2020年高考数学模拟考试卷 人教版
(人教版)2020年高三数学模拟试卷及参考答案

(人教版)2020年高三数学模拟试卷及参考答案一、选择题(5×10=50分)1.已知集合{10}{lg(1)}M x x N x y x =+>==-,,则M N =I ( ) A .{11}x x -<< B .{1}x x > C .{11}x x -≤< D .{1}x x ≥-2.等比数列{}n a 中,44a =,则26a a ⋅等于( ) A .4 B .8 C .16D .323.已知:1231,:(3)0p x q x x -<-<-<, 则p 是q 的什么条件( )A .必要不充分B .充分不必要C .充要D .既不充分也不必要4.若点(cos ,sin )P αα在直线2y x =-上,则sin 22cos2αα+=( ) A .145- B .75- C .2-D .455.圆0222=++x y x 和0422=-+y y x 的公共弦所在直线方程为( ) A .02=-y x B .02=+y x C .02=-y x D .02=+y x 6. 已知函数()22xf x =-,则函数()y f x =的图象可能是( )7.函数()3cos 2sin 2f x x x =-的单调减区间为( )A .2[,]63k k ππππ++,k Z ∈ B .7[,]1212k k ππππ--,k Z ∈C .7[2,2]1212k k ππππ--,k Z ∈D .5[,]1212k k ππππ-+,k Z ∈8.设11321log 2,log 3,()2a b c ===0.3,则( )A .c b a <<B .b c a <<C .a c b <<D .c a b <<9.在复平面内,复数211)i (i-+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.已知某几何体的三视图如右图所示, 则该几何体的体积是( )A .21 B .61 C . 121 D . 181二、填空题(5×5=25分)11.向量b a ,的夹角为120°,|5|,3||,1||b a b a -==则= 12.不等式0)1)(3(1<+--x x x 的解集为13.已知圆C 的圆心是直线01=+-y x 与x 轴的交点,且圆C与直线03=++y x 相切.则圆C 的方程为14.已知0,0x y >>,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是______15.已知向量(,1)x =-a ,(3,)y =b ,其中x 随机选自集合{1,1,3}-,y 随机选自集合{1,3},那么⊥a b 的概率是_____.三、解答题(75分)16.设集合A ={x |x 2<4},B ={x |1<4x +3}(1)求集合B A I(2)若不等式022<++b ax x 的解集为B ,求a ,b 的值17.已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中(0,)2πθ∈(1)求θsin 和θcos 的值(2)求函数x x x f sin 22cos )(+=的值域18. 将一颗均匀的四面分别标有1,2,3,4点的正四面体骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)以第一次向上点数为横坐标x ,第二次向上的点数为纵坐标y 的点(),x y在区域Ω:0020x y x y >⎧⎪>⎨⎪-->⎩内的概率.19.已知数列{}n a 的前n 项和为22n n nS +=, (1)求数列{}n a 的通项公式 (2)求数列1{}n n a x -的前n 项和(其中0x >)20.如图,正三棱柱111C B A ABC -中,D AA AB ,3,21==为B C 1的中点,P 为AB 边上的动点.(1)当点P 为AB 边上的中点,证明DP //平面11A ACC (2)若,3PB AP =求三棱锥CDP B -的体积.21.若椭圆1C :)20( 14222<<=+b by x 的离心率等于23,抛物线2C :)0( 22>=p py x 的焦点在椭圆的顶点上。
上海市2020〖人教版〗高考数学模拟试卷文科

上海市2020年〖人教版〗高考数学模拟试卷文科创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B=.2.(4分)函数f(x)=1﹣3sin2x的最小正周期为.3.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.4.(4分)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)=.5.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=.6.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.7.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.8.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.9.(4分)若x,y满足,则目标函数z=x+2y的最大值为.10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).11.(4分)在(2x+)6的二项式中,常数项等于(结果用数值表示).12.(4分)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.13.(4分)已知平面向量、、满足⊥,且||,||,||}={1,2,3},则|++|的最大值是.14.(4分)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f (x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15.(5分)设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2B.x+8<2(x2+2x+3)C.<D.>17.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O 逆时针旋转至OB,则点B的纵坐标为()A. B. C. D.18.(5分)设 P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1B.﹣C.1D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧的中点,E为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.20.(14分)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.21.(14分)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q 地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.22.(16分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.23.(18分)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0≥a n(n∈N*),求证:{b n}的第n0项是最大项;(3)设a1=3λ<0,b n=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,a n≠0,且.参考答案与试题解析一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B={2,3}.【分析】由A与B,找出两集合的交集即可.【解答】解:∵全集U=R,A={1,2,3,4},B={x|2≤x≤3},∴A∩B={2,3},故答案为:{2,3}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(4分)函数f(x)=1﹣3sin2x的最小正周期为π .【分析】由条件利用半角公式化简函数的解析式,再利用余弦函数的周期性求得函数的最小正周期.【解答】解:∵函数f(x)=1﹣3sin2x=1﹣3=﹣+cos2x,∴函数的最小正周期为=π,故答案为:π.【点评】本题主要考查半角公式的应用,余弦函数的周期性,属于基础题.3.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【点评】本题考查了复数的运算法则、复数相等,属于基础题.4.(4分)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)= ﹣.【分析】由原函数解析式把x用含有y的代数式表示,x,y互换求出原函数的反函数,则f﹣1(2)可求.【解答】解:由y=f(x)=,得,x,y互换可得,,即f﹣1(x)=.∴.故答案为:.【点评】本题考查了函数的反函数的求法,是基础的计算题.5.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2= 16 .【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.6.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a= 4 .【分析】由题意可得(•a•a•sin60°)•a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.7.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p= 2 .【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.8.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2 .【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.9.(4分)若x,y满足,则目标函数z=x+2y的最大值为3 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.【点评】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120 (结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.11.(4分)在(2x+)6的二项式中,常数项等于 240 (结果用数值表示).【分析】写出二项展开式的通项,由x的指数为0求得r值,则答案可求.【解答】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.【分析】求出C1的一条渐近线的斜率,可得C2的一条渐近线的斜率,利用双曲线C1、C2的顶点重合,可得C2的方程.【解答】解:C1的方程为﹣y2=1,一条渐近线的方程为y=,因为C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,所以C2的一条渐近线的方程为y=x,因为双曲线C1、C2的顶点重合,所以C2的方程为.故答案为:.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.13.(4分)已知平面向量、、满足⊥,且||,||,||}={1,2,3},则|++|的最大值是 3+.【分析】分别以所在的直线为x,y轴建立直角坐标系,分类讨论:当{||,||}={1,2},||=3,设,则x2+y2=9,则++=(1+x,2+y),有||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值;其他情况同理,然后求出各种情况的最大值进行比较即可.【解答】解:分别以所在的直线为x,y轴建立直角坐标系,①当{||,||}={1,2},||=3,则,设,则x2+y2=9,∴++=(1+x,2+y),∴||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值为=3+;②且{||,||}={1,3},||=2,则,x2+y2=4,∴++=(1+x,3+y)∴||=的最大值,其几何意义是圆x2+y2=4上点(x,y)与定点(﹣1,﹣3)的距离的最大值为2+=2+,③{||,||}={2,3},||=1,则,设,则x2+y2=1∴++=(2+x,3+y)∴||=的最大值,其几何意义是在圆x2+y2=1上取点(x,y)与定点(﹣2,﹣3)的距离的最大值为1+=1+∵,故|++|的最大值为3+.故答案为:3+【点评】本题主要考查了向量的模的求解,解题的关键是圆的性质的应用:在圆外取一点,使得其到圆上点的距离的最大值:r+d (r为该圆的半径,d为该点与圆心的距离).14.(4分)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f (x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为 8 .【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f (x3)|+…+|f(x m﹣1)﹣f(x m)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意x i,x j (i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max ﹣f(x)min=2是解答该题的关键,是难题.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15.(5分)设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:若z1、z2均为实数,则z1﹣z2是实数,即充分性成立,当z1=i,z2=i,满足z1﹣z2=0是实数,但z1、z2均为实数不成立,即必要性不成立,故“z1、z2均为实数”是“z1﹣z2是实数”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念是解决本题的关键.16.(5分)下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2B.x+8<2(x2+2x+3)C.<D.>【分析】根据x2+2x+3=(x+1)2+2>0,可得不等式<2,等价于x+8<2(x2+2x+3),从而得出结论.【解答】解:由于x2+2x+3=(x+1)2+2>0,不等式<2,等价于x+8<2(x2+2x+3),故选:B.【点评】本题主要考查不等式的基本性质的应用,体现了等价转化的数学思想,属于基础题.17.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O 逆时针旋转至OB,则点B的纵坐标为()A. B. C. D.【分析】根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点 A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OB|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.18.(5分)设 P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1B.﹣C.1D.2【分析】当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.【解答】解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而可看作点P n(x n,y n)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧的中点,E为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.【分析】由条件便知PO为三棱锥P﹣AOC的高,底面积S△AOC又容易得到,从而带入棱锥的体积公式即可得到该三棱锥的体积.根据条件能够得到OE∥AC,从而找到异面直线PA,OE所成角为∠PAC,可取AC中点H,连接PH,便得到PH⊥AC,从而可在Rt△PAH中求出cos∠PAC,从而得到∠PAC.【解答】解:∵PO=2,OA=1,OC⊥AB;∴;E为劣弧的中点;∴∠BOE=45°,又∠ACO=45°;∴OE∥AC;∴∠PAC便是异面直线PA和OE所成角;在△ACP中,AC=,;如图,取AC中点H,连接PH,则PH⊥AC,AH=;∴在Rt△PAH中,cos∠PAH=;∴异面直线PA与OE所成角的大小为arccos.【点评】考查圆锥的定义,圆锥的高和母线,等弧所对的圆心角相等,能判断两直线平行,以及异面直线所成角的定义及找法、求法,能用反三角函数表示角.20.(14分)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.【分析】(1)根据函数的奇偶性的定义即可判断,需要分类讨论;(2)根据导数和函数的单调性的关系即可判断.【解答】解:(1)当a=0时,f(x)=,显然为奇函数,当a≠0时,f(1)=a+1,f(﹣1)=a﹣1,f(1)≠f(﹣1),且f(1)+f(﹣1)≠0,所以此时f(x)为非奇非偶函数.(2)∵a∈(1,3),f(x)=ax2+,∴f′(x)=2ax﹣=,∵a∈(1,3),x∈[1,2],∴ax>1,∴ax3>1,∴2ax3﹣1>0,∴f′(x)>0,∴函数f(x)在[1,2]上的单调递增.【点评】本题考查了函数的奇偶性和单调性,属于基础题.21.(14分)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q 地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.【分析】(1)用OP长度除以乙的速度即可求得t1=,当乙到达P点时,可设甲到达A点,连接AP,放在△AOP中根据余弦定理即可求得AP,也就得出f(t1);(2)求出t2=,设t,且t小时后甲到达B地,而乙到达C地,并连接BC,能够用t表示出BQ,CQ,并且知道cos,这样根据余弦定理即可求出BC,即f(t),然后求该函数的最大值,看是否超过3即可.【解答】解:(1)根据条件知,设此时甲到达A点,并连接AP,如图所示,则OA=;∴在△OAP中由余弦定理得,f(t1)=AP==(千米);(2)可以求得,设t小时后,且,甲到达了B点,乙到达了C点,如图所示:则BQ=5﹣5t,CQ=7﹣8t;∴在△BCQ中由余弦定理得,f(t)=BC==;即f(t)=,;设g(t)=25t2﹣42t+18,,g(t)的对称轴为t=;且;即g(t)的最大值为,则此时f(t)取最大值;即f(t)在[t1,t2]上的最大值不超过3.【点评】考查余弦定理的应用,以及二次函数在闭区间上最值的求法.22.(16分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=|x1y2﹣x2y1|;(2)由(1)得:S=|x1y2﹣x2y1|=×|x1﹣y1|=,进而得到答案;(3)方法一:设直线l1的斜率为k,则直线l1的方程为y=kx,联立方程组,消去y解得x=±,可求得x1、x2、y1、y2,利用S=|x1y2﹣x2y1|=•,设=c(常数),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,可得,此时S=;方法二:设直线l1、l2的斜率分别为、,则=m,则mx1x2=﹣y1y2,变形整理,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=|x1y2﹣x2y1|;(2)由(1)A(x1,y1),C(x2,y2),S=|x1y2﹣x2y1|=×|x1﹣y1|=.所以|x1﹣y1|=,由x12+2y12=1,解得A(,﹣)或(,﹣)或(﹣,)或(﹣,),由k=,得k=﹣1或﹣;(3)方法一:设直线l1的斜率为k,则直线l2的斜率为,直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=|x1y2﹣x2y1|=•,设=c(常数),所以(m﹣k2)2=c2(1+2k2)(k2+2m2),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,所以只能是,所以,此时S=,综上所述,m=﹣,S=.方法二:设直线l1、l2的斜率分别为、,则=m,所以mx1x2=y1y2,∴m2==mx1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即(+4m)x1x2y1y2+2(+)=1,所以+﹣2x1x2y1y2=(x1y2﹣x2y1)2=[1﹣(4m+)x1x2y1y2]﹣2x1x2y1y2=﹣(2m++2)x1x2y1y2,是常数,所以|x1y2﹣x2y1|是常数,所以令2m++2=0即可,所以,m=﹣,S=.综上所述,m=﹣,S=.【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.23.(18分)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0≥a n(n∈N*),求证:{b n}的第n0项是最大项;(3)设a1=3λ<0,b n=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,a n≠0,且.【分析】(1)把b n=3n+5代入已知递推式可得a n+1﹣a n=6,由此得到{a n}是等差数列,则a n可求;(2)由a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到a n=2b n+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得a n的最大值M和最小值m,再由∈()列式求得λ的范围.【解答】(1)解:∵a n+1﹣a n=2(b n+1﹣b n),b n=3n+5,∴a n+1﹣a n=2(b n+1﹣b n)=2(3n+8﹣3n﹣5)=6,∴{a n}是等差数列,首项为a1=1,公差为6,则a n=1+(n﹣1)×6=6n﹣5;(2)∵a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2(b n﹣b n﹣1)+2(b n﹣1﹣b n﹣2)+…+2(b2﹣b1)+a1=2b n+a1﹣2b1,∴,∴.∴数列{b n}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=3λ<0,∴的最小值为,最大值为,则,解得.∴λ∈().②当λ=﹣1时,a2n=1,a2n﹣1=﹣3,∴M=3,m=﹣1,不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时满足条件.【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校。
重庆市2020年高三数学高考仿真试卷四 文 人教版

