,如锥体、柱体、台体、球体的三视图。
(2)组合体的分解。
由规则几何体截出一部分的几何体的分析。
(3)熟记一些常用的小结论,诸如:正四面体的体积公式是______;面积射影公式_____。
弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
(4)平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。
(5)与球有关的题型,只能应用“老方法”,求出球的半径即可。
(6)立体几何读题:1、弄清楚图形是什么几何体,规则的、不规则的、组合体等。
2、弄清楚几何体结构特征。
面面、线面、线线之间有哪些关系(平行、垂直、相等)。
立体几何大题方法和技巧讲解

立体几何大题方法与技巧讲解空间向量问题基础知识:线面平行:1.线面平行的判定定理:如果平面外一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.2.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个相交那么这条直线和交线平行.3.平行平面的判定定理:如果一个平面内两条相交的直线都平行于另一平面,那么这两个平面互相平行.4.平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.5.性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.线面垂直:1.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.2.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.3.两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.4.两平面垂直的性质定理:若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面.证明方法:如何证明线面平行常用方法①构造三角形中位线,线面位置落差大时(平移法)② 构造平行四边形, 线面位置相当时 ③ 通过面面平行,证明线面平行 ● 如何证明线面垂直 1) 题目中给出的垂直条件2) 特殊的图形(菱形,正方形,等腰三角形,等边三角形等等) 3) 勾股定理证明垂直(偶尔利用相似证明垂直) 4) 通过面面垂直证明线面垂直 ● 空间向量建系问题① 找出和底面垂直的直线 ② 找出底面相垂直的直线 ③ 建立直角坐标系 ● 三个角异面直线所成的角的范围]90,0(00 两异面直线的方向向量分别为 ,2121cos l l l l ⋅=θ直线和平面所成的角的范围]90,0[0, 直线的方向向量为,平面的法向量为nl nl ⋅==φθcos sin平面和平面所成的角的范围]180,0[00, 两个平面的法向量分别为,2121cos n n n n⋅=φθ1l 2l θl nθ1n 2n如果面面所成的角为锐角,则2121cos cos n n n n ⋅==φθ,如果面面所成的角为钝角,则2121cos cos n n n n ⋅=-=φθ是否存在一点问题线段BD 上是否存在点M ,使得直线//CE 平面AFM 即证:线CE 和法向量垂直 判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF 即证:两个面的法向量垂直证明 直线FG (不在平面BCD 里面)与平面BCD 相交. 即证:线和面的法向量不垂直例子1.(本小题满分14分)如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,90BAD ∠=︒,1AB AD ==,3BC =.(Ⅰ)求证:AF CD ⊥;(Ⅱ)求直线BF 与平面CDE 所成角的正弦值;(Ⅲ)线段BD 上是否存在点M ,使得直线//CE 平面AFM ? 若存在,求BMBD的值;若不存在,请说明理由. 1.(本小题满分14分)解:(Ⅰ)证明:因为ADEF 为正方形,所以AF AD ⊥.又因为平面ADEF ⊥平面ABCD , 且平面ADEF平面ABCD AD =,所以AF ⊥平面ABCD .所以AF CD ⊥.………………4分EDCBA F(Ⅱ)由(Ⅰ)可知,AF ⊥平面ABCD ,所以AF AD ⊥,AF AB ⊥. 因为90BAD ∠=︒,所以,,AB AD AF 两两垂直.分别以,,AB AD AF 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为1AB AD ==,3BC =,所以(0,0,0),(1,0,0),(1,3,0),(0,1,0),(0,1,1),(0,0,1)A B C D E F , 所以(1,0,1),(1,2,0),(0,0,1)BF DC DE =-==. 