任意角和弧度制与任意角的三角函数知识点与题型归纳

合集下载

任意角和弧度制及任意角的三角函数 知识点与题型归纳.

任意角和弧度制及任意角的三角函数 知识点与题型归纳.

1●高考明方向1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化3.理解任意角的三角函数(正弦、余弦、正切)的定义.★备考知考情1.三角函数的定义与三角恒等变换等相结合, 考查三角函数求值问题.2.三角函数的定义与向量等知识相结合, 考查三角函数定义的应用.3.主要以选择题、填空题为主,属中低档题.一、知识梳理《名师一号》P47 知识点一 角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.《名师一号》P47 对点自测 1、22注意: 1、《名师一号》P48 问题探究 问题1、2相等的角终边相同,终边相同的角也一定相等吗? 相等的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍.角的表示形式是唯一的吗?角的集合的表示形式不是唯一的,如:终边在y 轴的负半轴上的角的集合可以表示为{x |x =k ·360°-90°,k ∈Z},也可以表示为{x |x =k ·360°+270°,k ∈Z}. (补充)2、正角 > 零角 > 负角3、下列概念应注意区分 小于90°的角;锐角;第一象限的角;0°~90°的角.4、(1)终边落在坐标轴上的角 1)终边落在x 轴非负半轴上的角 {x|x =2kπ,k ∈Z }2)终边落在x 轴非正半轴上的角 {x|x =2kπ+π,k ∈Z }终边落在x 轴上的角{x|x =kπ,k ∈Z }3)终边落在y 轴非负半轴上的角{x|x =2kπ+π2,k ∈Z } 4)终边落在y 轴非正半轴上的角{x|x =2kπ+3π2,k ∈Z }3终边落在y 轴上的角{x|x =kπ+π2,k ∈Z }(2) 象限角 (自己课后完成)知识点二 弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角 叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算: 360°=2π弧度;180°=π弧度; ②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.关键:基本公式180︒→=rad π《名师一号》P47 对点自测 3注意: 1、《名师一号》P48 问题探究 问题3在角的表示中角度制和弧度制能不能混合应用? 不能.在同一个式子中,采用的度量制度是一致的, 不可混用.2、弧长公式与扇形面积公式(扇形的圆心角为α弧度,半径为r )4弧长公式||l r α= 扇形面积公式12S lr =(补充)(将扇形视为曲边三角形,记l 为底,r 为高)知识点三 任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α= ,cos α= ,tan α= (x ≠0). (补充)12(补充)关键:立足定义 正弦……一二正,横为零 余弦……一四正,纵为零正切……一三正,横为零,纵不存在3、特殊角的三角函数值(自己课后完成)知识点三任意角的三角函数(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线.《名师一号》P47 对点自测 6注意:《名师一号》P48 问题探究问题4如何利用三角函数线解不等式及比较三角函数值的大小?(1)先找到“正值”区间,即0~2π间满足条件的范围,然后再加上周期.(2)先作出角,再作出相应的三角函数线,最后进行比较5大小,应注意三角函数线的有向性.也可以利用相应图象求解二、例题分析:(一)角的表示及象限角的判定例1.《名师一号》P48 高频考点例1 (1)写出终边在直线y=3x上的角的集合;(2)已知α是第三象限角,求α2所在的象限.【思维启迪】(1)角的终边是射线,应分两种情况求解.(2)把α写成集合的形式,从而α2的集合形式也确定.解:(1)当角的终边在第一象限时,角的集合为{α|α=2kπ+π3,k∈Z},当角的终边在第三象限时,角的集合为{α|α=2kπ+43π,k∈Z},故所求角的集合为{α|α=2kπ+π3,k∈Z}∪{α|α=2kπ+43π,k∈Z}6={α|α=kπ+π3,k∈Z}.(2)∵2kπ+π<α<2kπ+32π(k∈Z),∴kπ+π2<α2<kπ+34π(k∈Z).当k=2n(n∈Z)时,2nπ+π2<α2<2nπ+34π,α2是第二象限角,当k=2n+1(n∈Z)时,2nπ+3π2<α2<2nπ+74π,α2是第四象限角,综上知,当α是第三象限角时,α2是第二或第四象限角.注意:《名师一号》P48 高频考点例1 规律方法(1)若要确定一个绝对值较大的角所在的象限,一般是先将角化为2kπ+α(0≤α<2π)(k∈Z)的形式,然后再根据α所在的象限予以判断.(2)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需角.78(二) 弧度制的定义和公式例1.《名师一号》P48 高频考点 例2(1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时, 才使扇形面积最大?解:(1)设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +rθ=1012θ·r 2=4⇒⎩⎨⎧r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12 故扇形圆心角为12.(2)设圆心角是θ,半径是r ,则2r +rθ=40.S =12θ·r 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100,当且仅当r =10时,S max =100,θ=2. 所以当r =10,θ=2时,扇形面积最大.《名师一号》P47 对点自测 4注意:《名师一号》P48 高频考点 例2 规律方法91.弧度制下l =|α|·r ,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系. 2.在解决弧长、面积及弓形面积时要注意合理 应用圆心角所在的三角形.(三) 三角函数的定义及应用例1.《名师一号》P48 高频考点 例3(1)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.解:(1)r =x 2+y 2=16+y 2,且sin θ=-255,所以sin θ=y r =y 16+y 2=-255,所以θ为第四象限角,解得y =-8.《名师一号》P47 对点自测 5(3)(2015·日照模拟)已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角.10解:(3)因为点P (sin θcos θ,2cos θ)位于第三象限,所以sin θcos θ<0,2cos θ<0,即⎩⎨⎧sin θ>0,cos θ<0,所以θ为第二象限角.※(2)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________.解: (2)如图,连接AP ,分别过P ,A 作PC ,AB 垂直x 轴于C ,B 点,过A 作AD ⊥PC 于D 点, 由题意知BP 的长为2.。

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。

2)终边与角α相同的角可写成α+k·360°(k∈Z)。

3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。

弧度与角度可以互相转换。

2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。

3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。

注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。

和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。

二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。

2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。

任意角和弧度制及任意角三角函数

任意角和弧度制及任意角三角函数

任意角和弧度制及任意角三角函数一.知识梳理1.任意角(1)角的分类:任意角可按旋转方向分为、、.(3)角的度量①角的度量制有:,.②换算关系:1°= rad,1 rad= ( )°.2.任意角的三角函数三角 函数线 有向线段 为正弦线 有向线段 为余弦线 有向线段 为正切线二.基础自测1.若·18045(Z)k k α︒︒∈=+,则α在( ) A .第一或第三象限 B .第一或第二象限C .第二或第四象限D .第三或第四象限2.已知半径为2,圆心角为45°,那么这个圆心角所对的弧长___ _____.3.与2010°终边相同的最小正角为___ _____,最大负角为___ _____.4.已知点(tan cos )P αα,在第三象限,则角α的终边在第________象限.5.已知角α的终边在直线340x y +=上,求sin cos tan ααα,,的值.三.典型例题【例1】(1) 若α是第二象限角,试分别确定2α,3α所在的象限. (2)写出终边在直线3y x =上的角的集合.(3)若角α与67π角的终边相同,求在[0,2)π内终边与3α角的终边相同的角.【例2】(1)扇形OAB 面积是12cm ,周长是4 cm ,求扇形的圆心角和弦AB 的长.(2)扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?【例3】(1)已知角α的终边上一点坐标为22(sin ,cos )33ππ,角α的最小正值为( ) A. 56π B. 23π C. 53π D. 116π (2)若一个角α的终边上有一点(4)P a -,,且sin cos αα⋅=34,则a 的值可能为 ( )A .4 3B .±4 3C .-43或-433 D. 3【例4】(1) 若α是第二象限角,试比较sincos tan 222ααα,,的大小 (2)若02πα<<,试比较sin tan ααα、、的大小;四.巩固练习 1.点P 从点(0,1)开始沿单位圆221x y +=顺时针第一次运动到点⎝ ⎛⎭⎪⎫22,-22时转过的角 的弧度数是________. 2.函数sin tan cos sin cos tan x x x y x x x=++的值域为________. 3.已知(0)απ∈,,且()sin cos 01m m αα<<+=,试判断式子sin cos αα-的符号.4.若02παβ<<<,试比较sin ββ-与sin αα-的大小.5.在平面直角坐标系xoy 中,21(cos)2P θ,在角α的终边上,2(sin 1)Q θ,-在角β的终边上,且12OP OQ ⋅=-,(1)求cos2θ的值;(2)求sin()αβ+的值.。

专题17任意角任意角三角函数及弧度制--2024年(新高考)数学高频考点重点题型(原卷版)

专题17任意角任意角三角函数及弧度制--2024年(新高考)数学高频考点重点题型(原卷版)

专题17任意角、任意角三角函数及弧度制一、核心体系任意角⎩⎪⎪⎨⎪⎪⎧角的概念⎩⎪⎨⎪⎧正角、负角、零角象限角、轴线角角的角度与弧度的转换:π=180°弧长公式:l =|α|r扇形面积公式:S =12lr =12|α|r2任意角的三角函数的定义⎩⎪⎨⎪⎧sinα=y r ,cosα=x r ,tanα=y x符号规律特殊角的三角函数值二、关键能力1.了解任意角的概念(角的定义、分类、终边相同角);了解终边相同的角的意义;了解弧 度制的概念,能进行弧度与角度的互化.2.理解任意角的三角函数(正弦、余弦、正切)的定义,会利用单位圆中的三角函数线表示 任意角的正弦、余弦、正切,熟记特殊角的三角函数值,并能准确判断三角函数值的符号. 三、教学建议(1)三角函数的定义;(2)扇形的面积、弧长及圆心角;(3)在大题中考查三角函数的定义,主要考查:一是直接利用任意角三角函数的定义求其三角函数值;二是根据任意角三角函数的定义确定终边上一点的坐标.四、自主梳理 1.角的概念的推广(☆☆☆)(1) 正角、负角和零角:一条射线绕顶点按逆时针方向旋转所形成的角叫作正角,按顺时针方向旋转所形成的角叫作负角;如果射线没有作任何旋转,那么也把它看成一个角,叫作零角.(2) 象限角:以角的顶点为坐标原点,角的始边为x 轴的正半轴,建立平面直角坐标系,这样,角的终边在第几象限,我们就说这个角是第几象限的角.终边落在坐标轴上的角(轴线角)不属于任何象限.(3) 终边相同的角:与角α的终边相同的角的集合为{β|β=k ·360°+α,k ∈Z}. (4)象限角与轴线角(终边在坐标轴上的角)的集合表示 象限角:2.角的度量(☆☆☆)(1) 1弧度的角:长度等于半径的圆弧所对的圆心角叫作1弧度的角. (2) 弧度制与角度制的关系:1°=π180 弧度(用分数表示),1弧度=180π度(用分数表示). (3) 弧长公式:l =|α|r . (4) 扇形面积公式:S =rl =|α|r 2. 3.任意角的三角函数的定义(☆☆☆)设角α的终边上任意一点的坐标为P (x ,y )(除原点),点P 到坐标原点的距离为r (r ),则sin α=,cos α=,tan α=. 4.三角函数的定义域(☆☆☆)在弧度制下,正弦函数、余弦函数、正切函数的定义域分别是R ,R ,. 5.三角函数的符号规律(☆☆☆)第一象限全“+”,第二象限正弦“+”,第三象限正切“+”,第四象限余弦“+”.简称:一全、二正弦、三切、四余弦. 6.三角函数线(☆☆☆)设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P1212y r xry x |,2k k Z πααπ∈⎧⎫≠+⎨⎬⎩⎭的坐标为(cos α,sin α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tanα=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.五、高频考点+重点题型 考点一、角的扩充与表示例1-1. 已知,R αβ∈.则“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件例1-2. 若α=-2,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限例1-3.下列命题:①钝角是第二象限的角;②小于90︒的角是锐角;③第一象限的角一定不是负角;④第二象限的角一定大于第一象限的角;⑤手表时针走过2小时,时针转过的角度为60︒;⑥若5α=,则α是第四象限角.其中正确的题的个数是( ) A .1个 B .2个C .3个D .4个训练题组一(角的终边与角的关系)1.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos(),sin())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ= .训练题组二(象限角)1.若角α的终边与240°角的终边相同,则角2α的终边所在象限是( ) A .第二或第四象限B .第二或第三象限C .第一或第四象限D .第三或第四象限训练题组三(角的相关概念辨析) 1.设与11π4-终边相同的角的集合为M ,则①5π2π,4M k k αα⎧⎫==+∈⎨⎬⎩⎭Z ;②M 中最小正角是5π4;③M 中最大负角是3π4-,其中正确的有____________.(选填序号)考点二、弧长公式扇、形面积公式例2-1.在平面直角坐标系中,已知点(cos ,sin )P t t ,(2,0)A ,当t 由3π变化到23π时,线段AP 扫过形成图形的面积等于( ) A .2 B .3πC .6π D .12π例2-2.(2022·佛山三模)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( )A .π6B .π3 C .3D .3例2-3.(2022·襄阳模拟)已知扇形的周长为8 cm ,则该扇形面积的最大值为________cm 2. 训练题组1.《掷铁饼者》取材于希腊现实生活中的体育竞技活动,刻画的是一名强健的男子在挪铁饼的过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为πm 4,“弓”所在圆的半径约为1.25m ,则挪铁饼者的肩宽约为___________m .(精确到0.01m )2.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦⨯ 矢+2矢),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约为___________平方米(精确到1 1.73)≈≈考点三、三角函数定义例3-1若点()1M -在角α的终边上,则cos2=α( )A .12- B .12C .D .2例3-2如图所示,在平面直角坐标系xOy 中,动点P ,Q 从点A (1,0)出发在单位圆上运动,点P 按逆时针方向每秒钟转π6弧度,点Q 按顺时针方向每秒钟转11π6弧度,则P ,Q 两点在第2 019次相遇时,点P 的坐标为________.训练题组一(定义求三角函数值)1.(江西高考真题)已知角的顶点为坐标原点,始边为x 轴的正半轴,若是角终边上一点,且,则y=_______.训练题组二(三角函数线)1. 如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于P ,Q 两点,P ,Q 的纵坐标分别为35,45.求sin α的值;考点四:三角函数值的符号判定例4.(2020·全国Ⅱ卷)若α为第四象限角,则( )A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0训练题组1.若sin 0,tan 0αα<<,则角α是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角2.已知α是第二象限角,则( ) A .cos 0α>B .sin 0α<C .sin 20α<D .tan 0α>θ()4,p yθsin 5θ=-3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是() A.(-2,3] B.(-2,3)C.[-2,3) D.[-2,3]巩固训练一、单项选择题1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确命题的个数为( )A .1B .2C .3D .42.(2022·福建联考)时钟的分针在8点到10点20分这段时间里转过的弧度数为( )A .143πB .-143πC .718πD .-718π3.若α是第二象限角,则( )A .cos(-α)>0B .tan α2>0 C .sin(π+α)>0D .cos(π-α)<04.平面直角坐标系xOy 中,若角α的顶点为坐标原点,始边与x 轴的非负半轴重合,其终边上一点P 绕原点顺时针旋转π6到达点Q (3,4)的位置,则sin ⎝⎛⎭⎫α-π6=( ) A .-35 B .35 C .-45D .455.(2022·淄博模拟)sin 2·cos 3·tan 4的值( )A .小于0B .大于0C .等于0D .不存在 6. 若扇形的面积为3π8、半径为1,则扇形的圆心角为( )A.3π2B.3π4C.3π8D.3π167. 已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,且cos θ=-35,若点M (x ,8)是角θ终边上一点,则x 等于( ) A .-12B .-10C .-8D .-68.已知角α的终边与单位圆的交点为P ⎝⎛⎭⎫-12,y ,则sin α·tan α等于( ) A .-33 B .±33 C .-32 D .±32二、多项选择题9. 关于角度,下列说法正确的是( )A .时钟经过两个小时,时针转过的角度是60°B .钝角大于锐角C .三角形的内角必是第一或第二象限角D .若α是第二象限角,则 α2是第一或第三象限角10.(2022·长沙长郡中学高三模拟)下列条件中,能使α和β的终边关于y 轴对称的是( )A .α+β=540°B .α+β=360°C .α+β=180°D .α+β=90°11.中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形(如图)的面积为S 1,圆心角为α1,圆面中剩余部分的面积为S 2,圆心角为α2,当S 1与S 2的比值为5-12≈0.618(黄金分割比)时,折扇看上去较为美观,那么( )A .α1≈127.5°B .α1≈137.5°C .α2=(5-1)πD .α1α2=5-12三、填空题12.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为_____.13.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.14.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__ .15.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =________. 四、解答题16.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角(正角)为θ(弧度). (1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?17.角α终边上的点P 与A (a ,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y=x对称,求sinα·cosα+sinβ·cosβ+tanα·tanβ的值.。