⊃ ≠⊂ ≠ 2020年普通高等学校招生全国统一考试(重庆卷)数学(文史类)模拟试卷(四)数学试题(文史类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试卷上答题无效. 5.考试结束,将试卷和答题卡一并收回. 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.1. 在等差数列}{n a 中,前15项和S 15=90,则a 8=A . 6B . 3C . 12D . 42. 已知全集(U ≠φ)和子集M 、N 、P ,且M=C U N ,N =C U P ,则M 、P 的关系是A .M = C U PB .M= PC .M PD .M P3. 直线013:1=-+-y x l 绕着其上一点)3,1(沿逆时针方向旋转15°,则旋转后得到的直线2l 的方程为A . 013=+-y xB . 033=-y xC . 013=++y xD .0133=--y x4. 某公司在甲、乙两地销售一种品牌车.利润(单位:万元)分别为2115.0,06.5x x L -==和x L 22=,其中x 为销售量(单位:辆)若该公司在这两地共销售15辆车,则能获得的最大利润为 A . 45.6B . 45.606C . 45.56D . 45.515. 若nxx )13(-的展开式中各项系数之和为64,则展开式的常数项为 A . 540 B . 162C . -540D . -1626. 已知函数x x x f cos )(=的定义域为)2,2(ππ-,当)3,2,1(2=<i x i π时,0)()(21<+x f x f ,0)()(32<+x f x f ,0)()(13<+x f x f ,则有A . 0321>++x x xB . 0321<++x x xC . 0)(321≥++x x x fD . 0)(321≤++x x x f7. 设a 、b 、c 是互不相等的正数,现给出下列不等式 ⑴c b c a b a -+-≤-;⑵2a b4a 221a a +aa 1+≥;⑶21≥-+-b a b a ;⑷a a a a -+≤+-+213,则其中正确个数是 A . 0B . 1C . 2D . 38. 点O 在ABC ∆内部且满足 O OC OB OA =++)(2,则BOC ∆的面积与ABC ∆的面积之比是 A .21B .31C .51D .81 9. 如下图是边长分别为a ,b 的矩形,按图中实线切割后,将它们作为一个正四棱锥的底面(由阴影部分拼接而成)和侧面,则ba的取值范围是 A . (0,2)B . (0,1)C . (1,2)D . )2,21(10.F 为双曲线1169:22=-y x C 的左焦点,双曲线C 的右支上的点i P 与左支上的点i P -7 )3,2,1(=i 关于y 轴对称,则F P F P F P F P F P F P 654321---++的值是A . 9B . 16C . 18D . 27二.填空题(每小题5分,共25分) 11.函数)4(log 21-=x y 的定义域是___________. 12.已知实数y x ,满足⎪⎩⎪⎨⎧≤+-≤≤03242y x y xy ,则22-+y x 的最大值为 .13.ABC ∆的内角C B A ,,的对边分别为a ,b ,c ,若a ,b ,c 成等比数列,且a c 2=,则B cos的值是 .14.已知ABC ∆中,=∠==BAC AC AB ,15,9120°,它所在平面外一点P 到ABC ∆三个顶点的距离都是14,那么P 到平面ABC 的距离是 .15.从集合}10,,3,2,1{Λ中选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,则这样的子集共有 个.三.解答题:共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分)已知函数)(x f y =的图像关于直线3=x 对称,当320)1(=-f ,且523sin cos =-x x , 求())4cos(2sin 15π+x x f 的值.17.(本小题满分13分)某人抛掷一枚质量分布均匀的骰子,出现各数的概率都是61,构造数列}{n a ,使⎩⎨⎧-=11n a ,记)(S *21N n a a a n n ∈+++=Λ.(Ⅰ)求24=S 时的概率;(Ⅱ)求前两次均为奇数且17-=S 的概率. 18.(本小题满分13分)已知矩形ABCD 中,AB =2AD =4,E 为CD 的中点,沿AE 将三角形AED 折起,使DB =23, 如图,O ,H 分别为AE 、AB 中点.(Ⅰ)求证:直线OH //面BDE ; (Ⅱ)求证:面ADE ⊥面ABCE ;(Ⅲ)求二面角O-DH-E 的余弦值.BCEOHECBAADD(第n 次掷出偶数)(第n 次掷出奇数)19.(本小题满分12分)已知奇函数c bx ax x x f +++=23)(是定义在]1,1[-上的增函数. (Ⅰ)求实数b 的取值范围;(Ⅱ)设(Ⅰ)中b 的取值集合为G ,若)(12x f tb b ≥+-对一切]1,1[-∈x ,G b ∈恒成立,求实数t 的取值范围.20.(本小题满分12分)如图,F 是抛物线x y 42=的焦点,Q 为准线与x 轴的交点,直线l 经过点Q . (Ⅰ)直线l 与抛物线有唯一公共点,求l 的方程; (Ⅱ)直线l 与抛物线交于A 、B 两点记FA 、FB的斜率分别为1k ,2k .求证:21k k +为定值.21.(本小题满分12分)已知点)0,(n n x A 满足:1·110-=+a A A A A n n (其中)N n ∈,又知1,1,110>=-=a x x . (Ⅰ)若))((1*+∈=N n x f x n n ,求)(x f 的表达式;(Ⅱ)已知点)0,(a B ,记)(*∈=N n BA a n n ,且n n a a <+1对一切*∈N n 恒成立,试求a 的取值范围.22.思考题:已知数列}{n a 的首项2,121==a a ,前n 项和n S 恒为正数,且当2≥n 时,1111+-=n n n a a S . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)求证:+++++++++433221111111S S S S S S K 31111+<++++n S S n n .2020级高三数学(文)模拟试题(四)参考答案一、选择题:本大题共10题,每小题5分,共50分。
2020年新教材高考数学模拟考试卷 新课标 人教版

2020年新教材高考数学模拟考试卷(试卷总分150分 考试时间120分钟)第Ⅰ卷(选择题 共60分)一、选择题:(共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)。
1、设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(C U B )等于( )A 、{2}B 、{2,3}C 、{3}D 、{1,3}2、已知P 和q 是两个命题,如果P 是q 的充分不必要条件,那么⌝P 是⌝q 的( )A 、必要不充分条件B 、充分不必要条件C 、充分必要条件D 、既不充分也不必要条件 3、已知f (x )=10-x,则f -1(100)=( )A 、-2B 、-21 C 、21D 、2 4、已知圆042:22=+-+y x y x C ,则过原点且与圆C 相切的直线方程为( )A 、x y 2-=B 、x y 21-= C 、x y 21= D 、x y 2= 5、把函数x x y sin 3cos -=图象向左平移m 个单位(m>0),所得的图象关于y 轴对称,则有m 的最小值是( ) A 、6π B 、3πC 、32πD 、65π6、已知等差数列()n a 的公差<0,若1024264=+⋅=⋅n a a a a ,则该数列的前n 项和n s 的最大值为( )A 、50B 、45C 、40D 、357、已知双曲线的焦点在y 轴上,两条渐近线方程为x y 2=则双曲线的离心率e 等于( ) A 、5 B 、5 C 、25 D 、45 8、在△OAB 中,OD b OB a OA ,,==是AB 边上的高,若λ=,则实数λ等于( )A 、()2ba ab a --⋅ B 、()2ba b a a --⋅ C 、()b a a b a --⋅ D 、()ba b a a --⋅ 9、已知平面βα, 分别过两条互相垂直的异面直线l ,m ,则下列情况:(1)a ∥β; (2)α⊥β;(3)l ∥β;(4)m ⊥α中,可能成立的有( ) A 、1种 B 、2种 C 、3种 D 、4种10、当x ∈[0,2]时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是( ) A 、[),21+∞-B 、[),0+∞C 、[),1+∞D 、[),32+∞ 11、设函数⎩⎨⎧≥+-<+=),1(,3),1(,1)(x x x x x f 使得1)(≥x f 的自变量x 的取值范围是( )A 、]2,1[]2,(Y --∞B 、)2,0()2,(Y --∞C 、]2,0[]2,(Y --∞D 、),2[]0,2[+∞-Y 12、在正方体ABCD —1111D C B A 中,M 是棱D 1D 的中点,O 是底面ABCD 的中心,P 是棱11B A 上任意一点,则直线OP 与直线AM 所成角的大小等于( ) A 、ο45 B 、ο90 C 、ο60 D 、不能确定第Ⅱ卷(非选择题,共90分)二、填空题:(共4小题,每小题4分,满分16分,请把答案填写在题中横线上)。
安徽省2020年高考数学理科模拟考试卷 新课标 人教版

安徽省2020年高考数学理科模拟考试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数)(1x f y -=的图象过点)0,1(,则)121(-=x f y 的反函数的图象一定过点 ( ) A .)2,1( B .)1,2( C .)2,0( D .)0,2(2.设集合},,{c b a M =,}1,0{=N ,映射N M f →:满足)()()(c f b f a f =+,则映射N M f →:的个数为( )A .1B .2C .3D .43.=++-ii i 1)21)(1(( ) A .i --2B .i +-2C .i -2D .i +2 4.若)2,0(πθ∈,则函数2)1(log sin >-=x y θ的解集是( )A .)sin ,1(2θ-∈xB .)1,(cos 2θ∈xC .)21,(cos 2θ∈x D .)cos ,1(2θ-∈x 5.已知数列||||||||,3,60}{3032111a a a a a a a a n n n +++++=-=+Λ则中等于 ( )A .445B .765C .1080D .3105 6.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( ) A .0B .1C .2D .3 7.不等式组.2233,0⎪⎩⎪⎨⎧+->+->xx x x x 的解集是( ) A.}20|{<<x x B. }5.20|{<<x x C.}60|{<<x x D. }30|{<<x x 8.数列,83 ,42 ,21……的前n 项和为 ( )A.1-n 21B.2-n n 22+C.n(1-n 21)D.2-121-n +n n 2 9.无穷等比数列{n a }的公比为q ,|q|<1,首项1a =1,若其每一项都等于它后面所有项的和的k 倍,则k 的取值范围是( )A.[0, +∞)B.(-∞, -2)C.(-∞, -2)∪(0, +∞)D.(-2, 0)10.若数列{}n a 满足1a =5, 1+n a =22)(21n n n a a a ++(n ∈N),则其前10项和是( ) A .200 B.150 C.100 D.5011.由奇数组成数组(3, 5), (7, 9, 11), (13, 15, 17, 19),……,第n 组的第一个数应是( )A.n(n -1)B.n(n +1)C.n(n +1)+1D.n(n-1)+112.数列{n a }的前n 项和是n S ,如果n S =3+2n a (n ∈N),则这个数列一定是( )A.等比数列B.等差数列C.除去第一项后是等比数列D.除去第一项后是等差数列二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。
天津市2020〖人教版〗高三数学复习试卷高考数学模拟试卷

天津市2020年〖人教版〗 高三数学复习试卷高考数学模拟试卷一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题作出选择,的选A,错的选B. 1. 实数0与集合A={0,1}的关系是.0A ∈(A B) 2. 点M(1,1)在圆.1)1(22上=+-y x(A B)3. 若非零向量.0,//,=•b a b a b a 则满足(A B)4. }.10{02<<<+x x x x 的解集是不等式(A B)5. 342tan ,2tan ==θθ则若(A B) 6. 24lg 25lg =+(A B) 7. 函数x y πsin = 的最小周期是2(A B)8. 若点A,B 到平面a 的距离都等于1,则直线.//a AB (A B) 9. 当6)32(3的系数是的展开式中x x +(A B)10,等差数列).(125,3,1*N n n a n ∈-=的通项公式为(A B)二、单项选择题:本大题共8小题,每小题5分,共40分.11. 的离心率为椭圆125922=+y x ( ) A. 53 B.54C. 43D.4512. 已知的值域是函数xy 2=( )A.{}0≤y yB. {}0≥y yC. {}0>y yD. {}R y y ∈13. 已知[]()=⋂==B A B A 则集合,5,2,3,0( )A. (]3,2B. [)5,0C. ()3,2D. []3,214. 不等式[]的最小值为函数2,1,32-∈+-=x x y ( ) A. -1 B. 0C. 2D. 315. 的大小关系是,,三个数53cos 5cos )8-(cos πππ( ) A.)53cos()5cos()8cos(πππ<<-B .⎪⎭⎫ ⎝⎛-<<8cos )5cos()53cos(πππ B.C.⎪⎭⎫ ⎝⎛<-<5cos )8cos()53cos(πππ D.⎪⎭⎫⎝⎛<<-5cos )53cos()8cos(πππ 16. 不等式的取值范围是,则是直线与平面所成的角若θθ( ) A.[)π,0B. )2,0(πC. )2,0[πD.]2,0[π17. 那么下列说法正确的是如果,b a >( )A.1>baB. 22b a >C.ba 11< D. 33b a >18. 从1,2,3,4,5,6中任取两个数,则这两个数之和为9的概率是( )A.154 B.51 C. 152D. 151 第I 卷(非选择题 80分)三、填空题:本大题共6小题,每小题5分,共30分.19.在直角坐标系中,过点(0,1)和(1,0)的直线l 的方程是 20. 在===∠=∠∆AC BC B A ABC ,则,,中,4453021. 到右焦点的距离为,则点到右焦点的距离为右支上一点若双曲线p p x x 3116922=- 22. 已知一个圆柱的底面半径为1,高为2,则该圆柱的全面积为 23. 已知向量),1,2(),1,1(-=-=b a =+b a 则24.甲乙两人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,用甲、乙训练的成绩的方差大小关系是,乙甲22s s四、解答题:本大题共6小题,25-28小题每小题8分,29-30小题每小题9分,共50分. 25. (本小题满分8分) 27. (本小题满分8分) 28. 已(本小题满分8分)已知).0(0542:22>=-+--+m m y x y x C 的方程是 30. (本小题满分9分)(1)求异面直线所成的角与11CC AB . (2)若M为线段AC的中点,N为线段1111//:BMC N AB C A 平面平面的中点,求证29. (本小题满分9分)创作人:百里公地 创作日期:202X.04.01 审核人: 北堂址重创作单位: 博恒中英学校。
高考数学模拟考试卷人教版

2020年高考数学模拟考试卷一、选择题(本大题共12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项吻合要求的。
)1、(理)复数z a i( a R, i 为虚数单位),若z 是纯虚数,则实数 a 的值为()1iA. 1B.- 1C. 2 D . 0(文)已知向量a(cos15 , sin15 ), b (sin15 ,cos15 ), 则 | a b | 的值为()A.3B.1C.2 D .3 2r r r r r rR) 的模的最小值为(2、已知向量a, b为单位向量,且<a, b>=,则 a tb (t)A. 2B.2C. cosD. sin33、已知等差数列n25P( n,a n ) 、 Q( n+ 2,a n2)( n∈{ a n} 的前n项和为S,且S = 10,S = 55,则过点N* ) 的直线的一个方向向量的坐标为()A.( 1, 4)B( 1, 3)C( 1,2) D ( 1,1)4、(理)某中学高三年级期中考试数学成绩近似地遵从正态分布N( 110,102) (查表知Φ( 1) = 0. 8413),则该校高三年级数学成绩在120 分以上的学生人数占总人数的百分比为()A. 84. 13% B. 42. 065% C.15.87% D. 以上均不对( 文 ) 某学校高一、高二、高三三个年级共有学生3500 人,此中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300,此刻按1: 100 的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A. 8 B. 11 C. 16. D. 105、 ( 理 ) 曲线y ln(2 x1) 上的点到直线 2x y 30 的最小距离是()A、 0B、5C、2 5 D 、3 5(文 )若函数 f( x)= x2+ bx+ c 的图象的极点在第四象限,则函数f/ ( x) 的图象是()y y y yo x ox o x o xA B C D6、 ( 理 ) 已知f ( x)x 1 2,则 lim f (x) 的值()x3x 3A 、不存在B 、 0C 、1D 、 443 x 2 y 7,( 文 )y x 1,3x 4y 的最大值是( )已知实数 x 、 y 满足则 u x 0,y 0,A. 0B. 4C. 7D. 117、函数 f(x)= log 2y|x|, g(x)=- x 2+2,则 f(x)·g(x)的图象只可能是y x 1M( 1, 2)13 x4 y 118、三棱锥 P - ABC 的四个极点在同一个球面上, 若 PA ⊥底面 ABC ,底面 ABC 为直角三角形, PA = 2 a AC= BC = a ,则此球的表面积为()O 3x 2 y7 xA . π a 2 B. 6π a 2 C. 8π a 2D. 9π a 2 第 6 题图P 29 、 已 知 ( ax + n及 ( x + a) 2 n +n1) 21的 展 开 式 中 , x 系 数 相 等( (aR 且 a 0, nN * ) ,则 a 的值所在区间是()A . ( -∞ , 0) B.( 0, 1) AC . ( 1, 2)D.(2,+∞ )10、椭圆1: x 2 y 2 1(a b0) 的左准线为 l ,左右焦点分别为12CBC a 2 b 2F 、 F ,抛物线 C 2 的准线为 l ,一个焦点为 F 2, C 1 与 C 2 的一个交点为 P ,则| F 1F 2 | | PF 1 |)| PF 1 |等于(| PF 2 |A .- 1B . 1C .1 12D .211、在四周体 D - ABC 中, AB = 2, S ABC = 4, S ABD =6, 面 ABC 与面 ABD 所成二面角的大小为,则四周6体 D -ABC 的体积为( )DA. 4B. 4 3C. 3D. 4 2C B2y2Auuur uuur12、设 F 1 、 F 2为双曲线 x1 的两焦点,点 P 在双曲线上, 当 F 1PF 2的面积为 1 时,PF 1gPF 24的值为( )A 、1C 、 1D 、 2B 、 02二、填空(本大共 4 小,每小 4 分,共 16 分,把答案填在中横上。
上海市2020〖人教版〗高三数学复习试卷高考数学试卷科高考模拟卷