设平面CDE 的一个法向量为(,,)x y z =n ,则0,0.DC DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,0. x y z +=⎧⎨=⎩令2x =,则1y =-, 所以(2,1,0)=-n .设直线BF 与平面CDE 所成角为θ, 则|2(1)|10sin |cos ,|552BF θ⨯-=〈〉==⨯n .……………….9分 (Ⅲ)设( (01])BMBDλλ=∈,, 设()111,,M x y z ,则()1111,,(1,1,0)x y z λ-=-, 所以1111,,0x y z λλ=-==,所以()1,,0M λλ-, 所以()1,,0AM λλ=-.设平面AFM 的一个法向量为000(,,)x y z =m ,则0,0.AM AF ⎧⋅=⎪⎨⋅=⎪⎩m m因为()0,0,1AF =,所以000(1)0,0. x y z λλ-+=⎧⎨=⎩令0x λ=,则01y λ=-,所以(,1,0)λλ=-m .在线段BD 上存在点M ,使得//CE 平面AFM 等价于存在[0,1]λ∈,使得0CE ⋅=m .z D y DxDEDCB A FM因为()1,2,1CE =--,由0CE ⋅=m , 所以2(1)0λλ---=, 解得2[0,1]3λ=∈, 所以线段BD 上存在点M ,使得//CE 平面AFM ,且23BM BD =.……………….14分2 .主要是C 点的坐标怎么表示(一是画出底面的平面图找出相应关系,二是利用向量平行BA CD 21=) (本小题14分)如图,四边形ABCD 和三角形ADE 所在平面互相垂直,AB ∥CD ,AB BC ⊥,60DAB ∠=,4AB AD ==,AE DE ⊥,AE DE =,平面ABE 与平面CDE 交于EF . (Ⅰ)求证:CDEF ;(Ⅱ)若EF CD =,求二面角--A BC F 余弦值;(Ⅲ)在线段BC 上是否存在点M 使得AM EM ⊥?若存在,求BM 的长;若不存在,说明理由. (17)(共14分)解:(Ⅰ)在四边形ABCD 中,AB ∥CD . 因为AB ⊂平面ABE ,CD ⊄平面ABE , 所以CD ∥平面ABE .因为CD ⊂平面CDE ,且平面ABE平面CDE EF =,所以CD ∥EF . ........4分(Ⅱ)如图,取AD 的中点N ,连接BN ,EN .在等腰△ADE 中,.EN AN ⊥因为平面ADE ⊥平面ABCD ,交线为AD ,又EN AD ⊥,所以EN ⊥平面ABCD .所以.EN BN ⊥ 由题意易得.AN BN ⊥如图建立空间直角坐标系N xyz -,则(0,0,0),N (2,0,0)A ,(0,23,0)B ,(3,0)C -, (2,0,0)D -,(0,0,2)E .因为EF CD =,所以(3,2)F -.设平面BCF 的法向量为(,,)x y z =,n (1,3,2),(3,3,0),BF BC =--=-- 则0,0,BF BC ⎧⋅=⎪⎨⋅=⎪⎩n n 即320,330.x y z x y ⎧--+=⎪⎨-=⎪⎩ 令3y =1,1x z =-=.于是(3,1)=-n .又平面ABCD 的法向量为(0,0,2)NE =,所以5cos ,5NE NE NE⋅〈〉==n n n 由题知二面角--A BC F 为锐角, 所以二面角--A BC F 的余弦值为5分 (Ⅲ)不存在满足条件的点M ,使AM EM ⊥,理由如下:若AM EM ⊥,则0EM AM ⋅=.因为点M 为线段BC 上的动点,设(01),CM tCB t =≤≤,(,,0)M u v .则(3,3,0)(3,3,0)u v t +-=, 解得(33,3+3,0)M t t -.所以(33,33,2)EM t t =-+-,(35,33,0)AM t t =-+. 所以(33,33,2)(35,33,0)=0EM AM t t t t ⋅=-+-⋅-+. 整理得22330t t -+=,此方程无实根.所以线段BC 上不存在点M ,使AM EM ⊥. ............................14分3.如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直, //AF DE ,DE AD ⊥,AD BE ⊥,112AF AD DE ===,2AB =.(Ⅰ)求证://BF 平面CDE ; (Ⅱ)求二面角B EF D --的余弦值;(Ⅲ)判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF ?若存在,求出BQBE的值,若不存在,说明理由. 3.