三角函数知识点及题型归纳

三角函数知识点及题型归纳

三角函数知识点及题型归纳三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。

下面我们来详细归纳一下三角函数的知识点和常见题型。

一、三角函数的基本概念1、角的概念角可以分为正角、负角和零角。

按旋转方向,逆时针旋转形成的角为正角,顺时针旋转形成的角为负角,没有旋转的角为零角。

2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。

用弧度作为单位来度量角的制度叫做弧度制。

弧度与角度的换算公式为:180°=π 弧度。

3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r(r =√(x²+ y²) > 0),则角α的正弦、余弦、正切分别为:sinα = y/r,cosα = x/r,tanα = y/x(x ≠ 0)。

4、三角函数线有正弦线、余弦线、正切线,它们分别是角α的终边与单位圆交点的纵坐标、横坐标、纵坐标与横坐标的比值。

二、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα/cosα三、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。

例如:sin(π +α) =sinα,cos(π α) =cosα 等。

四、三角函数的图象和性质1、正弦函数 y = sin x图象:是一条波浪形曲线,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ, 0)(k∈Z)。

性质:在π/2 +2kπ, π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ(k∈Z)上单调递减。

2、余弦函数 y = cos x图象:也是一条波浪形曲线,周期为2π,对称轴为 x =kπ(k∈Z),对称中心为(π/2 +kπ, 0)(k∈Z)。

性质:在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ(k∈Z)上单调递减。

高考一轮复习任意角和弧度制及任意角的三角函数

高考一轮复习任意角和弧度制及任意角的三角函数

任意角和弧度制及任意角的三角函数知识清单1.任意角(1)角的分类:①按旋转方向不同分为②按终边位置不同分为(2)终边相同的角:终边与角α相同的角可写成(3)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值l r与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度; 180°=π弧度.⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2. 2.任意角的三角函数(1)任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=y ,cos α=x ,tan α=y x,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.设α是一个任意角,角α的终边过点P (x ,y )则sin α=y r ,cos α=x r ,tan α=y x. (2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.(3)特殊角的三角函数值3.三角函数线题型一 求与已知角终边相同的角1.-870°的终边在第几象限( )A .一B .二C .三D .四2.给出下列四个命题:①-3π4是第二象限角; ②4π3是第三象限角; ③-400°是第四角限角; ④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个3 如果角α是第二象限角,则π-α角的终边在第________象限.4 若α=k ·180°+45°(k ∈Z ),则α的终边在( )A. 第一或第三象限B. 第一或第二象限C. 第二或第四象限D. 第三或第四象限题型二 三角函数的定义1.已知角α的终边与单位圆的交点P ⎝⎛⎭⎫x ,32,则tan α=( ) A. 3 B .±3 C.33 D .±332 已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( ) A .-114 B.114C .-4D .4 3.若点P 在2π3角的终边上,且P 的坐标为(-1,y ),则y 等于________. 4 [2015·江西模拟]已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 5已知角α的终边上有一点P (t ,t 2+1)(t >0),则tan α的最小值为( ) A .1 B .2 C.12 D. 2 6 .已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π47 已知角α的终边在直线3x +4y =0上,则2sin α+cos α=____________,题型三 三角函数值的符号及判定1.若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2 给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10); ④sin 7π10cos πtan 17π9, 其中符号为负的是( )A .①B .②C .③D .④3 设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角题型四 扇形的弧长、面积公式的应用1.弧长为3π,圆心角为135°的扇形半径为________,面积为________.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是 () A .1 B .4 C .1或4 D .2或43.[2015·唐山模拟]已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A. 2B. sin2C. 2sin1D. 2sin14 .已知扇形周长为10,面积是4,求扇形的圆心角.5 . 已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?课后练习1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( )A.π3B.π6 C .-π3 D .-π62.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( )A .1或4B .1C .4D .83.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( ) A .-32 B.32 C .-12 D.124.已知角α的终边过点P (-8m ,-6sin 30°)且cos α=-45,则m 的值为( ) A .-12 B.12 C .-32 D.325.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是 ( )A .1B .2C .3D .46.三角形ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sin A -cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( ) A .1 B .-1 C .3 D .47.若三角形的两个内角α,β满足sin αcos β<0,则此三角形的形状为____________.8.已知α的顶点在原点,始边与x 轴正半轴重合,点P (-4m,3m ) (m >0)是α终边上一点,则2sin α+cos α=________.9.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.10.若β的终边所在直线经过点P ⎝⎛⎭⎫cos 3π4,sin 3π4,则sin β=________tan β=___. 11如图,角α的终边与单位圆交于第二象限的点A ⎝⎛⎭⎫cos α,35,则cosα-sin α=________.12.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .13如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝⎛⎭⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ;(2)求cos ∠COB .14设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=24x ,求sin α与tan α的值;15.已知sin θ=1-a 1+a ,cos θ=3a -11+a ,若θ是第二象限角,求实数a 的值.。

任意角和弧度制及任意角的三角函数考点与提醒归纳

任意角和弧度制及任意角的三角函数考点与提醒归纳

任意角和弧度制及任意角的三角函数考点与提醒归纳一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. [解析] (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.[答案] (1)C (2)⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选B 当k =2n (n ∈Z )时,2n π≤α≤2n π+π4(n ∈Z ),此时α的终边和0≤α≤π4的终边一样,当k =2n +1(n ∈Z )时,2n π+π≤α≤2n π+π+π4(n ∈Z ),此时α的终边和π≤α≤π+π4的终边一样. 2.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为: β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ), 解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1, 代入得β=-675°或β=-315°. 答案:-675°或-315°考点二 三角函数的定义[典例] 已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解析] ∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-x x 2+36=-513,解得x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213, ∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.[答案] -23[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[题组训练]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C .35D .45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 考点三 三角函数值符号的判定[典例] 若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角[解析] 由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] C[解题技法] 三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.[题组训练]1.下列各选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0 D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin 10<0,故选D. 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意得⎩⎨⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限.[课时跟踪检测]A 级1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 2.(2019·石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C 由sin 150°=12 >0,cos 150°=-32<0,可知角α终边上一点的坐标为⎝⎛⎭⎫12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,因为0°≤α<360°,所以角α为300°.3.(2018·长春检测)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π-π3,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z 解析:选D 当α的终边在射线y =-3x (x ≤0)上时,对应的角为2π3+2k π,k ∈Z ,当α的终边在射线y =-3x (x ≥0)上时,对应的角为-π3+2k π,k ∈Z ,所以角α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z .4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( ) A.3 B .-5 C.5 D.3或5解析:选C 由题意知|OP |=3+y 2,则sin α=y 3+y 2=2y4,解得y =0(舍去)或y =±5,因为α为第二象限角,所以y >0,则y = 5.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,因为角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________. 解析:设此扇形的半径为r (r >0),由3π2=12×3π4×r 2,得r =2.答案:28.(2019·江苏高邮模拟)在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________.解析:∵60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案:39.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0,可得θ=-240°或θ=120°. 答案:120°或-240°10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又因为α是第四象限角,所以m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.12.已知α为第三象限角. (1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.解:(1)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(2)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当角α2在第四象限时,tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.B 级1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4 <α<-π2,所以α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α.2.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( )A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 因为点P 在第一象限,所以⎩⎪⎨⎪⎧ sin α-cos α>0,tan α>0,即⎩⎨⎧sin α>cos α,tan α>0.由tan α>0可知角α为第一或第三象限角,画出单位圆如图.又sin α>cos α,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即角α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.3.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a,3a )(a ≠0),所以x =-4a ,y =3a ,r =5|a |,当a >0时,r =5a ,sin θ+cos θ=35-45=-15; 当a <0时,r =-5a ,sin θ+cos θ=-35+45=15. (2)当a >0时,sin θ=35∈⎝⎛⎭⎫0,π2, cos θ=-45∈⎝⎛⎭⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝⎛⎭⎫-45<0; 当a <0时,sin θ=-35∈⎝⎛⎭⎫-π2,0, cos θ=45∈⎝⎛⎭⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝⎛⎭⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin(cos θ)的符号为正.。

专题11 任意角与弧度制、三角函数的概念、诱导公式(重难点突破) 解析版

专题11 任意角与弧度制、三角函数的概念、诱导公式(重难点突破) 解析版
A. B. C. D.
【解答】解:因为 ,所以 .故选:C.
(2).已知 = ,则 的值等于( )
A. B.-
C. D.±
【答案】A
【解析】诱导公式 ,注意 , ,所以选A
【变式训练4-2】.(2020·天津静海一中高一期末)
(1)已知 ,求 ;
(2)若 ,求 的值;
(3)求 的值;
(4)已知 ,求 .结合题目的解答过程总结三角函数求值(化简)最应该注意什么问题?
【答案】(1) (2)见解析
【解析】
(1)由题设知 ,∴ ( 为原点), .
所以 ,∴ ,即 ,解得 .
(2)当 时, , ,
当 时, , ,
【变式训练3-2】.已知任意角 的终边经过点 ,且
(1)求 的值.(2)求 与 的值.
【答案】(1) ;(2) , .
【解析】(1)∵角 的终边经过点 ,
∴ ,又∵
专题11 任意角与弧度制、三角函数的概念、诱导公式
一、知识结构思维导图
二、学法指导与考点梳理
考点一角的概念
1.角的定义
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
2.角的分类
角的分类
3.终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z}或{β|β=α+2kπ,k∈Z}.
(3). 的角化为角度制的结果为__________, 的角化为弧度制的结果为__________.
【答案】
【解析】由题意得, , .
重难点题型突破2 扇形的弧长与面积公式
例2.(1)(2018·佛山市三水区实验中学高一月考)已知扇形的半径为 ,面积为 ,则扇形的圆心角的弧度数为_______.