上海市2020年〖人教版〗高三数学复习试卷高考数学试卷(科高考模拟卷创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]2.(5分)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5iB.7﹣5iC.5+5iD.7+5i3.(5分)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β5.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm36.(5分)函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1B.π,2C.2π,1D.2π,27.(5分)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f (4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=08.(5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A. B. C.D.9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A. B. C. D.10.(5分)设a,b∈R,定义运算“∧”和“∨”如下:a∧b= a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知函数f(x)=,若f(a)=3,则实数a=.12.(4分)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.13.(4分)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于.14.(4分)某程序框图如图所示,则该程序运行后输出的值等于.15.(4分)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=.16.(4分)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.19.(14分)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.20.(15分)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与平面PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.21.(15分)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.22.(14分)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]【分析】找出两集合解集的公共部分,即可求出交集.【解答】解:∵集合S={x|x>﹣2}=(﹣2,+∞),T={x|﹣4≤x≤1}=[﹣4,1],∴S∩T=(﹣2,1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5iB.7﹣5iC.5+5iD.7+5i【分析】直接利用多项式的乘法展开,求出复数的最简形式.【解答】解:复数(2+i)(3+i)=6+5i+i2=5+5i.故选:C.【点评】本题考查复数的代数形式的混合运算,考查计算能力.3.(5分)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】当“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,得到“α=0”是“sinα<cosα”的充分不必要条件.【解答】解:∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选:A.【点评】本题主要考查了必要条件,充分条件与充要条件的判断,要求掌握好判断的方法.4.(5分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β【分析】用直线与平面平行的性质定理判断A的正误;用直线与平面平行的性质定理判断B的正误;用线面垂直的判定定理判断C的正误;通过面面垂直的判定定理进行判断D的正误.【解答】解:A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B 不正确;C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;故选:C.【点评】本题主要考查线线,线面,面面平行关系及垂直关系的转化,考查空间想象能力能力.5.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3【分析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.【解答】解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选:B.【点评】由三视图正确恢复原几何体是解题的关键.6.(5分)函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1B.π,2C.2π,1D.2π,2【分析】f(x)解析式第一项利用二倍角的正弦函数公式化简,再利用两角和与差的正弦函数公式及特殊角的我三角函数值化为一个角的正弦函数,根据正弦函数的值域,确定出振幅,找出ω的值,求出函数的最小正周期即可.【解答】解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选:A.【点评】此题考查了两角和与差的正弦函数公式,二倍角的正弦函数公式,以及三角函数的周期性及其求法,熟练掌握公式是解本题的关键.7.(5分)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f (4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0【分析】由f(0)=f(4)可得4a+b=0;由f(0)>f(1)可得a+b<0,消掉b变为关于a的不等式可得a>0.【解答】解:因为f(0)=f(4),即c=16a+4b+c,所以4a+b=0;又f(0)>f(1),即c>a+b+c,所以a+b<0,即a+(﹣4a)<0,所以﹣3a<0,故a>0.故选:A.【点评】本题考查二次函数的性质及不等式,属基础题.8.(5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A. B. C.D.【分析】根据导数的图象,利用函数的单调性和导数的关系,得出所选的选项.【解答】解:由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选:B.【点评】本题主要考查函数的单调性和导数的关系,属于基础题.9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A. B. C. D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C 2的实轴长为2m,焦距为2n,则2m=|AF 2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)设a,b∈R,定义运算“∧”和“∨”如下:a∧b= a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2【分析】依题意,对a,b赋值,对四个选项逐个排除即可.【解答】解:∵a∧b=,a∨b=,正数a、b、c、d满足ab≥4,c+d≤4,∴不妨令a=1,b=4,则a∧b≥2错误,故可排除A,B;再令c=1,d=1,满足条件c+d≤4,但不满足c∨d≥2,故可排除D;故选:C.【点评】本题考查函数的求值,考查正确理解题意与灵活应用的能力,着重考查排除法的应用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知函数f(x)=,若f(a)=3,则实数a= 10 .【分析】利用函数的解析式以及f(a)=3求解a即可.【解答】解:因为函数f(x)=,又f(a)=3,所以,解得a=10.故答案为:10.【点评】本题考查函数解析式与函数值的应用,考查计算能力. 12.(4分)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.【分析】由组合数可知:从6名学生中任选2名共有=15种情况,2名都是女同学的共有=3种情况,由古典概型的概率公式可得答案.【解答】解:从6名学生中任选2名共有=15种情况,满足2名都是女同学的共有=3种情况,故所求的概率为:=.故答案为:.【点评】本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.13.(4分)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于4.【分析】求出圆的圆心与半径,利用圆心距,半径,半弦长满足勾股定理,求解弦长即可.【解答】解:圆x2+y2﹣6x﹣8y=0的圆心坐标(3,4),半径为5,圆心到直线的距离为:,因为圆心距,半径,半弦长满足勾股定理,所以直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长为:2×=4.故答案为:4.【点评】本题考查直线与圆的位置关系,弦长的求法,考查转化思想与计算能力.14.(4分)某程序框图如图所示,则该程序运行后输出的值等于.【分析】由题意可知,该程序的作用是求解S=1++++的值,然后利用裂项求和即可求解.【解答】解:由题意可知,该程序的作用是求解S=1++++的值.而S=1++++=1+1﹣+﹣+﹣+﹣=.故答案为:.【点评】本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能.15.(4分)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k= 2 .【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=kx+y对应的直线进行平移.经讨论可得当当k<0时,找不出实数k的值使z的最大值为12;当k≥0时,结合图形可得:当l经过点C时,z max=F(4,4)=4k+4=12,解得k=2,得到本题答案.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(2,3),C(4,4)设z=F(x,y)=kx+y,将直线l:z=kx+y进行平移,可得①当k<0时,直线l的斜率﹣k>0,由图形可得当l经过点B(2,3)或C(4,4)时,z可达最大值,此时,z max=F(2,3)=2k+3或z max=F(4,4)=4k+4但由于k<0,使得2k+3<12且4k+4<12,不能使z的最大值为12,故此种情况不符合题意;②当k≥0时,直线l的斜率﹣k≤0,由图形可得当l经过点C时,目标函数z达到最大值此时z max=F(4,4)=4k+4=12,解之得k=2,符合题意综上所述,实数k的值为2故答案为:2【点评】本题给出二元一次不等式组,在目标函数z=kx+y的最大值为12的情况下求参数k的值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.(4分)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于﹣1 .【分析】由题意,x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,考察(x2﹣1)2,发现当x=1时,其值为0,再对照不等式左边的0,可由两边夹的方式得到参数a,b满足的方程,再令f(x)=x4﹣x3+ax+b,即f(x)≥0在x≥0恒成立,利用导数研究函数在x≥0的极值,即可得出参数所满足的另一个方程,由此解出参数a,b的值,问题即可得解.【解答】解:验证发现,当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0,当x=0时,可得0≤b≤1,结合a+b=0可得﹣1≤a≤0,令f(x)=x4﹣x3+ax+b,即f(1)=a+b=0,又f′(x)=4x3﹣3x2+a,f′′(x)=12x2﹣6x,令f′′(x)>0,可得x>,则f′(x)=4x3﹣3x2+a在[0,]上减,在[,+∞)上增,又﹣1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0,又x≥0时恒有0≤x4﹣x3+ax+b,结合f(1)=a+b=0知,1必为函数f(x)=x4﹣x3+ax+b的极小值点,也是最小值点.故有f′(1)=1+a=0,由此得a=﹣1,b=1,故ab=﹣1.故答案为:﹣1.【点评】本题考查函数恒成立的最值问题及导数综合运用题,由于所给的不等式较为特殊,可借助赋值法得到相关的方程直接求解,本题解法关键是观察出不等式右边为零时的自变量的值,及极值的确定,将问题灵活转化是解题的关键.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于 2 .【分析】由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.【解答】解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为 2.【点评】本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.【点评】此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.19.(14分)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.【分析】(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.【解答】解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.【点评】本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.20.(15分)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与平面PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.【分析】(Ⅰ)由PA⊥面ABCD,可得PA⊥BD;设AC与BD的交点为O,则由条件可得BD是AC的中垂线,故O为AC的中点,且BD⊥AC.再利用直线和平面垂直的判定定理证得BD⊥面PAC.(Ⅱ)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.(Ⅲ)先证 PC⊥OG,且 PC==.由△COG∽△CAP,可得,解得GC的值,可得PG=PC﹣GC 的值,从而求得的值.【解答】解:(Ⅰ)证明:∵在四棱锥P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD.∵AB=BC=2,AD=CD=,设AC与BD的交点为O,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.而PA∩AC=A,∴BD⊥面PAC.(Ⅱ)若G是PC的中点,O为AC的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.由题意可得,GO=PA=.△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+4﹣2×2×2×cos120°=12,∴AC=2,OC=.∵直角三角形COD中,OD==2,∴直角三角形GOD中,tan∠DGO==.(Ⅲ)若G满足PC⊥面BGD,∵OG⊂平面BGD,∴PC⊥OG,且PC==.由△COG∽△CPA,可得,即,解得GC=,∴PG=PC﹣GC=﹣=,∴==.【点评】本题主要考查直线和平面垂直的判定定理的应用,求直线和平面所成的角,空间距离的求法,属于中档题.21.(15分)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.【分析】(Ⅰ)求导函数,确定切线的斜率,求出切点的坐标,即可求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)分类讨论,利用导数确定函数的单调性,从而可得极值,即可得到最值.【解答】解:(Ⅰ)当a=1时,f′(x)=6x2﹣12x+6,所以f′(2)=6∵f(2)=4,∴曲线y=f(x)在点(2,f(2))处的切线方程为y=6x﹣8;(Ⅱ)记g(a)为f(x)在闭区间[0,|2a|]上的最小值.f′(x)=6x2﹣6(a+1)x+6a=6(x﹣1)(x﹣a)令f′(x)=0,得到x1=1,x2=a当a>1时,x0(0,1)1(1,a)a(a,2a)2af′(x)+0﹣0+f(x)0单调递增极大值3a﹣1单调递减极小值a2(3﹣a)单调递增4a3比较f(0)=0和f(a)=a2(3﹣a)的大小可得g(a)=;当a<﹣1时,X0(0,1)1(1,﹣2a)﹣2a f′x)﹣0+f(x)0单调递减极小值3a﹣1单调递增﹣28a3﹣24a2∴g(a)=3a﹣1∴f(x)在闭区间[0,|2a|]上的最小值为g(a)=.【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的最值,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.22.(14分)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.【分析】(I)由抛物线的几何性质及题设条件焦点F(0,1)可直接求得p,确定出抛物线的开口方向,写出它的标准方程;(II)由题意,可A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,将直线方程与(I)中所求得方程联立,再结合弦长公式用所引入的参数表示出|MN|,根据所得的形式作出判断,即可求得最小值.【解答】解:(I)由题意可设抛物线C的方程为x2=2py(p>0)则=1,解得p=2,故抛物线C的方程为x2=4y(II)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,由消去y,整理得x2﹣4kx﹣4=0,所以x1+x2=4k,x1x2=﹣4,从而有|x1﹣x 2|==4,由解得点M的横坐标为x M===,同理可得点N的横坐标为x N=,所以|MN|=|x M﹣x N|=|﹣|=8||=,令4k﹣3=t,t≠0,则k=,当t>0时,|MN|=2>2,当t<0时,|MN|=2=2≥.综上所述,当t=﹣,即k=﹣时,|MN|的最小值是.【点评】本题主要考查抛物线的几何性质,直线与抛物线的位置关系,同时考查解析几何的基本思想方法和运算求解能力,本题考查了数形结合的思想及转化的思想,将问题恰当的化归可以大大降低题目的难度,如本题最后求最值时引入变量t,就起到了简化计算的作用创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校。
【人教版】2020届高考数学仿真考试试题 理新人教版新版