(本小题满分14分)解:(Ⅰ)由底面ABCD 为平行四边形,知//AB CD ,又因为AB ⊄平面CDE ,CD ⊂平面CDE ,所以//AB 平面CDE . ……………… 2分DABCEF同理//AF 平面CDE , 又因为ABAF A =,所以平面//ABF 平面CDE . ……………… 3分又因为BF ⊂平面ABF ,所以//BF 平面CDE . ……………… 4分(Ⅱ)连接BD ,因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD . 则DE DB ⊥. 又因为DE AD ⊥,AD BE ⊥,DEBE E =,所以AD ⊥平面BDE ,则AD BD ⊥.故,,DA DB DE 两两垂直,所以以,,DA DB DE 所在的直线分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分则(0,0,0)D ,(1,0,0)A ,(0,1,0)B ,(1,1,0)C -,(0,0,2)E ,(1,0,1)F , 所以(0,1,2)BE =-,(1,0,1)EF =-,(0,1,0)=n 为平面DEF 的一个法向量. 设平面BEF 的一个法向量为(,,)x y z =m ,由0BE ⋅=m ,0EF ⋅=m ,得20,0,y z x z -+=⎧⎨-=⎩令1z =,得(1,2,1)=m . ………………8分所以6cos ,||||3⋅<>==m n m n m n .如图可得二面角B EF D --为锐角,D A B CEyxzF所以二面角B EF D --6.………………10分(Ⅲ)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . ………………11分证明如下:设(0,,2)([0,1])BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(,,)a b c =u ,又因为(1,1,0)DC =-,所以0DQ ⋅=u ,0DC ⋅=u ,即(1)20,0,b c a b λλ-+=⎧⎨-+=⎩………………12分若平面CDQ ⊥平面BEF ,则0⋅=m u ,即20a b c ++=, (13)分解得1[0,1]7λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF ,且此时17BQ BE =. …… 14分4(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===,点,,D E F 分别为棱11111,,AC B C BB 的中点. (Ⅱ)求证:1AC ∥平面DEF (Ⅱ)求证:平面1ACB ⊥平面DEF ;(Ⅲ)在线段1AA 上是否存在一点P ,使得直线DP 与平面1ACB 所成的角为300?如果存在,求出线段AP 的长;如果不存在,说明理由. 4.(共14分)解:(Ⅰ)方法一:连结1BC因为,D E 分别为11A C ,11B C 中点, 所以11//DE A B 又因为11//AB A B ,所以//DE AB因为,E F 分别为11B C ,1B B 中点,所以1//EF BC 又因为DEEF E =DE ⊂平面DEF ,EF ⊂平面DEF AB ⊂平面1ABC ,1BC ⊂平面1ABC所以平面1ABC 平面DEF又1AC ⊂平面1ABC ,所以1AC 平面DEF方法二:取1AA 中点为G ,连结FG 由11AA BB 且11AA BB =又点F 为1BB 中点,所以11FG A B又因为,D E 分别为11A C ,11B C 中点,所以11DE A B所以DEFG所以,,,D E F G 共面于平面DEF 因为D ,G 分别为111,AC AA 中点, 所以1AC DG1AC ⊄平面DEFDG ⊂平面DEF所以1AC 平面DEF方法三:在直三棱柱111ABC A B C -中,1CC ⊥平面ABC 又因为AC BC ⊥以C 为原点,分别以1,,CA CB CC 为x 轴,y 轴,z 轴,建立空间直角坐标系C xyz -由题意得1(2,0,0),(0,0,2),(1,0,2)A C D ,(0,1,2),(0,2,1)E F .