三角函数知识点归纳

三角函数知识点归纳

三角函数知识点归纳 一、任意角与弧度制 1.任意角 (I)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. J 按旋转方向不同分为正角、负角、零角. (2)分类[按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角a 终边相同的角,连同角a 在内,可构成一个集合S={缈=a+ 2kιt, Λ∈Z!.(3)象限角与轴线角 今1(第一象限角)卜| 第二致限角阳2A"专VaV2痴 2⅛π<α<2⅛π+-g-,⅛∈z} +π,⅛∈ZT 第三敛限角)卜性"τrVaV2"+等"刃 第四象限角]{α∣2⅛π+^<α<2⅛π+2π,⅛∈z}2.弧度制的定义和公式 角a 的弧度数公式 IaI=%/表示弧长)角度与弧度的换算 ①1。

=念 rad ;② 1 rad=, 弧长公式 l=∖a ∖r 扇形面积公式S=»=如/ (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 3.任意角的三角函数 一、定义:设α是一个任意角,它的终边与单位圆交于点P(x, y),那么Sina=y, cos α=x, tan α=^(x≠()).二、常用结论汇总——规律多一点(1)一个口诀:三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广:设点P(x, y)是角Q终边上任意一点且不与原点重合,r=∣OP∣,则• V X V,1八、sin a= , COSa=-, tanα=-(Xw0).r rχ∖ ,三、特殊角的三角函数:3.1 象限角及终边相同的角例1、若角。

是第二象限角,则辞()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角∩例2、一的终边在第三象限,则。

的终边可能在() 2A.第一、三象限B.第二、四象限C.第一、二象限或y轴非负半轴D.第三、四象限或y轴非正半轴3.2 三角函数的定义例1、已知角α的终边经过点P(一χ, — 6),且COSa=—/,则1;+%½= _________________ .1J SlIl (A IdIl (A例2、已知角α的终边经过点(3, -4),则Sin a+»^=.3.3 、三角函数符号的判定例1、已知Sina < 0旦cosa > 0,则a的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限3.4 扇形面积问题1.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为().A. 2B. 3C. 4D. 6二、同角三角函数的基本关系与诱导公式1 .同角三角函数的基本关系(1)平方关系:siMα+cos2α=l; (2)商数关系:tan α=黑吃.同角三角函数的基本关系式的几种变形(l)sin2α= 1 — cos2α=(l + cos «)(1 —cos a); cos2a= 1 - sin2a=(l ÷sin a)(l — sin a); (sin a±cos a)2 =l±2sin acos a.(2)sin a=tan acos a(a≠5+E, &WZ).2 .诱导公式“奇变偶不变,符号看象限”公式一:sin(a+2⅛π)=sin a, cos(a÷2hc)=cos a»la∏(6Z + <λkτf)= t∏∏OC其中公式二:sin(π+ct)= ~sin a> cos(π+cc)=~cos ct> Ian(Tr+a)=Ian a.公式三:sin(π~a)=sin a,cos(π-a) = — cos ct, ta∏(^-6Z)= —ta∏ OC ∙公式四:sin(-ct)=—sin a, cost—«)=cos a,t<l∏) = -13∏ CX .公式五:Sine-a) =cos a, COSe—a) =Sina 公式六:SinC+a)=cos a,CoSC+«) = -sin a.诱导公式可概括为〃∙]±a的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指方的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把a看成锐角时,根据在哪个象限判断厚三曲函数值的符号,最后作为结果符号.8.方法与要点一个口诀I、诱导公式的记忆。

高中 任意角的三角函数 知识点+例题 全面

高中 任意角的三角函数 知识点+例题 全面

辅导讲义――任意角的三角函数教学内容任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad 进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x. [试一试]1.若α=k ·180°+45°(k ∈Z ),则α是第______象限角.2.已知角α的终边经过点(3,-1),则sin α=________.1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想.[练一练]若sin α<0且tan α>0,则α是第______象限角.考点一角的集合表示及象限角的判定 1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有______个.2.终边在直线y =3x 上的角的集合为________.3.在-720°~0°范围内找出所有与45°终边相同的角为________.4.设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么集合M ,N 的关系是______.[类题通法]1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.考点二 三角函数的定义[典例] (1)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为______. (2)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2=________.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.[针对训练]已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.考点三扇形的弧长及面积公式[典例](1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[类题通法]弧度制应用的关注点(1)弧度制下l=|α|·r,S=12lr,此时α为弧度.在角度制下,弧长l=nπr180,扇形面积S=nπr2360,此时n为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.[针对训练]已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[课堂练通考点]1.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是________.2.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是________.4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.5.已知角α 的终边经过点P (x ,-6),且tan α=-35,则x 的值为________. 6.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=______.第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是______.2.已知cos θ·tan θ<0,那么角θ是第________象限角.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=______. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是________(填写序号).6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .10.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;第Ⅱ组:重点选做题巩固基础和能力提升训练1.满足cos α≤-12的角α的集合为________. 2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.。

(完整版)三角函数知识点归纳

(完整版)三角函数知识点归纳

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。

高考一轮复习专题三角函数(全)

高考一轮复习专题三角函数(全)

高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零, |α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=kπ,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ. 两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cosα=x r 、tan α=yx 分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α. 公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=…. 三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数y =tan )4(x -π的定义域为( ).A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ).A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域.(2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。

任意角和弧度制及任意角的三角函数考点及例题讲解

任意角和弧度制及任意角的三角函数考点及例题讲解

任意角和弧度制及任意角的三角函数考纲解读 1.通过角的变换,判断角所在象限;2.常见的角度与弧度之间的转化;3.已知角的终边求正弦、余弦、正切值;4.利用三角函数线求角的大小或角的范围;5.利用扇形面积公式和弧长公式进行相关计算.[基础梳理]1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按逆时针方向旋转形成的角; ②负角:按顺时针方向旋转形成的角;③零角:如果一条射线没有作任何旋转,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2k π,k ∈Z }. 2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角. (2)角α的弧度数公式:|α|=lr .(3)角度与弧度的换算:360°=2π rad,1°=π180 rad,1 rad =(180π)°≈57°18′.(4)扇形的弧长及面积公式: 弧长公式:l =α·r . 面积公式:S =12l ·r =12α·r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫作角α的正弦线、余弦线和正切线.4.终边相同的角的三角函数 sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α(其中k ∈Z ),即终边相同的角的同一三角函数的值相等.[三基自测]1.单位圆中,200°的圆心角所对的弧长为( ) A .10π B .9π C.9π10 D.10π9答案:D2.若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C3.弧长为3π、圆心角为34π的扇形半径为________.答案:44.(必修4·4.1例题改编)α终边上一点P (-3,4).则sin α=________,cos α=________,tan α=________.答案:45 -35 -435.(2017·高考全国卷Ⅰ改编)若α的终边过点(3,4),则cos ⎝⎛⎭⎫α-π4=__________. 答案:7210[考点例题]考点一 终边相同的角及象限角|易错突破高考总复习·数学(理)第三章 三角函数、解三角形[例1] (1)若角α满足α=2k π3+π6(k∈Z ),则α的终边一定在( )A .第一象限或第二象限或第三象限B .第一象限或第二象限或第四象限C .第一象限或第二象限或x 轴非正半轴上D .第一象限或第二象限或y 轴非正半轴上(2)已知sin α>0,cos α<0,则12α所在的象限是( )A .第一象限B .第三象限C .第一或第三象限D .第二或第四象限(3)下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )[解析] (1)由α=2k π3+π6,k ∈Z ,当k =0时,α=π6,终边在第一象限.当k =1时,α=2π3+π6=5π6,终边在第二象限.当k =-1时,α=-2π3+π6=-π2,终边在y 轴的非正半轴上,故选D.(2)因为sin α>0,cos α<0,所以α为第二象限角,即π2+2k π<α<π+2k π,k ∈Z ,则π4+k π<12α<π2+k π,k ∈Z .当k 为偶数时,12α为第一象限角;当k 为奇数时,12α为第三象限角,故选C.(3)由定义知终边相同的角中不能同时出现角度和弧度,应为π4+2k π或k ·360°+45°(k ∈Z ).[答案] (1)D (2)C (3)C [易错提醒][纠错训练]1.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为:β=45°+k ×360°(k ∈Z ), 则令-720°<45°+k ×360°<0°, 得-765°<k ×360°<-45°, 解得-765360<k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°2.终边在直线y =3x 上的角的集合为__________. 解析:在坐标系中画出直线y =3x , 可以发现它与x 轴正半轴的夹角是π3,终边在直线y =3x 上的角的集合为 ⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z .答案:⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z考点二 扇形弧长、面积公式的应用|方法突破[例2] (1)(2018·合肥模拟)《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?( )A .120B .240C .360D .480(2)(2018·太原模拟)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1D .2 sin 1[解析] (1)由题意可得:S =12×8×30=120(平方步).(2)如图:∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =AC sin ∠AOC =1sin 1,即r =1sin 1,从而弧AB 的长为l =α·r =2sin 1.[答案] (1)A (2)C [方法提升][母题变式]将本例(1)改为已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8D .1解析:设半径为r ,圆心角的弧度数为θ, 由S =12θr 2,得8=12×θ×4,∴θ=4.答案:A考点三 三角函数的定义|模型突破角度1 用三角函数的定义求值[例3] (1)(2018·大同模拟)已知角α的终边经过点P (-x ,-6),且cos α=-513,则x的值为________.(2)已知角α的终边在直线y =-3x 上,则10sin α+3cos α的值为________. [解析] (1)∵cos α=-x(-x )2+(-6)2=-x x 2+36=-513,∴⎩⎪⎨⎪⎧x >0,x 2x 2+36=25169,解得x =52.(2)设α终边上任一点为P (k ,-3k ), 则r =k 2+(-3k )2=10|k |. 当k >0时,r =10k , ∴sin α=-3k 10k =-310,1cos α=10kk=10, ∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k=-10, ∴10sin α+3cos α=310-310=0.[答案] (1)52 (2)0[模型解法]角度2 三角函数值符号的判断[例4] (1)(2018·怀化模拟)sin 2·cos 3·tan 4的值( ) A .小于0 B .大于0 C .等于0D .不存在(2)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] (1)∵π2<2<3<π<4<32π.∴sin 2>0,cos 3<0,tan 4>0. ∴sin 2·cos 3·tan 4<0.(2)由题意可得⎩⎪⎨⎪⎧ cos α<0,tan α<0,则⎩⎪⎨⎪⎧sin α>0,cos α<0,所以角α的终边在第二象限,故选B.[答案] (1)A (2)B [模型解法]角度3 利用三角函数线比较大小,解不等式[例5] (1)(2018·石家庄模拟)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α[解析] 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.[答案] C (2)y =sin x -32的定义域为________. [解析] ∵sin x ≥32,作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .[答案] ⎩⎨⎧⎭⎬⎫x |2k π+π3≤x ≤2k π+2π3,k ∈Z[模型解法]形如sin α≥a 或sin α≤a ()a ∈[-1,1]的解,其关键点为: (1)作出sin α=a 的函数线;(2)根据不等式,确定α的转动方向; (3)写出α的区域.[高考类题](2014·高考大纲全国卷)设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b解析:∵b =cos 55°=sin 35°>sin 33°=a ,∴b >a . 又∵c =tan 35°=sin 35°cos 35°>sin 35°=cos 55°=b ,∴c >b .∴c >b >a .故选C. 答案:C[真题感悟]1.[考点一、二] (2014·高考新课标全国卷Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案:C2.[考点二、三](2017·高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=__________.解析:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=13(k ∈Z ).1答案:3。

专题18 任意角、弧度制及任意角的三角函数领军高考数学一轮复习(文理通用)含解析

专题18 任意角、弧度制及任意角的三角函数领军高考数学一轮复习(文理通用)含解析

2020年领军高考数学一轮复习(文理通用)专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P,过P作PM⊥x轴,垂足为M,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T.【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.2.任意角的三角函数的定义(推广)设P(x,y)是角α终边上异于顶点的任一点,其到原点O的距离为r,则sin α=yr,cos α=xr,tan α=yx(x≠0).重点难点突破【题型一】角及其表示【典型例题】已知集合{α|2kπα≤2kπ,k∈Z},则角α的终边落在阴影处(包括边界)的区域是()A.B.C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.【题型二】弧度制【典型例题】已知扇形的周长是6cm ,面积是2cm 2,试求扇形的圆心角的弧度数( ) A .1B .4C .1或 4D .1或 2【解答】解:设扇形的圆心角为αrad ,半径为Rcm ,则,解得α=1或α=4.故选:C .【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1 D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a=sin,b=cos,c=tan,则()A.b<a<c B.c<b<a C.b<c<a D.a<b<c【解答】解:因为,所以cos sin,tan1,所以b<a<c.故选:A.思维升华(1)利用三角函数的定义,已知角α终边上一点P的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.基础知识训练2,3-,则1.【湖南省衡阳市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()()A .5B .15-C .15D .5-【答案】A 【解析】由任意角的三角函数定义可知:3tan 2θ=-本题正确选项:A2.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是( ) A .B .C .D .【答案】C 【解析】由题意可知:角的终边不能落在坐标轴上, 当角终边在第一象限时, 当角终边在第二象限时, 当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P 的坐标为,则sin α的值为( )A .12B .1-2C .2D .-2【答案】B 【解析】解:角α的终边上一点P的坐标为1,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【甘肃省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sin α+cos α,tan α)在第四象限,则在[0,2π)内α的取值范围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sin α+cos α,tan α)在第四象限, ∴,由sin α+cosα=(α4π+), 得2k π<α4<π+2k π+π,k∈Z,即2k π4π-<α<2k π34π+π,k∈Z. 由tan α<0,得k π2π+<α<k π+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【安徽省示范高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【河南省南阳市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是( ) A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D.7.【宁夏石嘴山市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420C .0660D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C .9.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是( ) A .钝角是第二象限角B .第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的范围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的范围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【江苏省南通市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④若,则α与β的终边相同;θ<,则θ是第二或第三象限的角.⑤若cos0其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【河南省平顶山市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟, 故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届四川省成都市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P--,则sinα的值为__________.【解析】解:∵点P(1,2)在角α的终边上,∴tanα2=,将原式分子分母除以cosα,则原式故答案为:5.16.【江苏省涟水中学2018-2019学年高二5月月考】欧拉公式(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3ie-表示的复数在复平面中位于第_______象限.【答案】三【解析】由题e-3i=cos3-i sin3,又cos3<0, sin3>0,故3ie-表示的复数在复平面中位于第三象限.故答案为三17.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大?【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100.【解析】(1)设扇形的圆心角大小为α()rad,半径为r,则由题意可得:.联立解得:扇形的圆心角2α=.(2)设扇形的半径和弧长分别为r和l,由题意可得240r l+=,∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2lrα==, ∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【上海市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD ,,,平方海里,由题意建立平面直角坐标系,如图所示; 由题意知,点P 在圆B 上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z};(2) {α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.【解析】(1)终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.能力提升训练1.【安徽省芜湖市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则()A.B.C.D.【答案】D【解析】∵点A为单位圆上一点,,点A沿单位圆逆时针方向旋转角α到点,∴A(cos,sin),即A(),且cos(α),sin(α).则sinα=sin[(α)]=sin(α)cos cos(α)sin,故选:D.∆中,若,那么2.【黑龙江省大庆实验中学2018-2019学年高一下学期期中考试】在ABC∆是()ABCA.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∆为锐角三角形.∴ABC故选A .3.【河北省邯郸市2018-2019学年高一下学期期中考试】已知,那么角是( )A .第一或第二象限角B .第二或第三象限角C .第三或第四象限角D .第一或第四象限角 【答案】B 【解析】由,得异号,则角是第二或第三象限角, 故选:.4.【河南省洛阳市2018-2019学年高一下学期期中考试】已知角α的终边经过点P (-3,y ),且y <0,cosα=-,则tanα=( ) A .B .C .D .【答案】C 【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C .5.【四川省攀枝花市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,P x ,则x 的值为( ) A .±2 B .2C .﹣2D .﹣4【答案】C 【解析】∵已知角83πθ=的终边经过点(,P x ,∴,则2x =-,故选:C .6.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】,则3f π⎛⎫=⎪⎝⎭( )A B C .12D 【答案】C 【解析】根据题意,,且13π<<,则.故选:C .7.【四川省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【安徽省淮北市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【四川省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sin α+cos α的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12), ∴sin α=则sin α+cos α=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】 【解析】由于“”,故为第二象限角,故概率为.。