2020高三年级高考仿真考试数学(理科)试卷满分:150分 考试时间:120分钟注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一、选择题(每小题5分,共60分。
每小题所给选项只有一项符合题意,请将正确答案的选项填涂在答题卡上)1.若集合{}B B A y y A =≥= ,0|,则集合B 不可能是 A .{}x y y =|B .{}xy y 2|=C .{}x y y lg |=D .∅2.已知复数2(1)1z i i -=+,则=zA. 2B. 1C.12D.23.已知32)24sin(=-θπ,则=θsin A .97 B .91C .91-D .97-4.下列说法错误的是A . “若2≠x ,则065-2≠+x x ”的逆否命题是“若065-2=+x x ,则2=x ”B . “3>x ”是“065-2>+x x ”的必要不充分条件C . “R x ∈∀,065-2≠+x x ”的否定是“065,0200=+-∈∃x x R x ” D .命题:“,Z x ∈∃0使065020<+-x x ”为假命题5.当实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥≥≤+0022y x y x 时,恒有3≤+y kx 成立,则k 的取值范围为A .]0,(-∞B .),0[+∞C .]3,(-∞D .]3,0[6.过双曲线)0,0(12222>>=-b a by a x 的右焦点F 作圆222b y x =+的切线FM (切点为M )交y 轴于点P .若2=,则双曲线的离心率是A .5B .25C .6D .26 7.在二面角α﹣l ﹣β 的半平面α内,AB ⊥l ,垂足为B ;在半平面β内,CD ⊥l ,垂足为D ;M 为l 上任一点.若AB=2,CD=3,BD=1,则CM AM +的最小值为A. 26B .5C .23D .218.设x ~)11(,N ,其正态分布密度曲线如图,向正方形ABCD 中随机投掷10000个点,则落入阴影部分的点的个数的估计值是 (注:若x ~)(2μσ,N ,则%26.68)(=+<<-σμσμx P ,%44.95)22(=+<<-σμσμx P )A .7539B .6038C .6587D .70289.约公元263年,我国数学家刘徽发现:当圆内接正多边形的边数 无限增加时,多边形的面积可无限接近圆的面积.并创立了“割圆术”, 得到了圆周率精确到小数点后两位的近似值3.14.根据该思想设计的 程序框图(如图),则输出的n 值为(参考数据:sin15°=0.2588, sin7.5°=0.1305.)A .6B .12C .24D .4810.某棱锥的三视图如图所示,则该棱锥的外接球的直径为A .22B .11C .32D .1311.过点)12(-,P 作抛物线y x 42=的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则△PEF 与△OAB 的面积之比为A .23B .43 C .21 D .41 12.已知函数.20182),2(20,2sin )(⎪⎩⎪⎨⎧≤<-≤≤=x x f x x x f π设方程01)(2=-x f 的根为,,,,,21+∈N n x x x n 则n n x x x x x ,2,,2,2,1321- 的平均数为A .2017B .2018C .4034D .4036第Ⅱ卷二、填空题(每小题5分,共20分,把答案填写在答题纸的相应位置上) 13.已知向量,2==,,的夹角为120=- . 14.若nxx )3(-的展开式中各项系数的和为64,则该展开式中的常数项为 .15.已知定义在R 上的函数)(x f 的导函数为)(x f ',且⎰+'+-=22,)()2(3)(dx x f x f x x f 则=⎰2)(dx x f .16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,D 是AC 的中点,且c A A c C A a 31cos sin cos sin =+,552cos =B ,2=b ,则△ABC 的面积为 . 三、解答题(本大题共70分=10分+12×5分,解答应写出文字说明,证明过程或演算步骤)17.已知数列{}n a 的前n 项和为n S ,且22-=n n a S (n ∈N*),数列{}n b 满足b 1=1,且点),(1+n n b b P (n ∈N*)在直线2+=x y 上.(1)求数列{}n a 、{}n b 的通项公式; (2)设22sin22ππn con b n a c n n n ⋅-⋅=(n ∈N*),求数列{}n c 的前n 2项和n T 2. 18. 某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数再取整,绘制成如下,规定不低于85分(百分制)为优秀,甲班学生成绩的中位数为74. (1) ①求茎叶图中x 的值和乙班同学成绩的众数;②随机从乙班的数学成绩优秀的学生中逐个选取2人,求在第一个学生的成绩不小于90分的条件下,第二个学生的成绩也不小于90分的概率;(2)完成表格,若有90%以上的把握认为“数学成绩优秀与教学改革有关”的话,那么学校将扩大教学改革面,请问学校是否要扩大改革面?说明理由.参考表:19.如图,三棱台111C B A ABC -中,侧面BA B A 11与侧面CA C A 11是全等的梯形,若1111,C A A A AB A A ⊥⊥,且A AB A AB 11142==.(1)若2,21==,证明:DE ∥平面BC B C 11; (2)若二面角C 1﹣AA 1﹣B 为3π,求平面BA B A 11与平面BC B C 11所成的锐二面角的余弦值.20. 在直角坐标系xOy 中,椭圆)1(1:222>=+a y ax C 上异于顶点)0,(),0,(a B a A -的动点P 满足:直线PA 与直线PB 的斜率乘积为.41-(1)求实数a 的值;(2)设直线048=-+y x 被椭圆C 截得的弦上一动点M (不含端点),点)2,1(Q ,直线MQ 交椭圆C 于GH ,两点,证明:.GMQGHM QH = 21.已知函数xe x xf 2)1()(-=,x kx xg ln 1)(-+=,且)(x f 在0x x =处取得极小值.(1)若曲线)(x g y =在点()(,e g e )处切线恰好经过点))(,(00x f x P ,求实数k 的值;(2)若函数{})(),(m in )(x g x f x F =({}q p ,m in 表示q p ,中最小值)在)(+∞,0上函数恰有三个零点,求实数k 的取值范围.22.【坐标系与参数方程】:在直角坐标系xOy 中.直线l 的参数方程为⎩⎨⎧+=+=ααsin 1cos 1t y t x (t 为参数,πα<≤0).在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:=C . (1)当4πα=时,求C 与l 的交点的极坐标;(2)直线l 与曲线C 交于B A ,两点,且两点对应的参数21,t t 互为相反数,求AB 的值. 23.【不等式选讲】:设函数172)(+-=x x f . (1)求不等式x x f ≤)(的解集;(2)若存在x 使不等式a x x f ≤--12)(成立,求实数a 的取值范围.2020高三年级高考仿真考试 数学(理科)参考答案与试题解析一.选择题 1-4:CDBB 5-8:CDAC9-12:DBCA二.填空题 13..14.540-15.328-16.23 三.解答题17.解:(Ⅰ)当n=1,a 1=2…(1分) 当n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣2a n ﹣1…(2分)∴a n =2a n ﹣1(n ≥2),∴{a n }是等比数列,公比为2,首项a 1=2∴…(3分)又点在直线y=x+2上,∴b n+1=b n +2,∴{b n }是等差数列,公差为2,首项b 1=1,∴b n =2n ﹣1…(5分) (Ⅱ)…(7分)T 2n =(a 1+a 3+…+a 2n ﹣1)﹣(b 2+b 4+…b 2n ) =…(12分)18.解:(1)①由甲班同学成绩的中位数为74, 所以7x+75=2×74,得x=3,由茎叶图知,乙班同学成绩的众数为78,83;②设在第一个学生的成绩不小于90分的条件下,第二个学生的成绩也不小于90分的概率为p,则2112767=⨯⨯=p . (2)填写列联表,如下;依题意知,所以有90%以上的把握认为“数学成绩优秀与教学改革有关”,学校可以扩大教学改革面.19.(1)证明:连接AC1,BC1,在梯形A1C1CA中,AC=2A1C1,∵AC1∩A1C=D,,∴,又,∴DE∥BC1,∵BC1⊂平面BCC1B1,DE⊄平面BCC1B1,∴DE∥平面BCC1B1 ;(2)解:侧面A1C1CA是梯形,∵A1A⊥A1C1,∴AA1⊥AC,又A1A⊥AB,∴∠BAC为二面角C1﹣AA1﹣B的平面角,则∠BAC=,∴△ABC,△A1B1C1均为正三角形,在平面ABC内,过点A作AC的垂线,如图建立空间直角坐标系,不妨设AA1=1,则A1B1=A1C1=2,AC=AC=4,故点A1(0,0,1),C(0,4,0),.设平面A1B1BA的法向量为,则有,取,得;设平面C1B1BC的法向量为,则有,取,得.∴,故平面A 1B 1BA 与平面C 1B 1BC 所成的锐二面角的余弦值为.20.解:(1)设),,(y x P 则41-=-⋅+a x y a x y 即44222a y x =+ 又)1(1222>=+a y ax 故2=a(2)设),(),,(),,(221100y x G y x H y x M ,且不妨21y y > 设直线)2(1:-=-y m x QM ,则由⎩⎨⎧=-+-=-048)2(1y x y m x 得m my ++=8230①由⎩⎨⎧=+-=-44)2(122y x y m x 得0344)42()4(2222=--+-++m m y m m y m 则4344,42422212221+--=+-=+m m m y y m m m y y ② 而要证.GM QG HM QH = 只要证20201122y y y y y y --=--即证))(2(24210210y y y y y y ++=+ 把①②代入整理得证.21.解:(1)f ′(x )=(x 2﹣1)e x,令f ′(x )>0,解得:x >1或x <﹣1, 令f ′(x )<0,解得:﹣1<x <1,故f (x )在(﹣∞,﹣1)单调递增,在(﹣1,1)单调递减,在(1,+∞)单调递增, f (x )在x=1处取极小值,f (1)=0,故P (1,0), 由g ′(x )=k ﹣,故g ′(e )=k ﹣,且g (e )=ke ,则y=g (x )在点(e ,g (e ))处切线y ﹣ke=(k ﹣)(x ﹣e ), 由P (1,0)在切线方程,代入切线方程解得:k=﹣1,故实数k的值﹣1;(2)g(x)=1+kx﹣lnx.(x>0),g′(x)=k﹣,当k≤0时,g′(x)<0,则g(x)在(0,+∞)上单调递减,故g(x)无极值,当k>0时,由g′(x)=0,解得:x=,当x∈(0,)时,g′(x)<0,当x∈(,+∞)时,g′(x)>0,则g(x)在(0,)上单调递减,在(,+∞)单调递增,此时g(x)存在极小值g()=2+lnk,无极大值,可知:k≤0时,g(x)在(0,+∞)单调递减,g(x)在(0,+∞)上至多有一个零点,故k≤0,不符合题意,k>0时,g(x)极小值=g()=2+lnk,即为g(x)的最小值,(i)当g()=0时,则k=e﹣2,g(x)只有一个零点,不满足题意,(ii)当k>e﹣2,g()>0时,g(x)在(0,+∞)上无零点,不满足题意;(iii)当0<k<e﹣2时,g()<0,又g(1)=1+k>0,故g()•g(1)<0,∴g(x)在(1,)上有一个零点,设为x1,即g(x1)=0,由>e2,取x=,则g()=1+k﹣,下面证明g()=1+k﹣>0,令h(x)=x﹣lnx2,x>2,∴h′(x)=1﹣>0,故h(x)在(2,+∞)上单调递增,∴h(x)>h(2)=2(1﹣ln2)>0,即x>lnx2,∴e x>x2,令x=,则>,∴g()=1+k﹣>1+k•﹣=1>0,∴g()•g()<0,∴g(x)在(,)上有一个零点,设为x2,则g(x2)=0∵g(1)=k+1,f(x1)>0,f(x2)>0,故F(x)=min{f(x),g(x)}中,有:F(1)=f(1)=0<g(1)=1+k,F(x1)=g(x1)=0<f(x1),F(x2)=g(x2)=0<f(x2),即函数F(x)有三个零点;综上,满足题意的k的取值范围是(0,e﹣2).22.解:(1)依题意可知,直线l的极坐标方程为θ=(ρ∈R),当ρ>0时,联立,解得交点,当ρ=0时,经检验(0,0)满足两方程,当ρ<0时,无交点;综上,曲线C与直线l的点极坐标为(0,0),.(2)把直线l的参数方程代入曲线C,得t2+2(sinα﹣cosα)t﹣2=0,可知t1+t2=0,t1t2=﹣2,所以|AB|=|t1﹣t2|==2.23.解:(1)由f(x)≤x得|2x﹣7|+1≤x,∴,∴不等式f(x)≤x的解集为;(2)令g(x)=f(x)﹣2|x﹣1|=|2x﹣7|﹣2|x﹣1|+1,则,∴g(x)min=﹣4,∵存在x使不等式f(x)﹣2|x﹣1|≤a成立,∴g(x)min≤a,※-精品人教试卷- ※∴a≥﹣4.※- 推- 荐※下- 载- ※..。
北京市2020〖人教版〗高三数学复习试卷高考模拟检测试卷数学理科