所以(1,1,0)DE =-,(0,1,1)EF =-设平面DEF 的法向量为111(,,)x y z =n ,则00DE EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即111100x y y z -+=⎧⎨-=⎩ 令11x =,得111,1y z ==于是(1,1,1)=n 又因为1(2,0,2)AC =-所以12020AC ⋅=-++=n 又因为1AC ⊄平面DEF ,所以1AC 平面DEF(Ⅱ)方法一:在直棱柱111ABC A B C -中,1CC ⊥平面ABC因为AC ⊂ABC ,所以1CC AC ⊥ 又因为AC BC ⊥,且1CC BC C =所以AC ⊥平面11BB C C EF ⊂平面11BB C C ,所以AC EF ⊥又1BC CC =,四边形11BB C C 为正方形所以11BC B C ⊥ 又1BC EF ,所以1B C EF ⊥又AC EF ⊥,且1AC B C C =所以EF ⊥平面1ACB又EF ⊂平面DEF所以平面1ACB ⊥平面DEF方法二:设平面1ACB 的法向量为222(,,)x y z =m ,1(2,0,0),(0,2,2)CA CB == 100CA CB ⎧⋅=⎪⎨⋅=⎪⎩m m ,即22220220x y z =⎧⎨+=⎩ 令21y =,得220,1x z ==-于是(0,1,1)=-m (1,1,1)(0,1,1)0⋅=⋅-=n m即⊥n m ,所以平面1ACB ⊥平面DEF (Ⅲ)设直线DP 与平面1ACB 所成角为θ,则30θ=︒设1(01)AP AA λλ=≤≤,则(0,0,2)AP λ=(1,0,22)DP λ=-所以1cos sin302DP DP θ⋅===︒=m m 解得12λ=或32λ=(舍) 所以点P 存在,即1AA 的中点,1AP =5.(本小题满分14分)在三棱柱111ABC A B C -中,底面ABC 是正三角形,侧棱1AA ⊥底面ABC . D ,E 分别是边BC ,AC的中点,线段1BC 与1B C 交于点G ,且4AB =,1BB =(Ⅰ) 求证://EG 平面1AB D ;(Ⅱ) 求证:1BC ⊥平面1AB D ;(Ⅲ) 求二面角1A B C B --的余弦值.5.(本小题满分14分)(I)因为E 为AC 中点,G 为1B C 中点.所以1//EG AB . 又因为EG ⊄平面1AB D ,1AB ⊂平面1AB D ,所以//EG 平面1AB D . ………….4分(Ⅱ) 取11B C 的中点1D ,连接1DD .显然DA ,DC ,1DD 两两互相垂直,如图,建立空间直角坐标系D xyz -, 则(0,0,0)D,A ,(0,2,0)B -,1(0,B -,1C, E ,(0,2,0)C .所以1(0,DB =-,(2DA =,1BC =.又因为12300400BC DA ⋅=+⨯+⨯=,1100(2)40BC DB ⋅=⨯+-⨯+=,所以111,BC DA BC DB ⊥⊥.又因为1DA DB D =,所以1BC ⊥平面1AB D . ………….9分 (Ⅲ)显然平面1B CB 的一个法向量为1(1,0,0)=n .设平面1AB C 的一个法向量为2(,,)x y z =n ,又(AC =-,1(0,4,B C =-, 由2210,0,AC BC ⎧⋅=⎪⎨⋅=⎪⎩n n 得20,40.y y⎧-+=⎪⎨-=⎪⎩设1x =,则y=,z =,则2=n.1B所以121212cos,⋅<>===n nn nn n设二面角1A B C B--的平面角为θ,由图可知此二面角为锐二面角,所以cos10θ=. ………….14分。
高考立体几何解题技巧

高考立体几何解题技巧
在高考立体几何解题过程中,我们需要掌握一些技巧,帮助我们更好地解决问题。
以下是一些常用的技巧:
1. 空间想象能力:立体几何题目通常涉及三维空间的关系,因此我们需要具备较强的空间想象能力。
可以通过画图、模型等方式辅助思考和理解题目。
2. 几何关系的转换:有时候,立体几何问题可以通过转换为平面几何问题来解决。
我们可以尝试在某个平面上进行投影或者进行截面的分析,将立体问题转化为二维几何问题来解决。
3. 利用相似三角形:在立体几何问题中,相似三角形的性质经常被用到。
通过找出共性和相似关系,我们可以推导出一些有用的结论,从而解决问题。
4. 使用平行四边形法则:在解决立体几何问题时,我们可以运用平行四边形的性质。
例如,如果某个角度为90度,那么某
些边和角度之间可能存在平行四边形关系,可以利用平行四边形法则求解。
5. 应用平面几何定理:立体几何与平面几何密切相关,因此一些平面几何定理也可以在解决立体几何问题时使用。
例如,利用圆锥的旋转对称性可以得到一个圆锥的表面积和体积的关系。
6. 巧妙使用一点一线:有时候,一个线段或一个点的位置可以帮助我们推导出其他线段或点的位置,从而解决问题。
在解题
过程中,我们需要善于发现和运用这些信息。
总之,在解决高考立体几何问题时,需要充分理解题意,巧妙应用几何知识和技巧,灵活运用不同的解题方法。
通过反复联系和练习,提高自己的解题能力和水平。
高考数学解题技巧及规范答题:立体几何大题

【分析】
(1)分别取 , 的中点 , ,证明 , 可得 平面 ,
可证 ,由等腰三角形的性质可得 ,证明三角形全等即可求证;
(2)在 上取一点O,连接 ,使 ,根据已知条件证明O为正方形 的中心,建立空间直角坐标系求出平面 和平面 的法向量,利用夹角公式即可求解.