2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数

2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数

2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。

高中数学 三角函数(解析版)

高中数学 三角函数(解析版)

三角函数【考纲要求】1.了解任意角和弧度制的概念,能进行弧度与角度的互化,理解任意角三角函数的定义.2.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin xcos x=tan x .3.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.4.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式. 5.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性. 6.了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象. 一、任意角和弧度制及任意角的三角函数 【思维导图】【考点总结】 1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:角α的弧度数公式 |α|=lr(l 表示弧长)角度与弧度的换算 ①1°=π180rad ;②1 rad =⎝⎛⎭⎫180π° 弧长公式 l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).二、同角三角函数的基本关系及诱导公式 【思维导图】【考点总结】1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan_α(α≠π2+k π,k ∈Z ).2.三角函数的诱导公式公式 一 二 三 四 五 六 角 2k π+α (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin_α -sin_α sin_α cos_α cos_α 余弦 cos_α -cos_α cos_α -cos_α sin_α -sin_α 正切 tan αtan_α-tan_α-tan_α口诀函数名不变,符号看象限 函数名改变,符号看象限三、三角恒等变换【思维导图】【考点总结】1.两角和与差的正弦、余弦、正切公式C (α-β):cos(α-β)=cos_αcos__β+sin_αsin__β. C (α+β):cos(α+β)=cos_αcos__β-sin_αsin__β. S (α+β):sin(α+β)=sin_αcos__β+cos_αsin__β. S (α-β):sin(α-β)=sin_αcos__β-cos_αsin__β.T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎫α,β,α+β≠π2+k π,k ∈Z .T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎫α,β,α-β≠π2+k π,k ∈Z . 2.二倍角的正弦、余弦、正切公式S 2α:sin 2α=2sin_αcos__α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠π4+k π2,且α≠k π+π2,k ∈Z . 四、三角函数的图象与性质 【思维导图】【考点总结】1.用五点法作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).五点法作图有三步:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质函数 y =sin xy =cos xy =tan x图象定义域R R {x |x ∈R ,且x ≠k π+π2,k ∈Z } 值域 [-1,1] [-1,1] R 奇偶性奇函数偶函数奇函数单调性在[-π2+2k π,π2+2k π](k ∈Z )上是递增函数,在 [π2+2k π,3π2+2k π](k ∈Z )上是递减函数在[2k π-π,2k π](k ∈Z )上是递增函数,在[2k π,2k π+π](k ∈Z )上是递减函数在(-π2+k π,π2+k π)(k ∈Z )上是递增函数周期性周期是2k π(k ∈Z 且k ≠0),最小正周期是2π周期是2k π(k ∈Z 且k ≠0),最小正周期是2π周期是k π(k ∈Z 且k ≠0),最小正周期是π对称性对称轴是x =π2+k π(k ∈Z ),对称中心是(k π,0)(k ∈Z )对称轴是x =k π(k ∈Z ),对称中心是(k π+π2,0)(k ∈Z )对称中心是(k π2,0)(k ∈Z ) 五、函数y =A sin(ωx +φ)的图象及应用 【思维导图】【考点总结】1.函数y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ) (A>0,ω>0) 振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:ωx+φ0π2π3π22πx -φωπ2ω-φωπ-φω3π2ω-φω2π-φωy=A sin(ωx+φ)0 A 0-A 0 3.【题型汇编】题型一:任意角的三角函数 题型二:同角三角函数的基本关系 题型三:三角函数的诱导公式 题型四:三角函数恒等变换 题型五:三角函数的图象和性质 【题型讲解】题型一:任意角的三角函数 一、单选题1.(2022·北京市八一中学一模)在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()3,4-,则cos θ=( ) A .45B .35C .35 D .45-【答案】C 【解析】 【分析】根据余弦函数的定义进行求解即可. 【详解】设点()3,4P -,因为()22345OP =-+=,所以33cos 55θ-==-. 故选:C.2.(2022·北京房山·二模)已知3cos ,5αα=是第一象限角,且角,αβ的终边关于y 轴对称,则tan β=( )A .34B .34-C .43D .43-【答案】D 【解析】 【分析】根据cos α求出tan α,根据角,αβ的终边关于y 轴对称可知tan β=tan α-. 【详解】∵3cos ,5αα=是第一象限角,∵24sin 1cos 5αα-=,sin 4tan cos 3ααα==, ∵角,αβ的终边关于y 轴对称,∵4tan tan 3βα=-=-.故选:D .3.(2022·山东潍坊·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,点()1,2A x ,()2,4B x 在角α的终边上,且121x x -=,则tan α=( ) A .2 B .12C .2-D .12-【答案】C 【解析】 【分析】根据题意,得到直线AB 的斜率为12242k x x -==--,进而判断α所在象限,即可求解. 【详解】由已知得,因为点()1,2A x ,()2,4B x 在角α的终边上,所以直线AB 的斜率为12242k x x -==--,所以,明显可见,α在第二象限,tan 2α.故选:C4.(2022·山西临汾·一模(文))已知α角的终边过点()sin30,sin30︒-︒,则sin α的值为( ) A .12-B .12C .2D 2【答案】C 【解析】 【分析】先求出点的坐标,进而根据三角函数的定义求得答案. 【详解】由题意,点的坐标为11,22⎛⎫- ⎪⎝⎭,则22122sin 21122α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭. 故选:C.5.(2022·河南·一模(文))已知α是第二象限角,则( ) A .cos 0α> B .sin 0α<C .sin 20α<D .tan 0α>【答案】C 【解析】 【分析】由已知结合三角函数的定义及象限角的范围,及正弦的二倍角公式判断即可. 【详解】由α是第二象限角,可得cos 0α<,sin 0α>,tan 0α<sin 22sin cos 0ααα∴=<故选:C6.(2022·山东济南·二模)如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( ) A .12B .12-C .3D .3【答案】C 【解析】先计算三角函数值得(1,3P ,再根据三角函数的定义22sin ,yr x y rα=+. 【详解】解:由题意得(1,3P -,它与原点的距离()2132r +,所以33sin y r α-===. 故选:C.7.(2022·河北石家庄·一模)若角α终边经过点()2,1-,则cos α= A .5B .25C 5D 25【答案】B 【解析】【详解】分析:利用三角函数的定义,即可求出. 详解:角α终边经过点()2,1-,则()221 5.r =-+=由余弦函数的定义可得25cos x r α== 故选B.点睛:本题考查三角函数的定义,属基础题. 二、多选题1.(2022·湖北·孝昌县第一高级中学三模)已知角α的终边经过点()8,3cos P α.则( ) A .1sin 3α=B .7cos 29α= C .2tan α= D .22cos α=【答案】ABD 【解析】 【分析】根据同终边角的正弦和余弦可知22sin 649cos 649cos αααα==++sin 0,cos 0αα>>,逐项代入即可.【详解】 解:由题意得: 如图所示:()22283cos 649cos OP αα=++22sin 649cos 649cos PQ OQ OP OP αααα∴==++ 2sin 649cos 3cos αα∴+=,即()222sin 649cos 9cos ααα+= ()222sin 649(1sin )91sin ααα⎡⎤∴+-=-⎣⎦,即429sin 82sin 90αα-+=解得:2sin 9α=(舍去)或21sin 9α=cos 0α>sin 0α∴>1sin 3α=,故A 正确; 22cos α∴D 正确; 22222217cos 2cos sin 39ααα⎛⎫∴=-=-= ⎪⎝⎭⎝⎭,故B 正确; 1sin 23tan cos 22ααα==C 错误; 故选:ABD题型二:同角三角函数的基本关系 一、单选题1.(2022·宁夏·固原一中一模(文))若3cos 5α=,且α在第四象限,则tan α=( ) A .34B .34-C .43D .43-【答案】D 【解析】由已知利用同角三角函数基本关系式即可计算得解. 【详解】 解:∵3cos 5α=,且α在第四象限, ∵24sin 1cos 5αα=--,∵sin tan s 43co ααα==-. 故选:D .2.(2022·辽宁·沈阳二中二模)若3sin cos 0αα+=,则21cos sin 2αα=+( )A .103 B .53C .23D .2-【答案】A 【解析】先由3sin cos 0αα+=求出1tan 3α=-,再由同角三角函数基本关系,以及二倍角的正弦公式,将所求式子化简,即可得出结果. 【详解】因为3sin cos 0αα+=,所以1tan 3α=-,因此22222111sin cos 11092cos sin 2cos 2sin cos 12tan an 3t 31ααααααααα+++====+++-. 故选:A. 【点睛】本题主要考查由同角三角函数基本关系化简求值,涉及二倍角的正弦公式,属于基础题型. 3.(2022·黑龙江·哈九中三模(文))已知1sin 24α=,且ππ32α<<,则cos sin αα-=( )A .12 B .12-C .3D 3【答案】C 【解析】 【分析】利用二倍角公式结合平方关系得()213cos sin 144αα-=-=,利用32ππα<<开方取负值即可 【详解】221sin 22sin cos ,sin cos 14ααααα==+=,()213cos sin 144αα∴-=-=,3,cos sin 32ππααα<<∴-= 故选:C.4.(2022·江西萍乡·三模(文))已知1tan 2θ=,则sin cos θθ=( ) A .25B .25-C .85D .85-【答案】A 【解析】 【分析】 由22sin co si s sin cos cos n θθθθθθ=+,分子分母同除以2cos θ,即可求出结果. 【详解】 因为222sin cos tan sin cos co sin n s 1ta θθθθθθθθ==++,又1tan 2θ=,所以122sin cos 1514θθ==+,故选:A.5.(2022·广东广州·三模)已知2sin cos x x +=()0,πx ∈,则cos2x 的值为( ) A .12B 3C .12-D .3 【答案】D 【解析】 【分析】 将2sin cos x x +=2sin x cos x =-12<0,结合2sin cos x x +=求出x 的范围,再利用 22cos 2sin 21x x +=求解即可. 【详解】 解:将2sin cos x x +=2sin x cos x =-12<0, 所以π(,π)2x ∈ , 又因为2sin cos x x +=0, 所以π3π(,)24x ∈,2x 3π(π,)2∈,又因为sin2x =-12,所以cos2x =21sin 2x -3 故选:D.6.(2022·江西南昌·三模(文))若角α的终边不在坐标轴上,且sin 2cos 2αα+=,则tan α=( )A .43B .34C .23D .32【答案】A 【解析】 【分析】结合易知条件和同角三角函数的平方关系即可求出cos α,从而求出sin α,根据sin tan cos ααα=即可求得结果.【详解】22sin cos 13cos 5sin 2cos 2ααααα⎧+=⇒=⎨+=⎩或cos 1α=, ∵α的终边不在坐标轴上,∵3cos 5α=, ∵34sin 2255α=-⨯=,∵sin 4tan cos 3ααα==. 故选:A .7.(2022·广西南宁·二模(文))若α是钝角且1sin 3α=,则tan α=( ) A .2B 2C .2D 2【答案】A 【解析】 【分析】先求出cos α,再根据商数关系求出tan α即可. 【详解】因为α是钝角,所以22122cos 1sin 13αα⎛⎫=-=--= ⎪⎝⎭sin 2tan cos ααα== 故选:A.题型三:三角函数的诱导公式 一、单选题1.(2022·江西萍乡·三模(理))已知2cos(πθ)sin(πθ)-=+,则sin 2θ=( )A .45B .45-C .85D .85-【答案】A 【解析】 【分析】利用诱导公式化简2cos(πθ)sin(πθ)-=+可以得到tan θ2=,再将sin 2θ化为齐次式,采用“弦化切”,代入tan θ即可得到答案【详解】2cos(πθ)sin(πθ)-=+ ,2cos θ=sin θ∴tan θ2∴=222222sin 2θ2sin θcos θ2tan θ224sin 2θsin θcos θsin θcos θtan θ1215⨯=====++++故选:A2.(2022·宁夏·吴忠中学三模(文))若4cos 5α=,α为第四象限角,则()tan πα-等于( ) A .43-B .43C .34D .34-【答案】C 【解析】 【分析】利用平方关系及商数关系,结合诱导公式即可求值. 