北京市2020年〖人教版〗高三数学复习试卷高考模拟检测试卷数学理科第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合}012|{>-=x x A ,}1|{<=x x B ,则B A =A .}1,21{B .)1,1(-C .]21,1[-D .)1,21( 2.复数ii i z )1)(1(-+=在复平面上所对应的点Z 位于A .实轴上B .虚轴上C .第一象限D .第二象限 3.设n S 是等差数列}{n a 的前n 项和,已知32=a ,116=a ,则=7S A .13 B .35 C .49 D .63 4.执行右边的程序框图,则输出的S 值等于 A .91817161+++B . 9181716151++++ C . 10191817161++++ D . 1019181716151+++++5. 正三角形ABC 中,D 是边BC 上的点,若3,1AB BD ==,则AB AD ⋅=A . 221B .215C .213D .296.右图是一个几何体的三视图,则该几何体的体积是A . 3B .34 C . 1 D . 327.同时具有性质“①最小正周期是π,②图像关于3π=x 对称,③在]3,6[ππ-上是增函数”的一个函数是 A.)62sin(π+=x y B .)32cos(π+=x y C . )62sin(π-=x y D . )62cos(π-=x y左视图视图俯视图APB CO8. 对于函数x e x f ax ln )(-=,(a 是实常数),下列结论正确的一个是 A . 1=a 时, )(x f 有极大值,且极大值点)1,21(0∈x B . 2=a 时, )(x f 有极小值,且极小值点)41,0(0∈xC . 21=a 时, )(x f 有极小值,且极小值点)2,1(0∈x D . 0<a 时, )(x f 有极大值,且极大值点)0,(0-∞∈x第Ⅱ卷(非选择题)二、填空题共6个小题,每小题5分,共30分.9.设m 是常数,若点)5,0(F 是双曲线2219y xm -=的一个焦点,则m =.10.圆O 的半径为3,P 是圆O 外一点,5=PO ,PC 是圆O 的切线,C 是切点,则=PC .11.甲从点O 出发先向东行走了km 3,又向北行走了km 1到达点P ,乙从点O 出发向北偏西︒60方向行走了km 4到达点Q ,则Q P ,两点间的距离为.12.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是.13. 若A 为不等式组⎪⎩⎪⎨⎧≤-≥≤200x y y x 表示的平面区域,则A 的面积为;当a 的值从2-连续变化到1时,动直线a y x l =+:扫过的A 中的那部分区域的面积为.14. 已知条件:p ABC ∆不是等边三角形,给出下列条件:①ABC ∆的三个内角不全是︒60②ABC ∆的三个内角全不是︒60 ③ABC ∆至多有一个内角为︒60④ABC ∆至少有两个内角不为︒60则其中是p 的充要条件的是.(写出所有正确结论的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15. (本小题满分13分)在三角形ABC 中,角C B A ,,所对的边分别为c b a ,,,且2=a ,4π=C ,53cos =B . (Ⅰ)求A sin 的值; (Ⅱ)求ABC ∆的面积. 16.(本小题满分14分)在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 是正方形,且2==AD PA ,F E ,分别是棱PC AD ,的中点.(Ⅰ)求证://EF 平面PAB ; (Ⅱ)求证:⊥EF 平面PBC ; (Ⅲ)求二面角D PC E --的大小.P17. (本小题满分13分)对甲、乙两名篮球运动员分别在100场比赛中的得分情况进行统计,做出甲的得分频率分布直方图如右,列出乙的得分统计表如下:(Ⅰ)估计甲在一场比赛中得分不低于20分的概率; (Ⅱ)判断甲、乙两名运动员哪个成绩更稳定;(结论不要求证明)(Ⅲ)在乙所进行的100场比赛中,按表格中各分值区间的场数分布采用分层抽样法取出10场比赛,再从这10场比赛中随机选出2场作进一步分析,记这2场比赛中得分不低于30分的场数为ξ,求ξ的分布列.18. (本小题满分13分)已知函数b ax x x f +-=3)(3,),(R b a ∈. (Ⅰ)求)(x f 的单调区间; (Ⅱ)曲线)(x f y =在0=x 处的切线方程为023=-+a y ax ,且)(x f y =与x 轴有且只有一个公共点,求a 的取值范围. 19. (本小题满分14分)已知直线022=+-y x 经过椭圆)0(1:2222>>=+b a by a x C 的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆上位于x 轴上方的动点,直线AS ,BS 与直线4:=x l 分别交于N M ,(Ⅰ)求椭圆C 的方程;(Ⅱ)求线段MN 的长度的最小值. 20. (本小题满分13分)对于项数为m 的有穷数列}{n a ,记,,max {21k a a b =中的最大值,并称数列}{n b 是}{n a 的“控制数列”,如5,5,2,3,1(Ⅰ)若各项均为正整数的数列}{n a 的控制数列为5,5,4,3,2,写出所有的}{n a ; (Ⅱ)设}{n b 是}{n a 的控制数列,满足C C b a k m k (1=++-为常数m k ,,2,1 =), 求证:k k a b =;(Ⅲ)设100=m ,常数)1,21(∈a ,若n an a n n n ⋅--=+2)1(2)1(,}{n b 是}{n a 的控制数列, 求)()()(1001002211a b a b a b -++-+- 的值.答案一、选择题:)0485('=⨯'D B C C B A C C二、填空题:本大题共6小题,每小题5分,共30分.9.16 10.4 11.72 12.3213.2 ;47 14.①③④三、解答题:)0365('=⨯' 15. (本小题满分13分) 解:(Ⅰ) 53cos =B , ∴54sin =B ……………………1分∴)sin(sin C B A += ……………………2分C B C B sin cos cos sin += ……………………4分102722532254=⨯+⨯= ……………………6分 (Ⅱ)A aB b sin sin = ……………………8分 1027254=∴b , 728=∴b ……………………10分 C ab S ABC sin 21=∴∆, ……………………11分78= ………………………………13分 16.(本小题满分14分)(Ⅰ)证明:设G 是PB 的中点,连接GF AG ,∵F E ,分别是PC AD ,的中点, ∴BC GF 21//, BC AE 21// ∴AE GF //,∴AEFG 是平行四边形,∴AG EF // ………………2分∵⊄EF 平面PAB ⊂AG 平面PAB ,∴//EF 平面PAB ………………3分 (Ⅱ)∵AB PA =, ∴PB AG ⊥, ………………4分∵ABCD PA ⊥, ∴BC PA ⊥,又∵AB BC ⊥, ∴⊥BC 平面PAB ,∴AG BC ⊥, ………………6分 ∵PB 与BC 相交, ∴⊥AG 平面PBC , ∴⊥EF 平面PBC . ………………7分(Ⅲ)以AP AD AB ,,分别为x 轴、y 轴、z 轴,建立空间直角坐标系xyz A -, ………………8分∵2==AD PA , ∴)0,1,0(E ,)0,2,2(C ,)2,0,0(P ,)1,1,1(F 设H 是PD 的中点,连接AH ∵⊥AG 平面PBC , ∴同理可证⊥AH 平面PCD ,∴是平面PCD 的法向量,)1,1,0(= ………………9分)0,1,2(=,)2,1,0(-=EP设平面PEC 的法向量),,(z y x m = ,则0,0=⋅=⋅m∴02,02=+-=+z y y x 令2=y ,则1,1=-=z x∴)1,2,1(-=m………………12分∴23263||||,cos =⋅=>=<AH m m. ………………13分 ∴二面角D PC E --的大小为︒30 ………………14分 17. (本小题满分13分) 解:(Ⅰ)72.0………………2分(Ⅱ)甲更稳定,………………5分(Ⅲ)按照分层抽样法,在),10,0[),20,10[),30,20[),40,30[ 内抽出的比赛场数分别 为3,4,2,1, ………………6分ξ的取值为2,1,0,………………7分1574521)0(21027====C C P ξ, ………………9分1574521)1(2101317==⋅==C C C P ξ, ………………10分 151453)2(21023====C C P ξ , ………………11分ξ的分布列为:18. (本小题满分13分)解: (Ⅰ)a x x f 33)(2-=', ………………1分(1)当0≤a 时,0)(≥'x f 恒成立,此时)(x f 在),(+∞-∞上是增函数,……2分 (2)当0>a 时,令0)(='x f ,得a x ±=;令0)(>'x f ,得a x -<或a x >令0)(<'x f ,得a x a <<-∴)(x f 在),(a --∞和),(+∞a 上是增函数,在],[a a -上是减函数. ………………5 分 (Ⅱ)∵a f 3)0(-=', b f =)0(,∴曲线)(x f y =在0=x 处的切线方程为ax b y 3-=-, 即03=-+b y ax ,∴a b 2=,∴a ax x x f 23)(3+-= ………………7 分由(Ⅰ)知,(1)当0≤a 时,)(x f 在区间),(+∞-∞单调递增,所以题设成立………………8 分 (2)当0>a 时,)(x f 在a x -=处达到极大值,在a x =处达到极小值,此时题设成立等价条件是0)(<-a f 或0)(>a f , 即:02)(3)(3<+---a a a a 或02)(3)(3>+-a a a a即:023<++-a a a a a 或023>+-a a a a a ………………11 分 解得:10<<a ………………12 分由(1)(2)可知a 的取值范围是)1,(-∞. ………………13分 19. (本小题满分14分)解:(Ⅰ).椭圆 C 的方程为1422=+y x . ………………3分(Ⅱ)直线AS 的斜率k 显然存在,且0>k ,故可设直线AS 的方程为)2(+=x k y , ………………4分从而)6,4(k M ………………5分由⎪⎩⎪⎨⎧=++=14)2(22y x x k y 得041616)41(2222=-+++k x k x k , ………………7分 设),(11y x S ,则22141416)2(k k x +-=⨯-, 得2214182k k x +-=, ………………8分从而21414k k y +=,即)414,4182(222kkk k S ++-, ………………9分 又)0,2(B ,故直线BS 的方程为)2(41--=x ky ………………10分 由⎪⎩⎪⎨⎧=--=4)2(41x x k y 得⎪⎩⎪⎨⎧-==k y x 214∴)21,4(k N -, ………………11分故kk MN 216||+=, ………………12分又∵0>k , ∴322162216||=⨯≥+=kk k k MN , ………………13分 当且仅当k k 216=,即63=k 时等号成立, ∴63=k 时,线段MN 的长度取得最小值为32. ……………………14分 20. (本小题满分13分)(1)数列}{n a 为:2, 3, 4, 5, 1;2, 3, 4, 5, 2;2, 3, 4, 5, 3; 2, 3, 4, 5, 4;2, 3, 4, 5, 5. …………3分 (2)因为},,,max{21k k a a a b =,},,,,max{1211++=k k k a a a a b ,所以k k b b ≥+1. …………4分 因为C b a k m k =++-1,C b a k m k =+-+1,所以011≥-=--+-+k m k m k k b b a a ,即k k a a ≥+1. …………6分 因此,k k a b =. …………8分(3)对25,,2,1 =k ,)34()34(234-+-=-k k a a k ;)24()24(224-+-=-k k a a k ;)14()14(214---=-k k a a k ;)4()4(24k k a a k -=.比较大小,可得3424-->k k a a .因为121<<a ,所以0)38)(1(2414<--=---k a a a k k ,即1424-->k k a a ; 0)14)(12(2244>--=--k a a a k k ,即244->k k a a .又k k a a 414>+,从而3434--=k k a b ,2424--=k k a b ,2414--=k k a b ,k k a b 44=.因此)()()(1001002211a b a b a b -++-+-=)()()()()(9999141410107733a b a b a b a b a b k k -++-++-+-+--- =)()()()()(999814241097632a a a a a a a a a a k k -++-++-+-+--- =∑=---2511424)(k k k a a=∑=--251)38()1(k k a =)1(2525a -. ………………13分。
北京市2020〖人教版〗高三数学复习试卷高考数学试卷文科高考模拟卷高考模拟卷

北京市2020年〖人教版〗高三数学复习试卷高考数学试卷文科高考模拟卷高考模拟卷创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B ∩∁A=()∪A.{2}B.{3,4}C.{1,4,5}D.{2,3,4,5}2.(5分)已知,则双曲线C1:与C2:的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q4.(5分)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x﹣6.423;②y与x负相关且=﹣3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=﹣4.326x﹣4.578.其中一定不正确的结论的序号是()A.①②B.②③C.③④D.①④5.(5分)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.6.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A. B. C. D.7.(5分)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A. B. C. D.8.(5分)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R 上为()A.奇函数B.偶函数C.增函数D.周期函数9.(5分)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元10.(5分)已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.(0,1)D.(0,+∞)二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2﹣3i,则z2=.12.(5分)某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为;(Ⅱ)命中环数的标准差为.13.(5分)阅读如图所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i=.14.(5分)已知圆O:x2+y2=5,直线l:xcosθ+ysinθ=1(0).设圆O 上到直线l的距离等于1的点的个数为k,则 k=.15.(5分)在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=.16.(5分)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.(5分)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(Ⅰ)图中格点四边形DEFG对应的S,N,L分别是;(Ⅱ)已知格点多边形的面积可表示为S=aN+bL+c其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=(用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(12分)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.19.(13分)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=﹣18.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数n,使得S n≥?若存在,求出符合条件的所有n的集合;若不存在,说明理由.20.(13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A 点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A 处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1﹣A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S.中(Ⅰ)证明:中截面DEFG是梯形;(Ⅱ)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1﹣A2B2C2的体积V)时,可用近似公式V估=S中•h来估算.已知V=(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.21.(13分)设a>0,b>0,已知函数f(x)=.(Ⅰ)当a≠b时,讨论函数f(x)的单调性;(Ⅱ)当x>0时,称f(x)为a、b关于x的加权平均数.(i)判断f(1),f(),f()是否成等比数列,并证明f()≤f ();(ii)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f (x)≤G,求x的取值范围.22.(14分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B ∩∁A=()∪A.{2}B.{3,4}C.{1,4,5}D.{2,3,4,5}【分析】根据全集U和集合A先求出集合A的补集,然后求出集合A的补集与集合B的交集即可【解答】解:全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则C U A={3,4,5},又因为B={2,3,4},则(C U A)∩B={3,4}.故选:B.【点评】此题考查了补集及交集的运算,是一道基础题,学生在求补集时应注意全集的范围.2.(5分)已知,则双曲线C1:与C2:的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等【分析】通过双曲线的方程求出双曲线的实半轴的长,虚半轴的长,焦距即可得到结论.【解答】解:双曲线C1:可知a=sinθ,b=cosθ,2c=2(sin2θ+cos2θ)=2;双曲线C2:可知,a=cosθ,b=sinθ,2c=2(sin2θ+cos2θ)=2;所以两条双曲线的焦距相等.故选:D.【点评】本题考查双曲线的简单性质的应用,考查计算能力.3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选:A.【点评】本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x﹣6.423;②y与x负相关且=﹣3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=﹣4.326x﹣4.578.其中一定不正确的结论的序号是()A.①②B.②③C.③④D.①④【分析】由题意,可根据回归方程的一次项系数的正负与正相关或负相关的对应对四个结论作出判断,得出一定不正确的结论来,从而选出正确选项.【解答】解:①y与x负相关且=2.347x﹣6.423;此结论误,由线性回归方程知,此两变量的关系是正相关;②y与x负相关且;此结论正确,线性回归方程符合负相关的特征;③y与x正相关且;此结论正确,线性回归方程符合正相关的特征;④y与x正相关且.此结论不正确,线性回归方程符合负相关的特征.综上判断知,①④是一定不正确的故选:D.【点评】本题考查线性回归方程,正确理解一次项系数的符号与正相关还是负相关的对应是解题的关键,本题是记忆性的基础知识考查题,较易5.(5分)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.【分析】解答本题,可先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项【解答】解:考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C正确,B不正确.故选:C.【点评】本题考查函数的表示方法﹣﹣图象法,正确解答本题关键是理解坐标系的度量与小明上学的运动特征6.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A. B. C. D.【分析】函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.【解答】解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin (x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选:B.【点评】此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.7.(5分)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A. B. C. D.【分析】先求出向量、,根据投影定义即可求得答案.【解答】解:,,则向量方向上的投影为:•cos<>=•===,故选:A.【点评】本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.8.(5分)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R 上为()A.奇函数B.偶函数C.增函数D.周期函数【分析】依题意,可求得f(x+1)=f(x),由函数的周期性可得答案.【解答】解:∵f(x)=x﹣[x],∴f(x+1)=(x+1)﹣[x+1]=x+1﹣[x]﹣1=x﹣[x]=f(x),∴f(x)=x﹣[x]在R上为周期是1的函数.故选:D.【点评】本题考查函数的周期性,理解题意,得到f(x+1)=f(x)是关键,属于基础题.9.(5分)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元【分析】设分别租用A、B两种型号的客车x辆、y辆,总租金为z元.可得目标函数z=1600x+2400y,结合题意建立关于x、y的不等式组,计算A、B型号客车的人均租金,可得租用B型车的成本比A型车低,因此在满足不等式组的情况下尽可能多地租用B型车,可使总租金最低.由此设计方案并代入约束条件与目标函数验证,可得当x=5、y=12时,z达到最小值36800.【解答】解:设分别租用A、B两种型号的客车x辆、y辆,所用的总租金为z 元,则z=1600x+2400y,其中x、y满足不等式组,(x、y∈N)∵A型车租金为1600元,可载客36人,∴A型车的人均租金是≈44.4元,同理可得B型车的人均租金是=40元,由此可得,租用B型车的成本比租用A型车的成本低因此,在满足不等式组的情况下尽可能多地租用B型车,可使总租金最低由此进行验证,可得当x=5、y=12时,可载客36×5+60×12=900人,符合要求且此时的总租金z=1600×5+2400×12=36800,达到最小值故选:C.【点评】题给出实际应用问题,要求我们建立目标函数和线性约束条件,并求目标函数的最小值,着重考查了简单的线性规划的应用的知识,属于基础题. 10.(5分)已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.(0,1)D.(0,+∞)【分析】先求导函数,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.【解答】解:函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选:B.【点评】本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2﹣3i,则z2=﹣2+3i.【分析】直接利用复数对应的点的坐标,求出对称点的坐标,即可得到复数z2.【解答】解:设复数z1,z2在复平面内对应的点关于原点对称,复数z1,z2的实部相反,虚部相反,z1=2﹣3i,所以z2=﹣2+3i.故答案为:﹣2+3i.【点评】本题考查复数的几何意义,对称点的坐标的求法,基本知识的应用. 12.(5分)某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为7;(Ⅱ)命中环数的标准差为2.【分析】根据题中的数据,结合平均数、方差的计算公式,不难算出学员在一次射击测试中射击命中环数的平均数和方差,从而得到答案.【解答】解:(I)根据条件中的数据,得学员在一次射击测试中命中环数的平均数是=(7+8+7+9+5+4+9+10+7+4)=7,(II)可得学员在一次射击测试中命中环数的方差是s2=[(7﹣7)2+(8﹣7)2+…+(4﹣7)2]=4.故答案为:7,2.【点评】本题以求两人射击命中环数的平均数和方差为载体,考查了样本平均数、方差的计算公式和对特征数的处理等知识,属于基础题.13.(5分)阅读如图所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i=4.【分析】框图输入m的值后,根据对A,B,i的赋值执行运算i=i+1,A=A×m,B=B×i,然后判断A<B是否成立不成立继续执行循环,成立则跳出循环,输出i的值.【解答】解:框图首先给累积变量A,B赋值1,1,给循环变量i赋值0.若输入m的值为2,执行i=1+1,A=1×2=2,B=1×1=1;判断2<1不成立,执行i=1+1=2,A=2×2=4,B=1×2=2;判断4<2不成立,执行i=2+1=3,A=4×2=8,B=2×3=6;判断8<6不成立,执行i=3+1=4,A=8×2=16,B=6×4=24;判断16<24成立,跳出循环,输出i的值为4.故答案为4.【点评】本题考查了循环结构中的直到型结构,即先执行后判断,不满足条件执行循环,直到满足条件跳出循环,算法结束,是基础题.14.(5分)已知圆O:x2+y2=5,直线l:xcosθ+ysinθ=1(0).设圆O 上到直线l的距离等于1的点的个数为k,则 k=4.【分析】找出圆O的圆心坐标与半径r,利用点到直线的距离公式求出圆心O 到直线l的距离d,根据d与r的大小关系及r﹣d的值,即可作出判断.【解答】解:由圆的方程得到圆心O(0,0),半径r=,∵圆心O到直线l的距离d==1<,且r﹣d=﹣1>1=d,∴圆O上到直线l的距离等于1的点的个数为4,即k=4.故答案为:4【点评】此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,弄清题意是解本题的关键.15.(5分)在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=3.【分析】画出数轴,利用x满足|x|≤m的概率为,直接求出m的值即可.【解答】解:如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,所以m=3.故答案为:3.【点评】本题考查几何概型的求解,画出数轴是解题的关键.16.(5分)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是3寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)【分析】由题意得到盆中水面的半径,利用圆台的体积公式求出水的体积,用水的体积除以盆的上地面面积即可得到答案.【解答】解:如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.因为积水深9寸,所以水面半径为寸.则盆中水的体积为(立方寸).所以则平地降雨量等于(寸).故答案为3.【点评】本题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是基础题.17.(5分)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(Ⅰ)图中格点四边形DEFG对应的S,N,L分别是3,1,6;(Ⅱ)已知格点多边形的面积可表示为S=aN+bL+c其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=79(用数值作答).【分析】(Ⅰ)利用新定义,观察图形,即可求得结论;(Ⅱ)根据格点多边形的面积S=aN+bL+c,结合图中的格点三角形ABC及格点四边形DEFG,建立方程组,求出a,b,c即可求得S.【解答】解:(Ⅰ)观察图形,可得S=3,N=1,L=6;(Ⅱ)不妨设某个格点四边形由两个小正方形组成,此时,S=2,N=0,L=6∵格点多边形的面积S=aN+bL+c,∴结合图中的格点三角形ABC及格点四边形DEFG可得∴,∴S=N+﹣1将N=71,L=18代入可得S=79.故答案为:(Ⅰ)3,1,6;(Ⅱ)79.【点评】本题考查新定义,考查学生分析解决问题的能力,注意区分多边形内部格点数和边界格点数是关键.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(12分)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.【分析】(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a.又由正弦定理得即可得到即可得出.【解答】解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.【点评】熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.19.(13分)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=﹣18.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数n,使得S n≥?若存在,求出符合条件的所有n的集合;若不存在,说明理由.【分析】(Ⅰ)设数列{a n}的公比为q,依题意,列出关于其首项a1与公办q 的方程组,解之即可求得数列{a n}的通项公式;(Ⅱ)依题意,可求得1﹣(﹣2)n≥,对n的奇偶性分类讨论,即可求得答案.【解答】(Ⅰ)设数列{a n}的公比为q,显然q≠1,由题意得,由,解得q=﹣2,a3=12,故数列{a n}的通项公式为a n=a3•q n﹣3=12×(﹣2)n﹣3=3×(﹣2)n﹣1.(Ⅱ)由(Ⅰ)有a n=(﹣)×(﹣2)n.若存在正整数n,使得S n≥,则S n==1﹣(﹣2)n,即1﹣(﹣2)n≥,当n为偶数时,2n≤﹣,上式不成立;当n为奇数时,1+2n≥,即2n≥,则n≥11.综上,存在符合条件的正整数n=2k+1(k≥5),且所有这样的n的集合为{n|n=2k+1(k≥5)}.【点评】本题考查等比数列的通项公式,考查等比数列的求和,考查分类讨论思想与方程思想,考查综合分析与推理运算能力,属于难题.20.(13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A 点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A 处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1﹣A2B2C2所得的截面DEFG为该多面体的一个中截面,其面.积记为S中(Ⅰ)证明:中截面DEFG是梯形;(Ⅱ)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1﹣A2B2C2的体积V)时,可用近似公式V估=S中•h来估算.已知V=(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.【分析】(Ⅰ)首先利用线面垂直、线面平行的性质及平行公理证出四边形DEFG的一组对边相互平行,然后由梯形中位线知识证明一组对边不相等,则可证明中截面DEFG是梯形;(Ⅱ)由题意可证得MN是中截面梯形DEFG的高,根据四边形A1A2B2B1,A1A2C2C1均是梯形,利用梯形的中位线公式吧DE,FG用d1,d2,d3表示,这样用含有a,h,d1,d2,d3的代数式表示,把V=(d1+d2+d3)S与V就能把V估作差后利用d1,d2,d3的大小关系可以判断出差的符号,及能判断V估与V的估大小关系.【解答】(Ⅰ)依题意A1A2⊥平面ABC,B1B2⊥平面ABC,C1C2⊥平面ABC,所以A1A2∥B1B2∥C1C2,又A1A2=d1,B1B2=d2,C1C2=d3,且d1<d2<d3.因此四边形A1A2B2B1,A1A2C2C1均是梯形.由AA2∥平面MEFN,AA2⊂平面AA2B2B,且平面AA2B2B∩平面MEFN=ME,可得AA2∥ME,即A1A2∥DE.同理可证A1A2∥FG,所以DE∥FG.又M,N分别为AB,AC的中点,则D,E,F,G分别为A1B1,A2B2,A2C2,A1C1的中点,即DE、FG分别为梯形A1A2B2B1、A1A2C2C1的中位线.因此DE=,FG=,而d1<d2<d3,故DE<FG,所以中截面DEFG是梯形;<V.证明:(Ⅱ)V估由A1A2⊥平面ABC,MN⊂平面ABC,可得A1A2⊥MN.而EM∥A1A2,所以EM⊥MN,同理可得FN⊥MN.由MN是△ABC的中位线,可得MN=BC=a,即为梯形DEFG的高,因此,即.又S=ah,所以.于是=.由d1<d20,d3﹣d1>0,故V估<V.【点评】本题考查直三棱柱的性质,体积,线面关系及空间想象能力,解答该题的关键是要有较强的空间想象能力,避免将各线面间的关系弄错,此题是中高档题.22.(14分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.【分析】(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.【解答】解:以题意可设椭圆C1和C2的方程分别为,.其中a>m>n>0,>1.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=﹣m,于是.若,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k>0),点M(﹣a,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C=﹣x B,x D=﹣x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.【点评】本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅱ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.21.(13分)设a>0,b>0,已知函数f(x)=.(Ⅰ)当a≠b时,讨论函数f(x)的单调性;(Ⅱ)当x>0时,称f(x)为a、b关于x的加权平均数.(i)判断f(1),f(),f()是否成等比数列,并证明f()≤f();(ii)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f (x)≤G,求x的取值范围.【分析】(Ⅰ)确定函数的定义域,利用导数的正负,结合分类讨论,即可求得数f(x)的单调性;(Ⅱ)(i)利用函数解析式,求出f(1),f(),f(),根据等比数列的定义,即可得到结论;(ii)利用定义,结合函数的单调性,即可确定x的取值范围.【解答】解:(Ⅰ)函数的定义域为{x|x≠﹣1},∴当a>b>0时,f′(x)>0,函数f(x)在(﹣∞,﹣1),(﹣1,+∞)上单调递增;当0<a<b时,f′(x)<0,函数f(x)在(﹣∞,﹣1),(﹣1,+∞)上单调递减.(Ⅱ)(i)计算得f(1)=,f()=,f()=.∵∴f(1),f(),f()成等比数列,∵a>0,b>0,∴≤∴f()≤f();(ii)由(i)知f()=,f()=,故由H≤f(x)≤G,得f()≤f(x)≤f().当a=b时,f()=f(x)=f()=f(1)=a,此时x的取值范围是(0,+∞),当a>b时,函数f(x)在(0,+∞)上单调递增,这时有≤x≤,即x的取值范围为≤x≤;创作人:百里严守创作日期:202B.03.31当a<b时,函数f(x)在(0,+∞)上单调递减,这时有≤x ≤,即x的取值范围为≤x ≤.【点评】本题考查函数的单调性,考查等比数列,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校创作人:百里严守创作日期:202B.03.31。
江西省南昌市2020届高考数学模拟考试卷 新课标 人教版