又 ,所以 ,
故 .
【此处由三角形的面积公式和体积公式求体积,若底面面积正确但体积计算错误,减1分.】
【评分细则】
①利用三线合一证明AO⊥BD,得1分
②利用面面垂直的性质证明AO⊥平面BCD,得2分.
③利用线面垂直的性质证明AO⊥CD,得1分.
④利用(1)结论证明三线垂直,合理建系得2分.
⑤正确写出和设出点的坐标,指出一个平面的法向量,得2分.
(1)若三棱锥 体积是 ,求 的值;
(2)若直线 与平面 所成角的正弦值是 ,求 的值.
【分析】
(1)由题意知, 、 、 两两垂直,建立空间直角坐标系,设 ,由 ,求得M的坐标,过 作 于 , 于 ,再由 求解;
(2)由(1)知 ,求得平面 的一个法向量为 ,设直线 与平面 所成的角为 ,然后由 求解.
,
又 平面 平面 ,
平面 ,
即 ,
又 ,
平面 ,
故 为四棱锥 的高,
为直线 与平面 所成角,
又 ,
即 ,
四棱锥 的体积为 ;
(2)假设存在点 ,建立如图所示的空间直角坐标系,
设 , ,
则 ,
则 , , ,
设平面 和平面 的法向量分别为 , ,
则 ,令 ,则 ,
,令 ,
则 ,
二面角 的余弦值为 ,
高考数学立体几何多种解法

高考数学立体几何多种解法高考数学立体几何题目通常有多种解法,这取决于问题的具体形式和你所掌握的工具。
以下是一些常见的立体几何问题和它们的多种解法:问题1:求多面体的体积解法1:直接计算如果题目给出了多面体的底面积和高,可以直接使用体积公式 V=底面积×高来计算。
解法2:分割法如果多面体可以被分割成几个简单的几何体(如长方体、三棱锥等),可以先计算每个简单几何体的体积,然后求和。
解法3:向量法如果题目中涉及到了向量的知识,可以通过计算底面的法向量和顶点到底面的距离(即高),然后使用向量体积公式V=1/3 A⋅(B×C)来计算体积。
问题2:求多面体的表面积解法1:直接计算如果题目给出了多面体的各个面的面积,可以直接求和得到总表面积。
解法2:分割法如果多面体可以被分割成几个简单的几何体,可以先计算每个简单几何体的表面积,然后求和。
解法3:向量法对于某些复杂的多面体,可以通过计算各个面的法向量和对应的面积向量,然后使用向量点积来计算每个面的面积,最后求和得到总表面积。
问题3:证明线面平行或垂直解法1:定义法直接使用线面平行或垂直的定义来证明。
解法2:判定定理使用线面平行或垂直的判定定理来证明。
解法3:向量法通过计算向量之间的点积或叉积来证明线面平行或垂直。
问题4:求点到平面的距离解法1:公式法如果知道点到平面的垂线段的长度和垂足在平面上的坐标,可以使用距离公式 d=(x2−x1)2+(y2−y1)2+(z2−z1)2 来计算。
解法2:向量法通过计算点到平面上任意一点的向量和平面的法向量,然后使用向量点积和模长来计算距离。
问题5:求二面角的平面角解法1:定义法直接在图形中找出二面角的平面角,然后计算。
解法2:向量法通过计算两个平面的法向量,然后计算这两个法向量的夹角,即为二面角的平面角。
问题6:判断几何体的形状解法1:直接观察通过观察几何体的形状和尺寸来判断。
解法2:计算法通过计算几何体的各个面的面积、边长、角度等来判断。
高考数学如何应对复杂的立体几何问题

高考数学如何应对复杂的立体几何问题立体几何是高考数学中的一个重要知识点,通常涉及到三维空间中物体的形状、体积、表面积等问题。
由于其涉及到的概念和计算较为复杂,很多考生在解答立体几何问题时常常感到困惑。
本文将介绍一些应对复杂的立体几何问题的方法和技巧,帮助考生在高考中取得好成绩。
一、理解基本概念在应对立体几何问题之前,首先需要对一些基本概念进行充分理解。
其中包括各种几何体的定义、性质以及它们之间的关系。
例如,要理解什么是球体、立方体、棱柱等,并了解它们的表面积、体积和特点。
只有对这些基本概念有清晰的理解,才能更好地解决立体几何问题。
二、图形投影法在解决复杂的立体几何问题时,图形投影法是常用且有效的方法之一。