【详解】由题设3sin 5α=-,所以3tan 4α=-,则()3tan tan 4παα-=-=.故选:C3.(2022·内蒙古呼和浩特·二模(文))20cos 3π=( ) A .12-B .12C .3D 3【答案】A 【解析】 【分析】由诱导公式化简求值即可. 【详解】20π18π+2π2π2π1coscos()cos(6π)cos 33332==+==-, 故选:A4.(2022·宁夏石嘴山·一模(理))已知31sin 23πα⎛⎫-= ⎪⎝⎭,则cos α=( ) A .13B .13-C 22D .22【答案】A 【解析】 【分析】利用诱导公式化简即得所求 【详解】 ()331sin sin cos cos 223ππαααα⎛⎫⎛⎫-=--=--== ⎪⎪⎝⎭⎝⎭故选:A5.(2022·福建漳州·二模)已知π1sin 63x ⎛⎫-= ⎪⎝⎭,则πcos 3x ⎛⎫+= ⎪⎝⎭( )A .22B .13-C .13D 22【答案】C 【解析】 【分析】整体法用诱导公式求解. 【详解】ππππ1cos sin sin 33263x x x ⎛⎫⎛⎫⎛⎫+=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C6.(2022·广西柳州·二模(理))已知π1sin 33α⎛⎫+= ⎪⎝⎭,则πcos 6α⎛⎫-= ⎪⎝⎭( )A .79B .13C .13-D .79-【答案】B 【解析】 【分析】利用诱导公式化简求值.由诱导公式得π1cos cos sin 63233πππααα⎛⎫⎛⎫⎛⎫-=+-=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:B.7.(2022·内蒙古·满洲里市教研培训中心三模(文))若π4sin ,25α⎛⎫-=- ⎪⎝⎭,()cos π2α-的值为( )A .725B .725-C .925D .925-【答案】B 【解析】 【分析】由诱导公式进行化简,然后根据二倍角公式即可求解. 【详解】π44sin ,cos 255αα⎛⎫-=-∴=- ⎪⎝⎭ ,()2247cos π2cos 22cos 121525ααα⎛⎫∴-=-=-+=-⨯-+=- ⎪⎝⎭故选:B8.(2022·贵州贵阳·二模(理))若3cos 45πα⎛⎫-= ⎪⎝⎭,sin 2α=( )A .2425-B .725-C .2425D .725【答案】B 【解析】 【分析】利用二倍角公式可得cos 22πα⎛⎫- ⎪⎝⎭,利用诱导公式可得结果.【详解】2187cos 22cos 11242525ππαα⎛⎫⎛⎫-=--=-=- ⎪ ⎪⎝⎭⎝⎭,7sin 2cos 2225παα⎛⎫∴=-=- ⎪⎝⎭.故选:B.9.(2022·江西九江·三模(理))已知1sin cos 3αα-=,则cos 4πα⎛⎫+= ⎪⎝⎭( )A .13-B .2C .13D 2【答案】B 【解析】首先根据辅助角公式得到2sin 4πα⎛⎫- ⎪⎝⎭【详解】1sin cos 243πααα⎛⎫-=-= ⎪⎝⎭,即2sin 46πα⎛⎫-= ⎪⎝⎭2cos cos sin 4424ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=--= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:B10.(2022·安徽马鞍山·三模(文))若4cos 5α=,sin cos 1αα+<,则()tan πα-等于( ) A .43-B .43C .34-D .34【答案】D 【解析】 【分析】由平方关系结合已知可得sin α,然后由诱导公式和商数关系可得所求. 【详解】 因为4cos 5α=,所以3sin 5α=± 因为sin cos 1αα+<,所以3sin 5α=-所以()3sin 35tan tan 4cos 45απααα--=-=-=-=. 故选:D题型四:三角函数恒等变换 一、单选题1.(2022·湖南·雅礼中学二模)已知3cos28cos 5αα-=,则cos α=( ) A .23-B .23C .5D 5【答案】A 【解析】 【分析】利用二倍角公式即得. 【详解】由题可得26cos 8cos 80αα--=,解得cos 2α=(舍去),或2cos 3α=-.故选:A.2.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin2α=( )A .2425-B .725-C .725D .2425【答案】A 【解析】 【分析】根据终边上的点确定角的正余弦值,再由二倍角正弦公式求sin 2α. 【详解】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-.故选:A3.(2022·河南商丘·三模(文))已知tan 3α=-,则sin 21cos 2αα=-( )A .3B .13C .13-D .-3【答案】C 【解析】 【分析】利用二倍角公式化简即可 【详解】2sin 22cos sin cos 111cos 22sin sin tan 3αααααααα====--.故选:C4.(2022·黑龙江·哈九中三模(文))已知1sin 24α=,且ππ32α<<,则cos sin αα-=( )A .12 B .12-C .3D 3【答案】C【解析】 【分析】利用二倍角公式结合平方关系得()213cos sin 144αα-=-=,利用32ππα<<开方取负值即可 【详解】221sin 22sin cos ,sin cos 14ααααα==+=,()213cos sin 144αα∴-=-=,3,cos sin 32ππααα<<∴-= 故选:C.5.(2022·福建南平·三模)在ABC 中,若()tan 2A B +=-tan 2C =( ) A .22- B .2C 2D .22【答案】A 【解析】 【分析】由()tan tan 2C A B =-+=. 【详解】因为A B C π+=-,所以()tan tan 2C A B =-+ 所以()222tan 22tan 2221tan 12C C C ==---故选:A6.(2022·内蒙古包头·二模(理))若π,π2a ⎛⎫∈ ⎪⎝⎭,3cos tan 22sin =-ααα,则tan α=( )A 3B .3C 3D .3-【答案】B 【解析】 【分析】根据同角的三角函数关系式,结合二倍角的正弦公式和余弦公式、特殊角的三角函数值进行求解即可. 【详解】 23cos sin 23cos 2sin cos 3cos tan 22sin cos 22sin 12sin 2sin αααααααααααα=⇒=⇒=----,因为π,π2a ⎛⎫∈ ⎪⎝⎭,所以cos 0a ≠,于是由222sin cos 3cos 2sin 312sin 2sin 12sin 2sin αααααααα=⇒=----, 解得24sin 4sin 30αα+-=, 解得1sin 2α=,或3sin 12α=-<-(舍去),因为π,π2a ⎛⎫∈ ⎪⎝⎭,所以5π6a =, 即5ππ3tan tan tan 66α==-= 故选:B7.(2022·湖北武汉·二模)设sin32k =,则1tan16tan16+=( ) A .2kB .1kC .2kD .k【答案】A 【解析】 【分析】化切为弦,通分,再利用平方关系及倍角公式即可得解. 【详解】 解:1sin16cos16tan16tan16cos16sin16︒︒=+︒︒︒+︒22sin 16cos 16sin16cos16︒+︒︒⋅︒=11sin 322=︒ 2k=. 故选:A.8.(2022·陕西·安康市高新中学三模(文))若1tan 2α=,则cos 21sin 2αα=+( ) A .34B .12C .13D .35【答案】C 【解析】【分析】利用二倍角公式及同角三角函数的基本关系将弦化切,再代入计算可得; 【详解】解:()22211cos 2cos sin cos sin 1tan 1211sin 2cos sin 1tan 3sin cos 12αααααααααααα----=====+++++. 故选:C .9.(2022·江西萍乡·二模(文))已知1sin 62πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭ ( )A .12B 3C .12-D .3 【答案】A 【解析】 【分析】利用二倍角的余弦公式求解. 【详解】因为1sin 62πα⎛⎫+= ⎪⎝⎭,所以cos 2cos 236ππαα⎡⎤⎛⎫⎛⎫+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,212sin 6πα⎛⎫=-+ ⎪⎝⎭,2111222⎛⎫=-= ⎪⎝⎭,故选:A10.(2022·山西·二模(理))若sin 21tan 3αα=,则cos2=α( ) A .23B .23-C .13D .13-【答案】B 【解析】 【分析】利用二倍角公式和切化弦,化简即可求得. 【详解】因为2sin 22sin cos 12cos 1cos 2sin tan 3cos αααααααα===+=,所以2cos 23α=-.故选:B .11.(2022·黑龙江·哈师大附中三模(理))若()0,απ∈,1cos sin 2αα-=,则cos2=α( )A 7B 7C .34D .-34【答案】A 【解析】 【分析】由题意利用同角三角函数的基本关系、二倍角公式先求得sin 2α的值,再求sin cos αα+,结合二倍角余弦公式求值即可 【详解】∵1cos sin 2αα-=,平方可得11sin 24α-=, ∵3sin 24α=, ∵ sin ,cos αα同号,又()0,απ∈, ∵2,0πα⎛∈⎫ ⎪⎝⎭,∵()27sin cos 1sin 24ααα+=+=, ∵7sin cos αα+=则227cos 2cos sin (cos sin )(cos sin )ααααααα=-=-+=, 所以cos2=α7故选:A.12.(2022·山西晋城·三模(理))若tan 2θ=,则cos2θ=( ) A .35 B .13-C .35D .13【答案】A 【解析】【分析】由余弦的二倍角公式,然后再结合平方关系和商的关系,转化为tan θ的式子,得出答案. 【详解】22222222cos sin 1tan 143cos 2cos sin cos sin 1tan 145θθθθθθθθθ---=-====-+++ 故选:A 二、多选题1.(2022·海南海口·二模)已知(),2αππ∈,tan sin tan 22αβα==,则( ) A .tan 3α=B .1cos 2α=C .tan 43β=D .1cos 7β=【答案】BD 【解析】 【分析】根据商的关系化简条件可求cos α,利用平方关系求sin α,再由商的关系求tan α,再利用tan 2β,结合二倍角公式及同角三角函数关系求tan β,cos β. 【详解】因为tan sin tan cos 2αααα==, 所以1cos 2α=,又 (),2αππ∈, 所以3sin α=tan 3α=A 错误,B 正确. 3tan2β= 所以22tan2tan 431tan 2βββ==--222222cos sin 1tan 1222cos 7sin cos 1tan 222βββββββ--===++, 故C 错误,D 正确. 故选:BD.2.(2022·全国·模拟预测)已知,2x ππ⎛⎫∈ ⎪⎝⎭,3cos 8tan x x =,则( )A .1sin 3x =B .42tan 2x =C .1cos 23x =D .3429sin cos 44x x ππ-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭【答案】ABD 【解析】 【分析】切化弦后,由平方关系化为关于sin x 的方程,解方程可得sin x ,求出cos x 后由商数关系得tan x ,再由正切的二倍角公式得tan 2x ,由余弦的二倍角公式得cos2x ,由两角和的正弦余弦公式化简后代入cos ,sin x x 值可得3sin cos 44x x ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭.【详解】对于选项A ,∵3cos 8tan x x =,∵23cos 8sin x x =,∵23sin 8sin 30x x +-=,解得1sin 3x =或sin 3x =-(舍),故选项A 正确;对于选项B ,∵,2x ππ⎛⎫∈ ⎪⎝⎭,∵22cos x =1sin 3tan cos 22x x x ==-2=22222tan 42tan 21tan 21x x x ⎛⨯ -⎝⎭===-⎛- ⎝⎭B 正确; 对于选项C ,2cos 22cos 1x x =-=2227219⎛⨯-= ⎝⎭,故选项C 错误; 对于选项D ,322sin cos 44x x x x ππ⎫⎛⎫⎛⎫++=⋅⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()22142912sin cos 2x x x x ⎛⎫-=-+= ⎪ ⎪⎝⎭D 正确. 故选:ABD .题型五:三角函数的图象和性质1.(2022·河北邯郸·二模)函数()πsin(2)3f x x =+在ππ,33⎛⎫- ⎪⎝⎭上的值域为( )A .(]0,1B .3⎛⎫⎪ ⎪⎝⎭C .3⎛⎤⎥⎝⎦D .[]1,1-【答案】C 【解析】 【分析】根据正弦型函数的图像和单调性即可求解. 【详解】当ππ,33x ⎛⎫∈- ⎪⎝⎭时,ππ2,π33x ⎛⎫+∈- ⎪⎝⎭,当ππ232x +=时,即π12x = 时,()πsin(2)3f x x =+取最大值1,当ππ233x +=-,即π3x =- 时,()πsin(2)3f x x =+取最小值大于3,故值域为3⎛⎤ ⎥⎝⎦故选:C2.(2022·陕西西安·三模(文))下列区间中,函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .π0,2⎛⎫⎪⎝⎭B .π,π2⎛⎫ ⎪⎝⎭C .3ππ,2⎛⎫ ⎪⎝⎭D .3π,2π2⎛⎫⎪⎝⎭【答案】C 【解析】 【分析】根据诱导公式,结合余弦型函数的单调性进行判断即可. 【详解】()ππππ2sin 2cos 2cos 4244f x x x x ⎛⎫⎛⎫⎛⎫=-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当π0,2x ⎛⎫∈ ⎪⎝⎭时,ππ3π,444x ⎛⎫+∈ ⎪⎝⎭,显然该集合是()0,π的子集此时函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭单调递减,不符合题意;当π,π2x ⎛⎫∈ ⎪⎝⎭时,π3π5π,444x ⎛⎫+∈ ⎪⎝⎭,显然该集合不是()π,2π的子集此时函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭不单调递增,不符合题意;当3ππ,2x ⎛⎫∈ ⎪⎝⎭时,π5π7π,444x ⎛⎫+∈ ⎪⎝⎭,显然该集合是()π,2π的子集此时函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭单调递增,符合题意;当3π,2π2x ⎛⎫∈ ⎪⎝⎭时,π7π9π,444x ⎛⎫+∈ ⎪⎝⎭,显然该集合不是()π,2π的子集此时函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭不单调递增,不符合题意,故选:C3.