江西省南昌市2020届高考数学模拟考试卷一、选择题:(本大题共12小题,每小题5分,共60分) 1、(理科做)=+-ii i 1)1(( ) A. i B -i C 1 D -1 (文科做)f(x)=ax 3+3x 2+2,若f '(-1)=3,则a 的值等于 ( ) A.3 B 2 C 1.5 D 42、如果全集U={a ,b ,c ,d ,e},M={a ,c ,d},N={b ,d ,e},那么N C M C U U I 等于( )A 、{a ,c}B 、φC 、{b ,e}D 、{a}3、如果45)1(2+-=+x x x f ,那么f(x)是 ( ) A.x 2-7x+10B.x 2-7x -10C.x 2+7x -10D.x 2-4x+64、函数4f (x)x 3x=++在(,2]-∞-上 ( ) A 无最小值,有最大值7 B 无最大值,有最小值 C 有最大值7 , 有最小值—1 D 有最大值—1,无最小值5、指数函数)(x f y =的反函数的图像过点(2,-1),则此指数函数为( )A 、xy )21(= B 、x y 2= C 、xy 3= D 、x y 10=6、已知b a bx ax x f +++=3)(2是偶函数,其定义域为[a -1,2a ],则点(a ,b )的轨迹为( )A 、点B 、直线C 、线段D 、射线 7、若函数c bx x x f ++=2)(的图象的顶点在第四象限,则函数)(x f '的图象是( )(D )8、 设, 则 ( )A .b a c >>B .c a b >>C .c b a >>D .b c a >>9、已知10<<a ,则方程|log |||x aa x =的实根个数是( )A 、1个B 、2个C 、3个D 、1个或2个或3个 10、已知)12(+=x f y 的图象关于y 轴对称,则函数)2(x f y =的图象的对称轴是( )A .1=xB .2=xC .21-=x D .21=x 11、已知f (x )是定义在R 上的奇函数,且满足f (3+x )=f (3-x ),若)30(,∈x 时, f (x )=x2,则)3,6(--∈x 时( )A 、f (x )=x 2B 、f (x )=-x 2C 、f (x )=62+xD 、f (x )=-62+x 12.)21( 22≤≤-=x x x y 反函数是( )A .)11( 112≤≤--+=x x yB .)10( 112≤≤-+=x x yC .)11( 112≤≤---=x x yD .)10( 112≤≤--=x x y二、填空题:(本题每小题4分,共16分)13、已知函数f(x)=1-x 2(x<0),则f -1(-3)= 。
安徽省2020年高考数学理科模拟考试卷新课标人教版

卷考试安徽省2020 年高考数学理科模拟一、选择题:本大题共12 小题,每题5 分,共60 分,在每题给出的四个选项中,只有一项是切合题目要求的。
1y f 的图象过点(1, 0) ,则y f ( x 1) 的反函数的图象必定过点()1 x 1.已知函数( )2A.(1, 2) B .( 2,1) C .(0,2) D .( 2,0)2 .设会合M {a,b, c} ,N { 0,1} ,映照 f : M N知足f (a) f (b) f (c) ,则映照f : M N 的个数为()A.1 B .2 C .3 D .43.(()1 i )(1 2i)1 iA. 2 i B. 2 i C.2 i D.2 i4.若)(0, ,则函数y log sin (1 x) 2 的解集是()212 2 2 2A.( 1, sin )x B .x (cos ,1 ) C .x (cos , ) D .x ( 1, c os )25.已知数列{ } 60, 3, | | | | | | | |a n 中a1 a n a n则a a a a 等于()1 123 30A.445 B.765 C.1080 D.31052x , log , 2 , cos 26 .在y y 2 x y x y x这四个函数中,当0 x1 x2 1时,使x1 x f (x ) f (x )2 1 2f ( ) 恒建立的函数的个数是()2 2A.0 B.1 C.2 D.3x 0,7.不等式组3x 2 x .的解集是()3 x 2 xA.{ x | 0 x 2}B. { x | 0 x 2. 5}C.{ x | 0 x 6}D. { x | 0 x 3}1 2 3 8.数列, , ,2 4 8 ⋯⋯的前n项和为()A.1 -1n2B.2 -n 2n2C.n(1 -1n2) D.2 -1n21+nn29.无量等比数列{ a} 的公比为q,|q|<1 ,首项a1 =1,若其每一项都等于它后边全部项的和的nk 倍,则k的取值范围是()A.[0, +∞)B.( -∞, -2)C.( -∞, -2) ∪(0, +∞)D.( -2, 0)2(a n ) a1 n10.若数列a n知足a =5,1 an=2a 21 n(n ∈N),则其前10项和是()A .200 B.150 C.100 D.5011.由奇数构成数组(3, 5), (7, 9, 11), (13, 15, 17, 19), ⋯⋯,第n组的第一个数应是()A.n(n -1)B.n(n +1)C.n(n +1) +1D.n(n-1) +112.数列{ a n } 的前n项和是S n ,假如S n =3+2 a n (n ∈N),则这个数列必定是()A. 等比数列B. 等差数列C. 除掉第一项后是等比数列D. 除掉第一项后是等差数列二、填空题:本大题共 4 小题,每题4 分,共16 分,把答案填写在答题卡的相应地点。
上海市2020〖人教版〗高考数学模拟试卷理科