该方法通过将立体图形在一个平面上进行投影,将立体几何问题转化为平面几何问题来解决。
通过合理选择投影平面和建立坐标系,可以简化问题的求解过程。
例如,在计算某一几何体的体积时,可以先将其投影在一个平面上,再计算平面上的图形的面积。
然后通过将平面图形的面积与几何体在该平面上的高度相乘,就可以得到立体体积的近似值。
当然,在使用图形投影法时,需要注意选择合适的投影角度和平面位置,以确保所得结果的准确性。
三、切割法切割法是另一种处理复杂立体几何问题的常用方法。
该方法通过将立体体进行切割,将问题转化为多个简单的计算问题来解决。
通常可以选择切割后得到的平面图形进行计算,然后通过计算得出多个平面图形的值,最后进行合并得到整个立体体的性质和特征。
例如,在计算一个不规则立方体的体积时,可以将其切割成多个正方形,然后计算每个正方形的面积再进行累加即可得到立方体的体积。
在使用切割法时,需要灵活运用空间想象力和几何直观,以选择合适的切割方式和计算方法。
四、平面几何的运用在解决复杂的立体几何问题时,可以借助平面几何中的一些性质和定理进行分析和计算。
例如,利用平行线之间的关系、相似三角形的性质、角平分线定理等进行推理和计算,可以简化立体几何问题的求解过程。
四类立体几何题型-新高考数学大题秒杀技巧(学生版)

四类立体几何题型-高考数学大题秒杀技巧立体几何问题一般分为四类:类型1:线面平行问题类型2:线面垂直问题类型3:点面距离问题类型4:线面及面面夹角问题下面给大家对每一个类型进行秒杀处理.技巧:法向量的求算待定系数法:步骤如下:①设出平面的法向量为n =x ,y ,z .②找出(求出)平面内的两个不共线的向量a =a 1,b 1,c 1 ,b =a 2,b 2,c 2 .③根据法向量的定义建立关于x ,y ,z 的方程组n ⋅a =0n ⋅b =0④解方程组,取其中的一个解,即得法向量.注意:在利用上述步骤求解平面的法向量时,方程组n ⋅a =0n ⋅b =0有无数多个解,只需给x ,y ,z 中的一个变量赋于一个值,即可确定平面的一个法向量;赋的值不同,所求平面的法向量就不同,但它们是共线向量.秒杀:口诀:求谁不看谁,积差很崩溃(求外用外减,求内用内减)向量a =x 1,y 1,z 1 ,b =x 2,y 2,z 2 是平面α内的两个不共线向量,则向量n =y 1z 2−y 2z 1,x 2z 1−x 1z 2,x 1y 2−x 2y 1 是平面α的一个法向量.特别注意:空间点不容易表示出来时直接设空间点的坐标,然后利用距离列三个方程求解.类型1:线面平行问题方法一:中位线型:如图⑴,在底面为平行四边形的四棱锥P -ABCD 中,点E 是PD 的中点.求证:PB ⎳平面AEC .分析:方法二:构造平行四边形如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE ⎳CF ,求证:AE ⎳平面DCF .分析:过点E作EG⎳AD交FC于G,DG就是平面AEGD与平面DCF的交线,那么只要证明AE⎳DG即可。
方法三:作辅助面使两个平面是平行如图⑶,在四棱锥O-ABCD中,底面ABCD为菱形,M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD分析::取OB中点E,连接ME,NE,只需证平面MEN∥平面OCD。
解决高考数学中的立体几何难题的方法

解决高考数学中的立体几何难题的方法数学作为高考科目之一,立体几何问题一直以来都是令考生头疼的难题。
立体几何问题需要考生在空间思维和几何知识的基础上进行分析和推理,因此对于很多学生来说,解决立体几何难题仍然是一项艰巨的任务。
本文将介绍几种解决高考数学中立体几何难题的方法,帮助考生提高解题能力。
一、理论知识的掌握在解决立体几何难题之前,首先要掌握必要的理论知识。
考生要熟悉立体几何的基本概念,如点、线、面和体等,了解它们的相互关系和性质。
此外,还需要掌握立体几何的重要定理和公式,如欧拉公式、平行面定理等。