(2022·安徽淮南·二模(文))函数()22sin y x x x -=-的部分图象可能是( )A .B .C .D .【答案】B 【解析】 【分析】根据函数的奇偶性以及特殊值排除法,即可求解. 【详解】记()()22sin f x x x x -=-,则()()22sin f x x x x --=--,故()()f x f x =--,()f x 是奇函数,故图像关于原点对称.此时可排除A,C ,取22,()02222x f ππππ-⎛⎫⎛⎫==-> ⎪ ⎪⎝⎭⎝⎭ ,排除D.故选:B4.(2022·江西九江·一模(理))函数()()22cos 2sin 0f x x x ωωω=->的最小正周期为π2,则ω的值为( ).A .2B .4C .1D .12【答案】A 【解析】 【分析】根据二倍角的余弦公式可得()31cos 222f x x ω=-,结合求最小正周期的公式2πT ω=计算即可.【详解】 解:()()1cos 2311cos 2cos 2222x f x x x ωωω+=--=-, 由0ω>得函数的最小正周期为2ππ22T ω==, ∵2ω=, 故选:A .5.(2022·安徽蚌埠·三模(文))已知函数()()2sin 02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭>,<的图像如图所示,则ω的值为( )A .2B .1C .12D .14【答案】C 【解析】 【分析】由图象分析函数的周期,求得ω的值. 【详解】由图象可知,函数的半周期是2π,所以2ωπ=π,得12ω=. 故选:C6.(2022·上海松江·二模)设函数()sin()(05)6f x x πωω=+<<图像的一条对称轴方程为12x π=,若1x 、2x 是函数()f x 的两个不同的零点,则12||x x -的最小值为( ) A .6π B .4π C .2π D .π【答案】B 【解析】 【分析】根据对称轴和ω的范围可得ω的值,从而可得周期,然后由题意可知12||x x -的最小值为2T可得.【详解】 由题知,1262k k πππωπ+=+∈Z ,则124,k k ω=+∈Z ,因为05ω<<,所以4ω= 所以22T ππω==易知12||x x -的最小值为24T π=. 故选:B7.(2022·青海·海东市教育研究室一模(理))已知定义在π0,4⎡⎤⎢⎥⎣⎦上的函数()()πsin 04f x x ωω⎛⎫=-> ⎪⎝⎭,若()f x 的最大值为5ω,则ω的取值最多有( ) A .2个 B .3个C .4个D .5个【答案】A 【解析】 【分析】因为πππ,44π44x ωω⎡⎤--⎢⎥⎣-⎦∈,讨论πππ442ω-≥或πππ442ω-<,结合函数图像理解分析.【详解】∵π0,4x ⎡⎤∈⎢⎥⎣⎦,则πππ,44π44x ωω⎡⎤--⎢⎥⎣-⎦∈若()f x 的最大值为5ω,分两种情况讨论: ∵当πππ442ω-≥,即3ω≥时,根据正弦函数的单调性可知,()max 15f x ω==,解得5ω=;∵当πππ442ω-<,即03ω<<时,根据正弦函数的单调性可知,sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增,所以()max ππsin 0445f x ωω⎛⎫=-=> ⎪⎝⎭,结合函数ππsin 44y x ⎛⎫=- ⎪⎝⎭与5x y =在()0,3上的图像可知,存在唯一的()0,3ω∈,使得ππsin 445ωω⎛⎫-= ⎪⎝⎭.综上可知,若()f x 的最大值为5ω,则ω的取值最多有2个. 故选:A .8.(2022·湖南·雅礼中学二模)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>> ⎪⎝⎭的图象如图所示.则()f ϕ=( )A .0B .AC .2AD .2A -【答案】A 【解析】 【分析】由相邻零点与对称轴间的距离为周期的四分之一,求得周期,进而求得ω,由最低点的坐标求得ϕ的值,进而计算得解. 【详解】由图象可得()f x 的最小正周期74123T πππ⎛⎫=-=⎪⎝⎭,∵22T πω==, 由7322,122k k ππϕπ⋅+=+∈Z ,解得2,3k k πϕπ=+∈Z ,由2πϕ得3πϕ=,∵()sin 23f x A x π⎛⎫=+ ⎪⎝⎭,∵()sin 03f f A πϕπ⎛⎫=== ⎪⎝⎭,故选:A9.(2022·新疆克拉玛依·三模(理))函数()()1sin f x x x π=--在区间3722ππ⎡⎤-⎢⎥⎣⎦,上的所有零点之和为( )A .0B .2πC .4πD .6π【答案】C 【解析】 【分析】把方程()0f x =变形,把零点个数转化为正弦函数图象与另一函数1y x π=-图象的交点个数,根据函数的对称性计算可得. 【详解】解:因为()()1sin f x x x π=--,令()0f x =,即()1sin x x π=-,当x π=时显然不成立, 当x π≠时1sin x x π=-,作出sin y x =和1y x π=-的图象,如图,它们关于点(,0)π对称,由图象可知它们在3722ππ⎡⎤-⎢⎥⎣⎦,上有4个交点,且关于点(,0)π对称,每对称的两个点的横坐标和为2π,所以4个点的横坐标之和为4π. 故选:C .10.(2022·河南郑州·三模(文))关于函数()cos ,6f x x x R π⎛⎫=+∈ ⎪⎝⎭,有下述四个结论:∵()f x 的一个周期为2π-; ∵()f x 的图象关于直线43x π=对称; ∵()f x π+的一个零点为3x π=; ∵()f x 在0,2π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的编号是( ) A .∵∵B .∵∵C .∵∵D .∵∵【答案】A 【解析】 【分析】由余弦函数的周期性、对称性、零点及单调性依次判断即可. 【详解】(2)cos 2cos ()66f x x x f x ππππ⎛⎫⎛⎫-=-+=+= ⎪ ⎪⎝⎭⎝⎭,∵正确;443()cos cos 03362f ππππ⎛⎫=+== ⎪⎝⎭,则()f x 的图象关于4,03π⎛⎫⎪⎝⎭对称,∵错误;()cos cos 66f x x x ππππ⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎝⎭⎝⎭,cos 036ππ⎛⎫-+= ⎪⎝⎭,∵正确;由0,2x π⎛⎫∈ ⎪⎝⎭可得2,663x πππ⎛⎫+∈ ⎪⎝⎭,()f x 单调递减,∵错误.故选:A. 二、多选题1.(2022·河北秦皇岛·二模)已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭图象的一条对称轴方程为6x π=,与其相邻对称中心的距离为4π,则( ) A .()f x 的最小正周期为π B .()f x 的最小正周期为2π C .6π=ϕ D .3πϕ=【答案】AC 【解析】 【分析】根据三角函数图象性质可得函数解析式进而可得周期. 【详解】因为()f x 图象相邻的对称中心与对称轴的距离为4π,所以最小正周期T π=,故A 正确,B 不正确; 因为22Tπω==,且()2,622k k πππϕπϕ⨯+=+∈<Z ,所以6π=ϕ,故C 正确,D 不正确, 故选:AC.2.(2022·湖北·荆州中学三模)已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,关于()f x 有下述四个结论,其中错误的结论是( ) A .()f x 的一个周期是2π B .()f x 是偶函数C .()f x 在区间(0,)π上单调递减D .()f x 2 【答案】BC 【解析】 【分析】利用函数周期性的定义可判断A 选项的正误;利用4f π⎛⎫- ⎪⎝⎭和4f π⎛⎫⎪⎝⎭的值可判断B 选项的正误;化简函数()f x 在0,2π⎛⎫⎪⎝⎭上的解析式,可判断C 选项的正误;由()0f 的值可判断D 选项的正误.【详解】对于A 选项,()()()[][]()2sin cos 2cos sin 2sin cos cos sin f x x x x x f x πππ+=+++=+=⎡⎤⎡⎤⎣⎦⎣⎦, 所以,函数()f x 的一个周期为2π,A 选项正确;对于B 选项,22sin cos sin 0cos 014f π⎡⎡⎛⎫=+=+=⎢⎢ ⎪⎝⎭⎣⎦⎣⎦, ()22sin cos sin 0cos 1cos14f π⎡⎡⎛⎫-=+=+-=⎢⎢ ⎪⎝⎭⎣⎦⎣⎦,44f f ππ⎛⎫⎛⎫∴-≠ ⎪ ⎪⎝⎭⎝⎭,44f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 不是偶函数,B 选项错误; 对于C 选项,当02x π<<时,0sin 1x <<,0cos 1x <<,则[][]sin cos 0x x ==,则()sin0cos01f x =+=,所以,函数()f x 在0,2π⎛⎫⎪⎝⎭是常函数,C 选项错误;对于D 选项,()[][]0sin cos0cos sin 0sin1cos01sin12f ∴=+=+=+>D 选项正确. 故选:BC. 三、解答题1.(2022·江西·上高二中模拟预测(理))设函数()()()π3πsin cos sin 3πcos π22f x x x x x ⎡⎤⎛⎫⎛⎫=++-⋅++-⎡⎤ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦. (1)求函数()f x 单调递减区间;(2)求函数()()π6g x f x f x ⎛⎫=++ ⎪⎝⎭在区间π0,2⎡⎤⎢⎥⎣⎦上的最值.【答案】(1)()ππ,πZ 4k k k ⎛⎫-+∈ ⎪⎝⎭(2)()g x 最小值为32-3【解析】 【分析】(1)根据诱导公式和二倍角公式化简得:()cos2f x x =-,再根据余弦函数的单调性求解即可; (2)化简得π()3)3g x x =-,再根据ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,求解即可.(1)()()()22cos sin sin cos sin cos cos2f x x x x x x x x =---=-=- ,当()22ππ,2πx k k ∈- Z k ∈ ,即x ∈()ππ,πZ 4k k k ⎛⎫-+∈ ⎪⎝⎭时是单调递减区间;(2)()π33πcos 2cos 22cos 23sin 2323g x x x x x x ⎛⎫⎛⎫=--+-- ⎪ ⎪⎝⎭⎝⎭ ,因为π02,x ⎡⎤∈⎢⎥⎣⎦,所以ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,()()min π30332g x g ⎛⎫==-=- ⎪⎝⎭ ,()max 5ππ33122g x g ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,故()g x 最小值为32-32.(2022·山东临沂·二模)已知函数()sin (0,01)4f x A x A πωω⎛⎫=+><< ⎪⎝⎭,42f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在30,4π⎛⎫ ⎪⎝⎭2 (1)求()f x 的解析式;(2)将函数()f x 图象上所有点的横坐标缩小为原来的13,纵坐标不变,得到函数()g x 的图象,若122g α⎛⎫= ⎪⎝⎭,求sin 2α的值.【答案】(1)2()2)34f x x π=+;(2)34-【解析】 【分析】(1)由01ω<<求得2T π>,再结合()f x 在30,4π⎛⎫⎪⎝⎭242f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,知3()28f π=,求出,A ω即可;(2)先求出()g x ,由122g α⎛⎫= ⎪⎝⎭求得sin()422πα+=sin 2α.(1)因为01ω<<,所以周期22T ππω=>,又()f x 在30,4π⎛⎫⎪⎝⎭2,且42f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 所以当13()2428x πππ=+=时,()f x 2所以2A 且3()28f π=32284ππω⎛⎫+= ⎪⎝⎭3501,4848ππππωω<<∴<+<,故3842πππω+=,解得23ω=,故2()2)34f x x π=+; (2)()(3)2)4g x f x x π=+,又12)242g απα⎛⎫=+= ⎪⎝⎭,则sin()422πα+=23sin 2cos 22sin 1244ππααα⎛⎫⎛⎫=-+=+-=- ⎪ ⎪⎝⎭⎝⎭.3.(2022·浙江台州·二模)设函数()()sin 6f x x x π⎛⎫=-∈ ⎪⎝⎭R .(1)求函数26y f x π⎛⎫=+ ⎪⎝⎭的最小正周期;(2)求函数()226y f x f x π⎛⎫=++ ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)π(2)74【解析】 【分析】(1)由三角函数的性质求解(2)由三角恒等变换公式化简,根据三角函数性质求解 (1)22sin 6y f x x π⎛⎫=+= ⎪⎝⎭1cos22x -=∵函数26y f x π⎛⎫=+ ⎪⎝⎭的最小正周期为π.(2)()221cos 21cos23622x x y f x f x ππ⎛⎫-- ⎪-⎛⎫⎝⎭=++=+ ⎪⎝⎭33131sin 21223x x x π⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭. ∵02x π≤≤,∵42333x πππ≤+≤,即333243x π⎛⎫-+ ⎪⎝⎭∵函数()226y f x f x π⎛⎫=++ ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值为74.4.(2022·浙江·三模)已知函数()2sin sin 6f x x x π⎛⎫=⋅+ ⎪⎝⎭.(1)求()f x 的单调递增区间;(2)若对任意,3x t π⎡⎤∈⎢⎥⎣⎦,都有()332f x ≤,求实数t 的取值范围. 【答案】(1)5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦ (2)0,3π⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)()f x 的解析式可化简为()3sin 23f x x π⎛⎫=- ⎪⎝⎭,令222,232k x k k Z πππππ-+≤-≤+∈,即可解得()f x 的单调递增区间(2)对恒成立的不等式等价转化后,结合23x π-的范围可得2333t πππ-≤-<,从而解得t 的范围(1)()312sin sin 2sin cos 62f x x x x x x π⎫⎛⎫=⋅+=+⎪ ⎪⎪⎝⎭⎝⎭)2133sin cos 3sin sin 21cos 2sin 223x x x x x x π⎛⎫==-=- ⎪⎝⎭令222,232k x k k Z πππππ-+≤-≤+∈解之得5,1212k x k k Z ππππ-+≤≤+∈∵()f x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)对任意,3x t π⎡⎤∈⎢⎥⎣⎦,都有()333sin 223f x x π⎛⎫≤⇔- ⎪⎝⎭ ∵22,333x t πππ⎡⎤-∈-⎢⎥⎣⎦, ∵2333t πππ-≤-<,∵03t π≤<,∵实数t 的范围为0,3π⎡⎫⎪⎢⎣⎭.。