上海市2020年〖人教版〗高考数学模拟试卷理科一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石2.(5分)i为虚数单位,i607的共轭复数为()A.iB.﹣iC.1D.﹣13.(5分)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.294.(5分)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P (X≥t)≥P(Y≥t)5.(5分)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a12+a22+…+a n﹣12)(a22+a32+…+a n2)=(a1a2+a2a3+…+a n﹣1a n)2,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(5分)已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnxB.sgn[g(x)]=﹣sgnxC.sgn[g (x)]=sgn[f(x)]D.sgn[g(x)]=﹣sgn[f(x)]7.(5分)在区间[0,1]上随机取两个数x,y,记P1为事件“x+y ≥”的概率,P2为事件“|x﹣y|≤”的概率,P3为事件“xy≤”的概率,则()A.P1<P2<P3B.P2<P3<P1C.P3<P1<P2D.P3<P2<P18.(5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b (a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e29.(5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77B.49C.45D.3010.(5分)设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是()A.3B.4C.5D.6二、填空题:本大题共4小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)已知向量⊥,||=3,则•=.12.(5分)函数f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln (x+1)|的零点个数为.13.(5分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m 后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.14.(5分)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为;(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:①=;②﹣=2;③+=2.其中正确结论的序号是.(写出所有正确结论的序号)选修4-1:几何证明选讲15.(5分)如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则=.选修4-4:坐标系与参数方程16.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sinθ﹣3cosθ)=0,曲线C的参数方程为( t为参数),l与C相交于A,B两点,则|AB|=.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(11分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0π2πxAsin(ωx+φ)05﹣50(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.18.(12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.19.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值. 20.(12分)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为W121518P0.30.50.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(1)求Z的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.21.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB 内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.22.(14分)已知数列{a n}的各项均为正数,b n=n(1+)n a n(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e 的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n),数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<eS n.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,i607的共轭复数为()A.iB.﹣iC.1D.﹣1【分析】直接利用复数的单位的幂运算求解即可.【解答】解:i607=i604+3=i3=﹣i,它的共轭复数为:i.故选:A.【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查.2.(5分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石【分析】根据254粒内夹谷28粒,可得比例,即可得出结论.【解答】解:由题意,这批米内夹谷约为1534×≈169石,故选:B.【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.3.(5分)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.29【分析】直接利用二项式定理求出n,然后利用二项式定理系数的性质求出结果即可.【解答】解:已知(1+x)n的展开式中第4项与第8项的二项式系数相等,可得,可得n=3+7=10.(1+x)10的展开式中奇数项的二项式系数和为:=29.故选:D.【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用以及计算能力.4.(5分)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P (X≥t)≥P(Y≥t)【分析】直接利用正态分布曲线的特征,集合概率,直接判断即可.【解答】解:正态分布密度曲线图象关于x=μ对称,所以μ1<μ2,从图中容易得到P(X≤t)≥P(Y≤t).故选:C.【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键量,结合正态曲线的图形特征,归纳正态曲线的性质.5.(5分)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a12+a22+…+a n﹣12)(a22+a32+…+a n2)=(a1a2+a2a3+…+a n﹣1a n)2,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件【分析】运用柯西不等式,可得:(a12+a22+…+a n﹣12)(a22+a32+…+a n2)≥(a1a2+a2a3+…+a n﹣1a n)2,讨论等号成立的条件,结合等比数列的定义和充分必要条件的定义,即可得到.【解答】解:由a1,a2,…,a n∈R,n≥3.运用柯西不等式,可得:(a12+a22+…+a n﹣12)(a22+a32+…+a n2)≥(a1a2+a2a3+…+a n﹣1a n)2,若a1,a2,…,a n成等比数列,即有==…=,则(a12+a22+…+a n﹣12)(a22+a32+…+a n2)=(a1a2+a2a3+…+a n﹣1a n)2,即由p推得q,但由q推不到p,比如a1=a2=a3=…=a n=0,则a1,a2,…,a n不成等比数列.故p是q的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查等比数列的定义,注意运用定义法和柯西不等式解题是关键.6.(5分)已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnxB.sgn[g(x)]=﹣sgnxC.sgn[g (x)]=sgn[f(x)]D.sgn[g(x)]=﹣sgn[f(x)]【分析】直接利用特殊法,设出函数f(x),以及a的值,判断选项即可.【解答】解:由于本题是选择题,可以采用特殊法,符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f (ax)(a>1),不妨令f(x)=x,a=2,则g(x)=f(x)﹣f(ax)=﹣x,sgn[g(x)]=﹣sgnx.所以A不正确,B正确,sgn[f(x)]=sgnx,C不正确;D正确;对于D,令f(x)=x+1,a=2,则g(x)=f(x)﹣f(ax)=﹣x,sgn[f(x)]=sgn(x+1)=;sgn[g(x)]=sgn(﹣x)=,﹣sgn[f(x)]=﹣sgn(x+1)=;所以D不正确;故选:B.【点评】本题考查函数表达式的比较,选取特殊值法是解决本题的关键,注意解题方法的积累,属于中档题.7.(5分)在区间[0,1]上随机取两个数x,y,记P1为事件“x+y ≥”的概率,P2为事件“|x﹣y|≤”的概率,P3为事件“xy≤”的概率,则()A.P1<P2<P3B.P2<P3<P1C.P3<P1<P2D.P3<P2<P1【分析】作出每个事件对应的平面区域,求出对应的面积,利用几何概型的概率公式进行计算比较即可.【解答】解:分别作出事件对应的图象如图(阴影部分):P1:D(0,),F(,0),A(0,1),B(1,1),C(1,0),则阴影部分的面积S1=1×1﹣=1﹣=,S2=1×1﹣2×=1﹣=,S3=1×+dx=+lnx|=﹣ln=+ln2,∴S2<S3<S1,即P2<P3<P1,故选:B.【点评】本题主要考查几何概型的概率计算,利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.8.(5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b (a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e2【分析】分别求出双曲线的离心率,再平方作差,即可得出结论.【解答】解:由题意,双曲线C1:c2=a2+b2,e1=;双曲线C2:c′2=(a+m)2+(b+m)2,e2=,∴=﹣=,∴当a>b时,e1>e2;当a<b时,e1<e2,故选:B.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.9.(5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77B.49C.45D.30【分析】由题意可得,A={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),B={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2)(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)},根据定义可求【解答】解:解法一:∵A={(x,y)|x2+y2≤1,x,y∈Z}={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),B={(x,y)||x|≤2,|y|≤2,x,y∈Z}={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2)(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)}∵A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},∴A⊕B={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2),(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2),(﹣2,3),(﹣2,﹣3),(0,﹣3),(2,﹣3),(﹣1,3),(﹣1,﹣3),(1,3),(2,3),(0,3),(3,﹣1),(3,0)(3,1),(3,2),(3,﹣2)(﹣3,2)(﹣3,1),(1,﹣3),(﹣3,﹣1),(﹣3,0),(﹣3,﹣2)}共45个元素;解法二:因为集合A={(x,y)|x2+y2≤1,x,y∈Z},所以集合A中有5个元素,即图中圆中的整点,B={(x,y)||x|≤2,|y|≤2,x,y∈Z},中有5×5=25个元素,即图中正方形ABCD中的整点,A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B}的元素可看作正方形A1B1C1D1中的整点(除去四个顶点),即7×7﹣4=45个.故选:C.【点评】本题以新定义为载体,主要考查了集合的基本定义及运算,解题中需要取得重复的元素.10.(5分)设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是()A.3B.4C.5D.6【分析】由新定义可得t的范围,验证可得最大的正整数n为4.【解答】解:若[t]=1,则t∈[1,2),若[t2]=2,则t∈[,)(因为题目需要同时成立,则负区间舍去),若[t3]=3,则t∈[,),若[t4]=4,则t∈[,),若[t5]=5,则t∈[,),其中≈1.732,≈1.587,≈1.495,≈1.431<1.495,通过上述可以发现,当t=4时,可以找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)上,但当t=5时,无法找到实数t使其在区间[1,2)∩[,)∩[,)∩[,)∩[,)上,∴正整数n的最大值4故选:B.【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:本大题共4小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)已知向量⊥,||=3,则•= 9 .【分析】由已知结合平面向量是数量积运算求得答案.【解答】解:由⊥,得•=0,即•()=0,∵||=3,∴.故答案为:9.【点评】本题考查了平面向量的数量积运算,考查了向量模的求法,是基础的计算题.12.(5分)函数f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln (x+1)|的零点个数为 2 .【分析】利用二倍角公式化简函数的解析式,求出函数的定义域,画出函数的图象,求出交点个数即可.【解答】解:函数f(x)的定义域为:{x|x>﹣1}.f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln(x+1)|=2sinx﹣|ln(x+1)|=sin2x﹣|ln(x+1)|,分别画出函数y=sin2x,y=|ln(x+1)|的图象,由函数的图象可知,交点个数为2.所以函数的零点有2个.故答案为:2.【点评】本题考查三角函数的化简,函数的零点个数的判断,考查数形结合与转化思想的应用.13.(5分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m 后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= 100m.【分析】设此山高h(m),在△BCD中,利用仰角的正切表示出BC,进而在△ABC中利用正弦定理求得h.【解答】解:设此山高h(m),则BC=h,在△ABC中,∠BAC=30°,∠CBA=105°,∠BCA=45°,AB=600.根据正弦定理得=,解得h=100(m)故答案为:100.【点评】本题主要考查了解三角形的实际应用.关键是构造三角形,将各个已知条件向这个主三角形集中,再通过正弦、余弦定理或其他基本性质建立条件之间的联系,列方程或列式求解. 14.(5分)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为(x﹣1)2+(y﹣)2=2 ;(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:①=;②﹣=2;③+=2.其中正确结论的序号是①②③.(写出所有正确结论的序号)【分析】(1)取AB的中点E,通过圆C与x轴相切于点T,利用弦心距、半径与半弦长之间的关系,计算即可;(2)设M(cosα,sinα),N(cosβ,sinβ),计算出、、的值即可.【解答】解:(1)∵圆C与x轴相切于点T(1,0),∴圆心的横坐标x=1,取AB的中点E,∵|AB|=2,∴|BE|=1,则|BC|=,即圆的半径r=|BC|=,∴圆心C(1,),则圆的标准方程为(x﹣1)2+(y﹣)2=2,故答案为:(x﹣1)2+(y﹣)2=2.(2)∵圆心C(1,),∴E(0,),又∵|AB|=2,且E为AB中点,∴A(0,﹣1),B(0,+1),∵M、N在圆O:x2+y2=1上,∴可设M(cosα,sinα),N(cosβ,sinβ),∴|NA|=====,|NB|====,∴===,同理可得=,∴=,①成立,﹣=﹣()=2,②正确.+=+()=,③正确.故答案为:①②③.【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.选修4-1:几何证明选讲15.(5分)如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则=.【分析】利用切割线定理推出PA=2PB,利用相似三角形求出比值即可.【解答】解:由切割线定理可知:PA2=PB•PC,又BC=3PB,可得PA=2PB,在△PAB与△PAC中,∠P=∠P,∠PAB=∠PCA(同弧上的圆周角与弦切角相等),可得△PAB∽△PAC,∴==.故答案为:.【点评】本题考查切割线定理以及相似三角形的判定与应用,考查逻辑推理能力.选修4-4:坐标系与参数方程16.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sinθ﹣3cosθ)=0,曲线C的参数方程为( t为参数),l与C相交于A,B两点,则|AB|=.【分析】化极坐标方程化直角坐标方程,参数方程化普通方程,联立直线方程和双曲线方程后求得交点坐标,由两点间的距离公式得答案.【解答】解:由ρ(sinθ﹣3cosθ)=0,得y﹣3x=0,由C的参数方程为( t为参数),两式平方作差得:x2﹣y2=﹣4.联立,得,即.∴A(),B(),∴|AB|=.故答案为:.【点评】本题考查极坐标方程化直角坐标方程,参数方程化普通方程,考查了直线和圆锥曲线的位置关系,是基础的计算题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(11分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0π2πxAsin(ωx+φ)05﹣50(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.【分析】(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.从而可补全数据,解得函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)及函数y=Asin(ωx+φ)的图象变换规律得g (x)=5sin(2x+2θ﹣).令2x+2θ﹣=kπ,解得x=,k∈Z.令=,解得θ=,k∈Z.由θ>0可得解.【解答】解:(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:ωx+φ0π2πxAsin(ωx+φ)050﹣50且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin (2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换规律的应用,属于基本知识的考查.18.(12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.【分析】(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知c n=,写出T n、T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.19.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.【分析】解法1)(1)直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角.(2)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可.解法2)(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系,运用向量的数量积判断即可.2)由PD⊥底面ABCD,所以=(0,0,1)是平面ACDB的一个法向量;由(Ⅰ)知,PB⊥平面DEF,所以=(﹣λ,﹣1,1)是平面DEF的一个法向量.根据数量积得出夹角的余弦即可得出所求解的答案.【解答】解法1)(1)因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PDC,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩CB=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE.又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)如图1,在面BPC内,延长BC与FE交于点G,则DG是平面DEF与平面ACBD的交线.由(Ⅰ)知,PB⊥平面DEF,所以PB⊥DG.又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.所以DG⊥DF,DG⊥DB故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有BD=,在Rt△PDB中,由DF⊥PB,得∠DPB=∠FDB=,则 tan=tan∠DPF===,解得.所以==故当面DEF与面ABCD所成二面角的大小为时,=.(解法2)(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=λ,则D(0,0,0),P(0,0,1),B(λ,1,0),C(0,1,0),=(λ1,﹣1),点E是PC的中点,所以E(0,,),=(0,,),于是=0,即PB⊥DE.又已知EF⊥PB,而ED∩EF=E,所以PB⊥平面DEF.因=(0,1,﹣1),=0,则DE⊥PC,所以DE⊥平面PBC.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)由PD⊥底面ABCD,所以=(0,0,1)是平面ACDB的一个法向量;由(Ⅰ)知,PB⊥平面DEF,所以=(﹣λ,﹣1,1)是平面DEF的一个法向量.若面DEF与面ABCD所成二面角的大小为,则运用向量的数量积求解得出cos==,解得.所以所以==故当面DEF与面ABCD所成二面角的大小为时,=.【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.20.(12分)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为W121518P0.30.50.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(1)求Z的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.【分析】(1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,列出可行域,目标函数,通过当W=12时,当W=15时,当W=18时,分别求出目标函数的最大获利,然后得到Z的分布列.求出期望即可.(2)判断概率类型是二项分布,然后求解所求概率即可.【解答】(12分)解:(1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,则有,①如图1,目标函数为:z=1000x+1200y.当W=12时,①表示的平面区域如图1,三个顶点分别为A(0,0),B(2.4,4.8),C(6,0).将z=1000x+1200y变形为,当x=2.4,y=4.8时,直线l:在y轴上的截距最大,最大获利Z=Z max=2.4×1000+4.8×1200=8160.当W=15时,①表示的平面区域如图2,三个顶点分别为A(0,0),B(3,6),C(7.5,0)..将z=1000x+1200y变形为,当x=3,y=6时,直线l:在y轴上的截距最大,最大获利Z=Z max=3×1000+6×1200=10200.当W=18时,①表示的平面区域如图3,四个顶点分别为A(0,0),B(3,6),C(6,4),D(9,0).将z=1000x+1200y变形为:,当x=6,y=4时,直线l:y=﹣56x+z1200在y轴上的截距最大,最大获利Z=Z max=6×1000+4×1200=10800.故最大获利Z的分布列为:Z81601020010800P0.30.50.2因此,E(Z)=8160×0.3+10200×0.5+10800×0.2=9708(2)由(Ⅰ)知,一天最大获利超过10000元的概率P1=P(Z>10000)=0.5+0.2=0.7,由二项分布,3天中至少有1天最大获利超过10000元的概率为:.【点评】本题考查离散型随机变量的分布列以及期望的求法,线性规划的应用,二项分布概率的求法,考查分析问题解决问题的能力.21.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB 内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【分析】(1)根据条件求出a,b即可求椭圆C的方程;(2)联立直线方程和椭圆方程,求出原点到直线的距离,结合三角形的面积公式进行求解即可.【解答】解:(1)设D(t,0),|t|≤2,N(x0,y0),M(x,y),由题意得=2,且||=||=1,∴(t﹣x,﹣y)=2(x0﹣t,y0),且,即,且t(t﹣2x0)=0,由于当点D不动时,点N也不动,∴t不恒等于0,于是t=2x0,故x0=,y0=﹣,代入x02+y02=1,得方程为.(2)①当直线l的斜率k不存在时,直线l为:x=4或x=﹣4,都有S△OPQ=,②直线l的斜率k存在时,直线l为:y=kx+m,(k),由消去y,可得(1+4k2)x2+8kmx+4m2﹣16=0,∵直线l总与椭圆C有且只有一个公共点,∴△=64k2m2﹣4(1+4k2)(4m2﹣16)=0,即m2=16k2+4,①,由,可得P(,),同理得Q(,),原点O到直线PQ的距离d=和|PQ|=•|x P﹣x Q|,可得S△OPQ=|PQ|d=|m||x P﹣x Q|=|m|||=||②,将①代入②得S△OPQ=||=8||,当k2>时,S△OPQ=8()=8(1+)>8,当0≤k2<时,S△OPQ=8||=﹣8()=8(﹣1+),∵0≤k2<时,∴0<1﹣4k2≤1,≥2,∴S△OPQ=8(﹣1+)≥8,当且仅当k=0时取等号,∴当k=0时,S△OPQ的最小值为8,综上可知当直线l与椭圆C在四个顶点处相切时,三角形OPQ的面积存在最小值为8.【点评】本题主要考查椭圆方程的求解,以及直线和圆锥曲线的位置关系的应用,结合三角形的面积公式是解决本题的关键.综合性较强,运算量较大.22.(14分)已知数列{a n}的各项均为正数,b n=n(1+)n a n(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e 的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n),数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<eS n.【分析】(1)求出f(x)的定义域,利用导数求其最大值,得到1+x<e x.取x=即可得到答案;(2)由b n=n(1+)n a n(n∈N+),变形求得,,,由此推测=(n+1)n.然后利用数学归纳法证明.(3)由c n的定义、=(n+1)n、算术﹣几何平均不等式、b n的定义及,利用放缩法证得T n<eS n.【解答】(1)解:f(x)的定义域为(﹣∞,+∞),f′(x)=1﹣e x.当f′(x)>0,即x<0时,f(x)单调递增;当f′(x)<0,即x>0时,f(x)单调递减.故f(x)的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).当x>0时,f(x)<f(0)=0,即1+x<e x.令,得,即.①(2)解:;=;.由此推测:=(n+1)n.②下面用数学归纳法证明②.(1)当n=1时,左边=右边=2,②成立.(2)假设当n=k时,②成立,即.当n=k+1时,,由归纳假设可得=.∴当n=k+1时,②也成立.根据(1)(2),可知②对一切正整数n都成立.(3)证明:由c n的定义,②,算术﹣几何平均不等式,b n的定义及①得T n=c1+c2+…+c n=====<ea1+ea2+…+ea n=eS n.即T n<eS n.【点评】本题主要考查导数在研究函数中的应用,考查利用归纳法证明与自然数有关的问题,考查推理论证能力、运算求解能力、创新知识,考查了利用放缩法证明数列不等式,是压轴题.创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校。
北京市2020〖人教版〗高三数学复习试卷高考数学模拟试卷文科4