只有掌握了这些理论知识,才能够在解题过程中准确地运用。
二、几何图形的绘制在解决立体几何难题时,绘制几何图形是十分重要的一步。
通过绘制几何图形,可以帮助考生更直观地理解问题,并能够通过观察图形找到解题的突破口。
绘制几何图形时,应尽量保持图形的准确性和美观性,避免出现模糊或错误的情况。
此外,可以使用不同颜色的画笔或标记来标注特定的点、线或面,以便于后续的分析和推理。
三、几何性质的灵活运用解决立体几何难题,考生需要能够熟练地运用几何性质。
在解题过程中,可以通过观察图形找到一些已知的几何性质,并利用它们进行推理。
例如,如果在一个立方体中已知一条棱的长度,那么可以根据立方体的性质算出其他棱的长度。
此外,还可以利用几何性质巧妙地得出一些等式或者比例关系,从而解决问题。
四、问题拆解与归纳解决立体几何难题需要考生善于发现问题的规律和共性。
在遇到较复杂的问题时,可以尝试将问题拆解为若干个简单的子问题进行解决,然后将得到的结论进行归纳总结。
通过反复的分析与归纳,可以帮助考生培养出发现问题本质的能力,并准确地找到解决问题的方法。
五、多做题与思考掌握立体几何的方法和技巧需要不断的实践和思考。
考生可以多做各种类型的立体几何题目,通过反复练习,掌握解题的技巧和思路。
同时,还应该尝试思考一些有一定难度的立体几何问题,通过自主思考和解答,提高自己的解题能力和创新思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学立体几何大题的八大解题技巧
1、平行、垂直位置关系的论证的策略
(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2、空间角的计算方法与技巧
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:
(2)直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角
①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:
(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3、空间距离的计算方法与技巧
(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4、熟记一些常用的小结论
诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。
弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
5、平面图形的翻折、立体图形的展开等一类问题
要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。
6、与球有关的题型
只能应用“老方法”,求出球的半径即可。
7、立体几何读题
(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。
(2)弄清楚几何体结构特征。
面面、线面、线线之间有哪些关系(平行、垂直、相等)。
(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。
8、解题程序划分为四个过程
①弄清问题。
也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。
②拟定计划。
找出已知与未知的直接或者间接的联系。
在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。
即是我们常说的思考。
③执行计划。
以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。
即我们所说的解答。
④回顾。
对所得的结论进行验证,对解题方法进行总结。