(完整版)三角函数最全知识点总结

(完整版)三角函数最全知识点总结

三角函数、解三角形一、任意角和弧度制及任意角的三角函数1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按__逆时针__方向旋转形成的角.②负角:按__顺时针__方向旋转形成的角.③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}.(3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.象限角轴线角2.弧度制(1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__.(2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__.(3)角度与弧度的换算:360°=__2π__rad,1°=__π180=(__180π__)≈57°18′.(4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__,面积S=__12|α|r2__=__12lr__.3.任意角的三角函数定义(1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=__yr__,cosα=__xr__,tanα=__yx__.(2)三角函数在各象限的符号是:(3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线.4.终边相同的角的三角函数sin(α+k·2π)=__sinα__,cos(α+k·2π)=__cosα__,tan(α+k·2π)=__tanα__(其中k∈Z),即终边相同的角的同一三角函数的值相等.重要结论1.终边相同的角不一定相等,相等角的终边一定相同,在书写与角α终边相同的角时,单位必须一致.2.确定αk(k∈N*)的终边位置的方法(1)讨论法:①用终边相同角的形式表示出角α的范围.②写出αk的范围.③根据k的可能取值讨论确定αk的终边所在位置.(2)等分象限角的方法:已知角α是第m(m=1,2,3,4)象限角,求αk是第几象限角.①等分:将每个象限分成k等份.②标注:从x轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x轴正半轴.③选答:出现数字m的区域,即为αk所在的象限.如α2判断象限问题可采用等分象限法.二、同角三角函数的基本关系式与诱导公式1.同角三角函数的基本关系式(1)平方关系:__sin 2x +cos 2x =1__. (2)商数关系:__sin xcos x =tan x __.2.三角函数的诱导公式1.同角三角函数基本关系式的变形应用:如sin x =tan x ·cos x ,tan 2x +1=1cos 2x ,(sin x +cos x )2=1+2sin x cos x 等. 2.特殊角的三角函数值表“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.4.sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系为(sin x +cos x )2=1+2sin x cos x ,(sin x -cos x )2=1-2sin x cos x ,(sin x +cos x )2+(sin x -cos x )2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.三、两角和与差的三角函数 二倍角公式1.两角和与差的正弦、余弦和正切公式2.二倍角的正弦、余弦、正切公式 (1)sin2α=__2sin αcos α__;(2)cos2α=__cos 2α-sin 2α__=__2cos 2α__-1=1-__2sin 2α__; (3)tan2α=__2tan α1-tan 2α__(α≠k π2+π4且α≠k π+π2,k ∈Z ). 3.半角公式(不要求记忆) (1)sin α2=±1-cos α2; (2)cos α2=±1+cos α2;(3)tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.重要结论1.降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2. 2.升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α. 3.公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). 1-tan α1+tan α=tan(π4-α);1+tan α1-tan α=tan(π4+α)cos α=sin2α2sin α,sin2α=2tan α1+tan 2α,cos2α=1-tan 2α1+tan 2α,1±sin2α=(sin α±cos x )2.4.辅助角(“二合一”)公式: a sin α+b cos α=a 2+b 2sin(α+φ), 其中cos φ=,sin φ= 5.三角形中的三角函数问题在三角形中,常用的角的变形结论有:A +B =π-C ;2A +2B +2C =2π;A2+B 2+C 2=π2.三角函数的结论有:sin(A +B )=sin C ,cos(A +B )=-cos C ,tan(A +B )=-tan C ,sin A +B 2=cos C 2,cos A +B 2=sin C 2.A >B ⇔sin A >sin B ⇔cos A <cos B .四、三角函数的图象与性质1.周期函数的定义及周期的概念(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做__周期函数__.非零常数T叫做这个函数的__周期__.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小__正周期__.(2)正弦函数、余弦函数都是周期函数,__2kπ(k∈Z,k≠0)__都是它们的周期,最小正周期是__2π__.2.正弦、余弦、正切函数的图象与性质π重要结论1.函数y =sin x ,x ∈[0,2π]的五点作图法的五个关键点是__(0,0)__、__(π2,1)__、__(π,0)__、__(3π2,-1)__、__(2π,0)__.函数y =cos x ,x ∈[0,2π]的五点作图法的五个关健点是__(0,1)__、__(π2,0)__、__(π,-1)__、__(3π2,0)__、__(2π,1)__.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为T =2π|ω|,函数y =tan(ωx +φ)的最小正周期为T =π|ω|.3.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.而正切曲线相邻两对称中心之间的距离是半周期.4.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.五、函数y =A sin(ωx +φ)的图象及应用1.五点法画函数y =A sin(ωx +φ)(A >0)的图象(1)列表: (2)描点:__(-φω,0)__,__(π2ω-φω,A )__,(πω-φω,0),(3π2ω-φω,-A )__,(2πω-φω,0)__.(3)连线:把这5个点用光滑曲线顺次连接,就得到y =A sin(ωx +φ)在区间长度为一个周期内的图象.(4)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象2.由函数y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤3.函数y =A sin(ωx +φ)(A >0,ω>0,x ∈[0,+∞)的物理意义 (1)振幅为A . (2)周期T =__2πω__.(3)频率f =__1T __=__ω2π__. (4)相位是__ωx +φ__. (5)初相是φ.重要结论1.函数y =A sin(ωx +φ)的单调区间的“长度 ”为T2.2.“五点法”作图中的五个点:①y =A sin(ωx +φ),两个最值点,三个零点;②y =A cos(ωx +φ),两个零点,三个最值点.3.正弦曲线y =sin x 向左平移π2个单位即得余弦曲线y =cos x .六、正弦定理、余弦定理1.正弦定理和余弦定理 ①a =__2R sin A __,b =__2R sin B __,c =__2R sin C __;②sin A =__a 2R __,sin B =__b2R__,sin C=__c2R __;③ab c =__sin Asin B sin C __④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Aa <b sin A a =b sin A b sin A < a <b a ≥b a >b a ≤b (1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为内切圆半径).重要结论在△ABC 中,常有以下结论 1.∠A +∠B +∠C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2. 5.tan A +tan B +tan C =tan A ·tan B ·tan C .6.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .7.三角形式的余弦定理sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,sin 2B =sin 2A +sin 2C -2sin A sin C cos B ,sin 2C =sin 2A +sin 2B -2sin A sin B cos C .8.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3. 9.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等. (2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.(3)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.。

第1节 任意角和弧度制及任意角的三角函数(经典练习及答案详解)

第1节 任意角和弧度制及任意角的三角函数(经典练习及答案详解)