北京市2020年〖人教版〗高三数学复习试卷高考数学模拟试卷文科创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(每小题5分,共40分)1.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x﹣1)2+(y﹣1)2=22.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}3.(5分)下列函数中为偶函数的是()A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=2﹣x4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.(5分)执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.66.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.C.D.28.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)5月1日12350005月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升二、填空题9.(5分)复数i(1+i)的实部为.10.(5分)2﹣3,,log25三个数中最大数的是.11.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.16.(13分)已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点. 20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x﹣1)2+(y﹣1)2=2【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.2.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.【点评】本题考查集合的交集的运算法则,考查计算能力.3.(5分)下列函数中为偶函数的是()A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=2﹣x【分析】首先从定义域上排除选项C,然后在其他选项中判断﹣x与x的函数值关系,相等的就是偶函数.【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sinx;是奇函数;对于B,(﹣x)2cos(﹣x)=x2cosx;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣x)=2x≠2﹣x,2x≠﹣2﹣x;是非奇非偶的函数;故选:B.【点评】本题考查了函数奇偶性的判断;首先判断定义域是否关于原点对称;如果不对称,函数是非奇非偶的函数;如果对称,再判断f(﹣x)与f(x)关系,相等是偶函数,相反是奇函数.4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.300【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.【点评】本题考查分层抽样,考查学生的计算能力,比较基础.5.(5分)执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a<,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由便可得到夹角为0,从而得到∥,而∥并不能得到夹角为0,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.【解答】解:(1);∴时,cos=1;∴;∴∥;∴“”是“∥”的充分条件;(2)∥时,的夹角为0或π;∴,或﹣;即∥得不到;∴“”不是“∥”的必要条件;∴总上可得“”是“∥”的充分不必要条件.故选:A.【点评】考查充分条件,必要条件,及充分不必要条件的概念,以及判断方法与过程,数量积的计算公式,向量共线的定义,向量夹角的定义.7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.C.D.2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC═该几何体最长棱的棱长为:故选:C.【点评】本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键8.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)5月1日12350005月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升【分析】由表格信息,得到该车加了48升的汽油,跑了600千米,由此得到该车每100千米平均耗油量.【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.【点评】本题考查了学生对表格的理解以及对数据信息的处理能力.二、填空题9.(5分)复数i(1+i)的实部为﹣1.【分析】直接利用复数的乘法运算法则,求解即可.【解答】解:复数i(1+i)=﹣1+i,所求复数的实部为:﹣1.故答案为:﹣1.【点评】本题考查复数的基本运算,复数的基本概念,考查计算能力.10.(5分)2﹣3,,log25三个数中最大数的是log25.【分析】运用指数函数和对数函数的单调性,可得0<2﹣3<1,1<<2,log25>log24=2,即可得到最大数.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.【点评】本题考查数的大小比较,主要考查指数函数和对数函数的单调性的运用,属于基础题.11.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.【分析】由正弦定理可得sinB,再由三角形的边角关系,即可得到角B.【解答】解:由正弦定理可得,=,即有sinB===,由b<a,则B<A,可得B=.故答案为:.【点评】本题考查正弦定理的运用,同时考查三角形的边角关系,属于基础题.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.【分析】求得双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),可得b的方程,即可得到b的值.【解答】解:双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),由题意可得=2,解得b=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点的求法,属于基础题.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.【分析】利用线性规划的知识,通过平移即可求z的最大值.【解答】解:由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.即A(2,1).此时z的最大值为z=2×2+3×1=7,故答案为:7.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.【分析】(1)根据散点图1分析甲乙两人所在的位置的纵坐标确定总成绩名次;(2)根据散点图2,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成绩名次大于数学成绩名次,反之小于.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知,两个图中,同一个人的总成绩是不会变的.从第二个图看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在左边的图中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.【点评】本题考查了对散点图的认识;属于基础题.三、解答题(共80分)15.(13分)已知函数f(x)=sinx﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.【分析】(1)由三角函数恒等变换化简函数解析式可得f(x)=2sin(x+)﹣,由三角函数的周期性及其求法即可得解;(2)由x∈[0,],可求范围x+∈[,π],即可求得f(x)的取值范围,即可得解.【解答】解:(1)∵f(x)=sinx﹣2sin2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.16.(13分)已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?【分析】(I)由a4﹣a3=2,可求公差d,然后由a1+a2=10,可求a1,结合等差数列的通项公式可求(II)由b2=a3=8,b3=a7=16,可求等比数列的首项及公比,代入等比数列的通项公式可求b6,结合(I)可求【解答】解:(I)设等差数列{a n}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴a n=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{b n}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴=128,而128=2n+2∴n=63∴b6与数列{a n}中的第63项相等【点评】本题主要考查了等差数列与等比数列通项公式的简单应用,属于对基本公式应用的考查,试题比较容易.17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.【点评】本题主要考查古典概率、互斥事件的概率加法公式的应用,属于基础题.18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【分析】(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,=,∴S△VAB∵OC⊥平面VAB,∴V C=•S△VAB=,﹣VAB=V C﹣VAB=.∴V V﹣ABC【点评】本题考查线面平行的判定,考查平面与平面垂直的判定,考查体积的计算,正确运用线面平行、平面与平面垂直的判定定理是关键.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【分析】(1)利用f'(x)≥0或f'(x)≤0求得函数的单调区间并能求出极值;(2)利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.【解答】解:(1)由f(x)=f'(x)=x﹣由f'(x)=0解得x=f(x)与f'(x)在区间(0,+∞)上的情况如下:X (0,)()f'(x)﹣0+f(x)↓↑所以,f(x)的单调递增区间为(),单调递减区间为(0,);f(x)在x=处的极小值为f()=,无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x=是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【点评】本题考查利用函数的导数求单调区间和导数的综合应用,在高考中属于常见题型.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【分析】(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.【解答】解:(1)∵椭圆C:x2+3y2=3,∴椭圆C的标准方程为:+y2=1,∴a=,b=1,c=,∴椭圆C的离心率e==;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y1),B(1,﹣y1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y1)(x﹣2),令x=3,得M(3,2﹣y1),∴直线BM的斜率k BM==1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知k BM=1,又∵直线DE的斜率k DE==1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x1,y1),B(x2,y2),则直线AE的方程为y﹣1=(x﹣2),令x=3,则点M(3,),∴直线BM的斜率k BM=,联立,得(1+3k2)x2﹣6k2x+3k2﹣3=0,由韦达定理,得x1+x2=,x1x2=,∵k BM﹣1====0,∴k BM=1=k DE,即BM∥DE;综上所述,直线BM与直线DE平行.【点评】本题是一道直线与椭圆的综合题,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学模拟考试卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合要求的。
) 1、(理)复数1a iz i+=-(,a R i ∈为虚数单位),若z 是纯虚数,则实数a 的值为 ( )A .1B .-1C .2D .0(文)已知向量||),15cos ,15sin (),15sin ,15(cos +--==则οοοο的值为 ( )A .3B .1C .2D .23 2、已知向量,a b r r 为单位向量,且<,a b r r >=θ,则()a tb t R +∈r r 的模的最小值为( )A .2B .23C .cos θD .sin θ 3、已知等差数列{}n a 的前n 项和为S n ,且S 2=10, S 5=55,则过点P (n , n a )、Q (n +2, 2n a +)(n ∈N *)的直线的一个方向向量的坐标为 ( )A .(1,4)B (1,3)C (1,2)D (1,1)4、(理)某中学高三年级期中考试数学成绩近似地服从正态分布N(110,102)(查表知Φ(1)=0.8413),则该校高三年级数学成绩在120分以上的学生人数占总人数的百分比为( )A .84.13%B .42.065%C . 15.87%D .以上均不对(文)某学校高一、高二、高三三个年级共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300,现在按1:100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为 ( )A.8 B .11 C .16. D .105、(理)曲线ln(21)y x =-上的点到直线230x y -+=的最小距离是( ) A 、0 BC、D、 (文) 若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f /(x )的图象是 ( )6、(理)已知()f x =,则3lim ()x f x →的值( )DCBAx yO M (1,2)13411x y +=第6题图 1y x =+327x y += A 、不存在 B 、0 C 、14D 、4 (文) 已知实数x 、y 满足 327, 1, 0, 0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩则34u x y =+的最大值是 ( )A . 0B . 4C . 7D . 117、函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是8、三棱锥P -ABC 的四个顶点在同一个球面上,若PA ⊥底面ABC ,底面ABC 为直角三角形,PA =2a AC=BC =a ,则此球的表面积为 ( ) A .2πa 2 B . 6πa 2 C .8πa 2 D .9πa 29、已知(ax +1)2n 及(x +a )2n +1的展开式中,x n 系数相等(*(0,)a R a n N ∈≠∈且,则a 的值所在区间是 ( ) A .(-∞,0) B .(0,1) C .(1,2) D .(2,+∞)10、椭圆C 1:22221(0)x y a b a b+=>>的左准线为l ,左右焦点分别为F 1、F 2,抛物线C 2的准线为l ,一个焦点为F 2,C 1与C 2的一个交点为P ,则12112||||||||F F PF PF PF -等于( ) A .-1 B .1C .12-D .1211、在四面体D -ABC 中,AB =2,S ABC ∆=4,S ABD ∆=6,面ABC 与面ABD 所成二面角的大小为6π,则四面体D -ABC 的体积为( )A .4B .43C .3D .4212、设1F 、2F 为双曲线2214x y -=的两焦点,点P 在双曲线上,当12F PF ∆的面积为1时,12PF PF u u u r u u u rg 的值为( ) A 、12B 、0C 、1D 、2P AC BDCBA二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
)13、函数f (x )=)(2log x axa-在x ]4,2[∈上是增函数,则a 的取值范围为______________。
14、在抛物线24y x =上有一点(,)M a b ,其中,a b R +∈,若点M 到直线y x =的距离为42,则a b的值为 。
15、从集合{1,2,3,…,30}中任取3个数,则3个数之和能被3整除的概率 . 16、已知集合A ={直线},B ={平面},C =A ∪B ,若,,a A b B c C ∈∈∈,给出下列命题①//a b a c c b ⊥⎧⇒⎨⊥⎩;②//a ba c c b⊥⎧⇒⊥⎨⎩;③//////a b a c c b ⎧⇒⎨⎩;④//a ba c cb ⎧⇒⊥⎨⊥⎩。
其中一定正确的命题序号是 。
(注:把你认为正确的序号都填上) 三、解答题(本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤) 17、(本小题12分)已知点(cos ,sin ),(2cos ,2sin ),a b ααββ==r r ||a b +=r r.(Ⅰ)求a r 与b r的夹角;(Ⅱ)若0,0,22ππαβ<<-<<且3sin ,5β=-求sin α. 18、(本题满分12分)(理)根据我国实行的计划生育政策,提倡少生孩子,假设国家有这样一个规定:如果一对夫妇第一胎生男孩,则不允许生第二胎,如果第一胎生女孩,则允许生第二胎,而且最多生两胎,那么这样的情况生男孩和生女孩的人数平衡吗?(文) 由于男子的基因型为XY ,女子的基因型为XX ,生男生女取决于男子基因X 与Y 与女子基因X 与X 的配对,一对夫妇生了5胎共5个孩子,求这5个孩子是3男2女的概率是多少?19、(理)(本小题满分12分) 已知n 条直线l 1:x -y +C 1=0,C 1=2,l 2:x -y +C 2=0,l 3:x -y +C 3=0,…,l n :x -y +C n =0(其中C 1<C 2<C 3<…<C n ),这n 条平行直线中,每相邻两条直线之间的距离顺次为2、3、4、…、n .(1)求C n ;(2)求x -y +C n =0与x 轴、y 轴围成的图形的面积;(3)求x -y +C n -1=0与x -y +C n =0及x 轴、y 轴围成图形的面积.(文)已知△ABC 的一个顶点A (-1,-4),∠B 、∠C 的平分线所在直线的方程分别为l 1:y +1=0,l 2:x +y +1=0,求边BC 所在直线的方程.20、(本小题12分)已知长方体ABCD -1111D C B A 中,棱AB =BC =3,1BB =4,连结C B 1,过B 点作C B 1的垂线交1CC 于E ,交C B 1于F . (Ⅰ)求证:C A 1⊥平面EBD ;(Ⅱ)求ED 与平面C B A 11所成角的大小; (Ⅲ)求二面角E -BD -C 的大小.21、(本小题12分)已知函数c bx ax x x f y +++==23)(在2-=x 时取得极值,且图象与直线33y x =-+切于点)0,1(P , (I )求函数)(x f y =的解析式;(II )讨论函数()y f x =的增减性,并求函数()y f x =在区间[3,3]-上的最值及相应x 的值. 22、(本小题14分)已知两点A (-2,0),B (2,0),动点P 在y 轴上的射影是H ,且22PH PB PA =⋅, (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)已知过点B 的直线交曲线C 于x 轴下方不同的两点M ,N ,设R 为MN 的中点,Q (0,-2),连RQ 交x 轴于点D ,求D 点横坐标的取值范围。
[参考答案]1、(理)解析:()(1)1(1)122a i a i i a a iz i +++-++===-是 纯虚数,所以a =1.选A . 评注:本题主要考查复数代数形式的运算及纯虚数的概念.(文)解析:a b +r r =(cos 15○ —sin 15○, sin 15○ —cos 15○),所以│a b +r r│=1=.选B评注:本题主要考查向量的加法、向量的模、同角三角函数的基本关系式。
2、解析:222222()212||||cos 2cos 1a tb a ta b t b t a b t t t θθ+=++=++=++r u u r r r r r r u u rg g22(cos )1cos t θθ=++-当t =-cos θ时,2()a tb +r u u r 取最小值221cos sin θθ-=,故min min ||sin a tb θ+==r u u r .选D .评注:本题主要考查平面向量的概念与运算,以及函数的最小值问题,考查了函数思想和转化的数学能力。
3、解析:设等差数列{}n a 的公差为d ,则1(1),2n n n S na d -=+,由S 2=10, S 5=55可得1112(21)210325(51)45552a d a d a d -⎧+=⎪=⎧⎪⇒⎨⎨-=⎩⎪+=⎪⎩,∴1(1)41n a a n d n =+-=-∴242n n PQ a a k +-== 故直线PQ 的一个方向向量为(1,PQ k ),即(1,4) 选A评注:此题以等差数列为载体,考查了等差数列的通项、前n 项和,直线的斜率、方向向量等知识点,综合性较强,考察了运算能力及综合处理问题的能力。
4、(理)解析:设高三学生数为x ,则高一学生数为2x ,高二学生数为2x +300,所以有x +2x +2x+300=3500,解得x =1600,故高一学生数为800,因此应抽取高一学生8人。
选A评注:此题主要考察分层抽样,注意方程思想的运用。
(文)解析:设学生数学成绩为ξ,则P (ξ>120)=1-F (120)=1-120110()10φ-=1-(1)φ=0.1587。
选C 评注:此题主要考察统计中的正态分布,难度不大。
虽然此类题型近几年高考较少涉及(06湖北卷已考查),但随着新课标的实施与推广,此类与实际生活密切相关的考点极有可能成为明年命题的一个亮点。
5、(理)解析:由于方程ln(21)23x x -=+无解,因此曲线与直线没有公共点 于是距离最小的点应满足过该点的切线与直线230x y -+=平行。
设该点为(,)s t ,则/2()221f s s ==-得1s =,从而ln(211)0t =⨯-=,于是最小距离为d ==,选B 。
评注:本题主要考查了简单复合函数的导数求法,以及点到直线的距离公式。