第1节 任意角和弧度制及任意角的三角函数知识梳理1.角的概念的推广(1)定义:角可以看成一条射线绕着它的端点旋转所形成的图形. (2)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角W.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1 rad. (2)公式3.任意角的三角函数 (1)定义(2)定义的推广设P(x,y)是角α终边上异于原点的任一点,它到原点的距离为r(r>0),那么sin α=yr;cos α=xr,tan α=yx(x≠0).1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制必须一致,不可混用.3.象限角4.轴线角诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.( ) (4)若α为第一象限角,则sin α+cos α>1.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)锐角的取值范围是⎝ ⎛⎭⎪⎫0,π2.(2)第一象限角不一定是锐角.2.已知角θ的终边过点P (-12,m ),cos θ=-1213,则m 的值为( ) A.-5 B.5C.±5D.±8答案 C解析 由三角函数的定义可知cos θ=-12(-12)2+m2=-1213,解得m =±5. 3.在-720°~0°范围内,所有与角α=45°终边相同的角β构成的集合为________. 答案 {-675°,-315°}解析 所有与角α终边相同的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ),得-765°≤k ×360°<-45°(k ∈Z ). 解得k =-2或k =-1,∴β=-675°或β=-315°.4.(2020·全国Ⅱ卷)若α为第四象限角,则( ) A.cos 2α>0 B.cos 2α<0 C.sin 2α>0D.sin 2α<0答案 D解析 ∵α是第四象限角,∴sin α<0,cos α>0,∴sin 2α=2sin αcos α<0,故选D. 5.(多选题)(2021·武汉调研)下列说法正确的是( ) A.时钟经过两个小时,时针转过的角度是60° B.钝角大于锐角C.三角形的内角必是第一或第二象限角D.若α是第二象限角,则α2是第一或第三象限角 答案 BD解析 对于A ,时钟经过两个小时,时针转过的角是-60°,故错误; 对于B ,钝角一定大于锐角,显然正确;对于C ,若三角形的内角为90°,则是终边在y 轴正半轴上的角,故错误; 对于D ,∵角α的终边在第二象限, ∴2k π+π2<α<2k π+π,k ∈Z , ∴k π+π4<α2<k π+π2,k ∈Z .当k =2n ,n ∈Z 时,2n π+π4<α2<2n π+π2,n ∈Z ,得α2是第一象限角;当k =2n +1,n ∈Z 时,(2n +1)π+π4<α2<(2n +1)π+π2,n ∈Z ,得α2是第三象限角,故正确.6.(2021·菏泽质检)密位广泛用于航海和军事,我国采取的“密位制”是6 000密位制,即将一个圆周分成6 000等份,每一等份是一个密位,那么60密位等于________rad. 答案 π50解析 ∵周角为2π rad , ∴1密位=2π6 000=π3 000(rad), ∴60密位=π3 000·60=π50(rad).考点一 角的概念及其表示1.下列与角9π4的终边相同的角的表达式中正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z ) C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )答案 C解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,排除A 、B ,易知D 错误,C 正确.2.(多选题)(2021·海南调研)已知α为第三象限角,则α2的终边所在的象限可能是( ) A.第一象限 B.第二象限 C.第三象限D.第四象限答案 BD解析 ∵α为第三象限角, ∴π+2k π<α<3π2+2k π,k ∈Z , ∴π2+k π<α2<3π4+k π,k ∈Z ,当k =2m ,m ∈Z 时,π2+2m π<α2<3π4+2m π,m ∈Z ,此时α2在第二象限, 当k =2m +1,m ∈Z 时,3π2+2m π<α2<7π4+2m π,m ∈Z , 此时α2在第四象限.综上,α2的终边在第二或第四象限.3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________________. 答案⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3解析 终边在直线y =3x 上的角α的集合为⎩⎨⎧⎭⎬⎫α|α=π3+k π,又由α∈[-2π,2π),即-2π≤π3+k π<2π,k ∈Z , 解得k =-2,-1,0,1,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.感悟升华 1.确定nα,αn (n ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出nα或αn 的范围,然后根据n 的可能取值讨论确定nα或αn 的终边所在位置(也可采用等分象限角的方法). 2.利用终边相同的角的集合求适合某些条件的角:先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. 考点二 弧度制及其应用【例1】已知一扇形的圆心角为α,半径为R ,弧长为l ,若α=π3,R =10 cm ,求:(1)扇形的面积;(2)扇形的弧长及该弧所在弓形的面积. 解 (1)由已知得α=π3,R =10, ∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2). (2)l =α·R =π3·10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3 =12×10π3·10-12×102×32=50π-7533(cm 2).感悟升华 应用弧度制解决问题时应注意:(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. 【训练1】 (1)(多选题)(2020·青岛质检)已知扇形的周长是6,面积是2,下列选项可能正确的有( ) A.圆的半径为2 B.圆的半径为1 C.圆心角的弧度数是1 D.圆心角的弧度数是2(2)已知扇形的周长为8 cm ,则该扇形面积的最大值为________cm 2. 答案 (1)ABC (2)4解析 (1)设扇形半径为r ,圆心角弧度数为α,则由题意得⎩⎨⎧2r +αr =6,12αr 2=2,解得⎩⎪⎨⎪⎧r =1,α=4或⎩⎪⎨⎪⎧r =2,α=1,可得圆心角的弧度数是4或1. (2)设扇形半径为r cm ,弧长为l cm , 则2r +l =8,S =12rl =12r ×(8-2r ) =-r 2+4r =-(r -2)2+4, 所以S max =4(cm 2).考点三 三角函数的定义及应用角度1 求三角函数值【例2】已知角α的终边与单位圆的交点为P ⎝ ⎛⎭⎪⎫-12,y ,则sin α·tan α等于( )A.-33 B.±33C.-32D.±32答案 C解析 由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3, 此时sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3, 此时,sin α·tan α=-32. 综上sin α·tan α=-32. 角度2 由三角函数值求参数【例3】已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12 B.-32 C.12D.32答案 C解析 由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,所以m >0,解得m =12.角度3 三角函数值的符号【例4】 (多选题)(2021·重庆调研)已知|cos θ|=cos θ,|tan θ|=-tan θ,则角θ2的终边可能在( ) A.第二、四象限 B.第一、三象限 C.y 轴上D.x 轴上答案 AD解析∵|cos θ|=cos θ,|tan θ|=-tan θ,∴cos θ≥0,tan θ≤0,∴角θ的终边在第四象限或x轴正半轴上,∴角θ2的终边在第二、四象限或x轴上.故选AD.感悟升华 1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.【训练2】(1)若sin θ·cos θ<0,tan θsin θ>0,则角θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上的一点,且sin θ=-31010,则y=________.答案(1)D(2)-3解析(1)由tan θsin θ>0,得1cos θ>0,所以cos θ>0.又sin θ·cos θ<0,所以sin θ<0,所以θ为第四象限角.故选D.(2)因为sin θ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010.解得y =-3.A 级 基础巩固一、选择题1.小明出国旅游,当地时间比北京时间晚一个小时,他需要调整手表的时间,则时针转过的角的弧度数为( ) A.π3 B.π6C.-π3D.-π6答案 B解析 因为当地时间比北京时间晚一个小时,所以时针应该是逆时针方向旋转,故时针转过的角的弧度数为π6.故选B.2.(多选题)(2021·淄博调研)下列四个命题正确的是( ) A.-3π4是第二象限角B.4π3是第三象限角C.-400°是第四象限角D.-315°是第一象限角答案 BCD解析 -3π4是第三象限角,故A 错误;4π3=π+π3,从而4π3是第三象限角,B 正确;-400°=-360°-40°,是第四象限角,从而C 正确;-315°=-360°+45°,是第一象限角,从而D 正确.3.(2020·天津期末)在平面直角坐标系中,若角α以x 轴的非负半轴为始边,且终边过点⎝ ⎛⎭⎪⎫-32,12,则sin α=( )A.-32B.-12C.32D.12答案 D解析 由任意角三角函数的定义得sin α=12⎝ ⎛⎭⎪⎫-322+⎝ ⎛⎭⎪⎫122=12.故选D.4.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A.2B.4C.6D.8答案 C解析 设扇形的半径为r ,弧长为l ,则由扇形面积公式可得2=12|α|r 2=12×4×r 2,解得r =1,l =αr =4,所以所求扇形的周长为2r +l =6.5.若角α的终边在直线y =-x 上,则角α的取值集合为( )A.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·2π-π4,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·2π+3π4,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·π-3π4,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k ·π-π4,k ∈Z 答案 D解析 由图知,角α的取值集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2n π+3π4,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2n π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=(2n +1)π-π4,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2n π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k π-π4,k ∈Z . 6.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案 B解析 由θ是第三象限角知,θ2为第二或第四象限角, 又⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,所以cos θ2<0, 综上可知,θ2为第二象限角.7.(2020·长沙模拟)已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B.-12C.32D.-32答案 A解析 由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.8.(多选题)(2021·山东新高考模拟)如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°,质点A 以1 rad/s 的角速度按逆时针方向在单位圆上运动,质点B 以2 rad/s 的角速度按顺时针方向在单位圆上运动,则( )A.经过1 s 后,∠BOA 的弧度数为π3+3B.经过π12 s 后,扇形AOB 的弧长为7π12C.经过π6 s 后,扇形AOB 的面积为π3D.经过5π9 s 后,A ,B 在单位圆上第一次相遇答案 ABD解析 经过1 s 后,质点A 运动1 rad ,质点B 运动2 rad ,此时∠BOA 的弧度数为π3+3,故A 正确;经过π12 s 后,∠AOB =π12+π3+2×π12=7π12,故扇形AOB 的弧长为7π12×1=7π12,故B 正确;经过π6 s 后,∠AOB =π6+π3+2×π6=5π6,故扇形AOB 的面积为S =12×5π6×12=5π12,故C 不正确;设经过t s 后,A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9(s),故D 正确.二、填空题9.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 答案 π3解析 设扇形半径为r ,弧长为l ,则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎨⎧l =π3,r =2. 10.在平面直角坐标系xOy 中,点P 在角2π3的终边上,且|OP |=2,则点P 的坐标为________.答案 (-1,3)解析设点P 的坐标为(x ,y ),由三角函数定义得⎩⎪⎨⎪⎧x =|OP |cos 2π3,y =|OP |sin 2π3,所以⎩⎪⎨⎪⎧x =-1,y =3,所以点P 的坐标为(-1,3).11.(2021·河北九校联考)已知点P (sin 35°,cos 35°)为角α终边上一点,若0°≤α<360°,则α=________.答案 55°解析 由题意知cos α=sin 35°=cos 55°,sin α=cos 35°=sin 55°,P 在第一象限,所以α=55°.12.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=________.答案 55解析 由O ,A ,B 三点共线,从而得到b =2a ,因为cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫1a 2+12-1=23,解得a 2=15, 即|a |=55,所以|a -b |=|a -2a |=|a |=55.B 级 能力提升13.设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N ={x |x =k 4·180°+45°,k ∈Z },那么( )A.M =NB.M ⊆NC.N ⊆MD.M ∩N =∅ 答案 B解析 由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k 4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .14.(2019·北京卷)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β 答案 B解析 如图,设点O 为圆心,连接PO ,OA ,OB ,AB ,在劣弧上取一点C ,则阴影部分面积为△ABP 和弓形ACB 的面积和.因为A ,B 是圆周上的定点,所以弓形ACB 的面积为定值,故当△ABP 的面积最大时,阴影部分的面积最大.又AB 的长为定值,故当点P 为优弧的中点时,点P 到弦AB 的距离最大,此时△ABP 面积最大,即当P 为优弧的中点时,阴影部分面积最大.下面计算当P 为优弧的中点时阴影部分的面积.因为∠APB 为锐角,且∠APB =β,所以∠AOB =2β,∠AOP =∠BOP =180°-β,则阴影部分的面积S =S △AOP +S △BOP +S 扇形OAB =2×12×2×2sin(180°-β)+12×22×2β=4β+4sin β.故选B.15.一扇形的圆心角为2π3,则此扇形的面积与其内切圆的面积的比值为________.答案 7+439解析 设扇形半径为R ,内切圆半径为r .则(R -r )sin π3=r ,即R =⎝⎛⎭⎪⎫1+233r . 又S 扇=12|α|R 2=12×2π3×R 2=π3R 2=7+439πr 2,所以S 扇πr 2=7+439.16.在平面直角坐标系中,劣弧,,,是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段弧上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是________.答案解析 因为tan α<cos α,所以P 所在的圆弧不是,因为tan α<sin α,所以P 所在的圆弧不是,又cos α<sin α,所以P 所在的圆弧不是,所以P 所在的圆弧是.。

三角函数解三角形题型归类

三角函数解三角形题型归类

三角函数解三角形题型归类一知识归纳:(一)任意角、弧度制及任意角的三角函数 1.角的概念(1)任意角:①定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;②分类:角按旋转方向分为 、 和 . (2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S = .(3)象限角:使角的顶点与 重合,角的始边与 ,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个 ,负角的弧度数是一个负数 ,零角的弧度数是 .(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°.(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α= ,cos α= ,tan α= .(2)任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0) 4.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (二)公式概念1.三角函数诱导公式⎝ ⎛⎭⎪⎫k 2π+α(k ∈Z)的本质奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角).2.两角和与差的三角函数公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.3.二倍角公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,cos 2α=1+cos 2α2, sin 2α=1-cos α2;(3)tan 2α=2tan α1-tan 2α. (三)正、余弦定理及其变形: 1.正弦定理及其变形在△ABC 中,a sin A =b sin B =csin C =2R (其中R 是外接圆的半径); a =2R sin A ,b =2R sin B ,c =2R sin C ; sin A =a 2R ,sin B =b 2R ,sin C =c2R . 2.余弦定理及其变形 a 2=b 2+c 2-2bc cos A ;cos A =b 2+c 2-a 22bc. b 2= ; cos B = ; c 2= . cos C = .3.三角形面积公式:S △ABC =12ah =12ab sin C =12ac sin B =_________________=abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .2.整体法:求y =A sin(ωx +φ)(ω>0)的单调区间、周期、值域、对称轴(中心)时,将ωx +φ看作一个整体,利用正弦曲线的性质解决.3.换元法:在求三角函数的值域时,有时将sin x (或cos x )看作一个整体,换元后转化为二次函数来解决.4.公式法:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =A tan(ωx +φ)的最小正周期为π|ω|.(2016年 全国卷1)4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知5a =,2c =,2cos 3A =,则b =(A )2 (B )3 (C )2 (D )3 6.将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为 (A )2sin(2)4y x π=+ (B )2sin(2)3y x π=+(C )2sin(2)4y x π=-(D )2sin(2)3y x π=-14.已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-=————————————. (2015年 全国卷1)8. 函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =o ,且2,a = 求ABC ∆的面积.(2014年 全国卷1) 2.若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为 A .①②③ B. ①③④ C . ②④D. ①③16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测学科网得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .(2013年 全国卷1)9.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )10.已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b = (A )10 (B )9(C )8(D )516.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.(2012年 全国卷1)9.已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π417.(本小题满分12分)已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,3sin sin c a C c A =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆3b ,c .三、题型归纳题型一、三角函数定义的应用1.若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y 等于( ) A.-33 C.- 3变式1.已知角α的终边经过点(3,-1),则角α的最小正值是( )题型二、三角函数值的符号2.已知角α的终边经过点(3,-1),则角α的最小正值是( )变式2.设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )C .-34D .-43 题型三、同角三角函数关系式的应用3.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 C .-344.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( ) A .-32 C .-34变式3.已知sin α-cos α=2,α∈(0,π),则tan α等于( ) A .-1 B .-22 D .1题型四 诱导公式的应用5.(1)已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α=________. (2)sin(-1 200°)cos 1 290°+cos(-1 020°)sin(-1 050°)=______变式4.已知角α终边上一点p(-4,3),则cos()sin()2119cos()sin()22παπαππαα+---+的值为 题型五、三角函数的图形变换6.(1)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位(2)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入部分数据,如下表:(1)f (x )的解析式; (2)将y =f (x )图象上所有点向左平移π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.变式5.已知函数y =2sin ⎝⎛⎭⎫2x +π3.(1)求它的振幅、周期、初相;(2)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.题型六、三角函数的性质问题7.(1)函数y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间为________. (2)已知函数f (x )=cos ⎝⎛⎭⎫ωx +φ-π2⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则y =f ⎝⎛⎭⎫x +π6取得最小值时x 的集合为( )(3)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且其图象向右平移π12个单位后得到的函数为奇函数,则函数f (x )的图象( ) A.关于点⎝⎛⎭⎫π2,0对称B.关于直线x =5π12对称 C.关于点⎝⎛⎭⎫5π12,0对称 D.关于直线x =π12对称(4)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x 是( )A.奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B.偶函数且图象关于点(π,0)对称C.奇函数且图象关于直线x =π2对称D.偶函数且图象关于点⎝⎛⎭⎫π2,0对称变式6.已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.题型七、最值与值域问题8.已知函数2()(sinx cosx)cos 2f x x =++。

任意角的三角函数及弧度制知识点及答案

任意角的三角函数及弧度制知识点及答案

必修四第一章三角函数1.1任意角与弧度制一、任意角和弧度制1、角的概念的推广定义:一条射线OA由原来的位置,绕着它的端点O按一定的方向旋转到另一位置OB,就形成了角α,记作:角α或α∠可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x轴正半轴(3)“正角”与“负角”——这是由旋转的方向所决定的。

2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

3、“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

4、常用的角的集合表示方法<1>、终边相同的角:(1)终边相同的角都可以表示成一个0︒到360︒的角与)(Zkk∈个周角的和。

(2)所有与α终边相同的角连同α在内可以构成一个集合{}ZkkS∈⋅+==,360|αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和注意:1、Z∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同。

终边相同的角有无数个,它们相差360°的整数倍。

4、一般的,终边相同的角的表达形式不唯一。

<2>、终边在坐标轴上的点:终边在x轴上的角的集合:{}Zkk∈⨯=,180|ββ终边在y轴上的角的集合:{}Zkk∈+⨯=,90180|ββ终边在坐标轴上的角的集合:{}Zkk∈⨯=,90|ββ<3>、终边共线且反向的角:终边在y=x轴上的角的集合:{}Zkk∈+⨯=,45180|ββ终边在xy-=轴上的角的集合:{}Zkk∈-⨯=,45180|ββ<4>、终边互相对称的角:若角α与角β的终边关于x轴对称,则角α与角β的关系:βα-=k360若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=180360k若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 二、弧度与弧度制 <1>、弧度与弧度制:弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度定义:长度等于 的弧所对的圆心角称为1弧度的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●高考明方向1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化3.理解任意角的三角函数(正弦、余弦、正切)的定义.★备考知考情1.三角函数的定义与三角恒等变换等相结合,考查三角函数求值问题.2.三角函数的定义与向量等知识相结合,考查三角函数定义的应用.3.主要以选择题、填空题为主,属中低档题.一、知识梳理《名师一号》P47知识点一 角的概念(1)分类⎩⎨⎧ 按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角. (2)终边相同的角:所有与角α终边相同的角,连同角α在,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.《名师一号》P47 对点自测 1、2注意:1、《名师一号》P48 问题探究 问题1、2相等的角终边相同,终边相同的角也一定相等吗?相等的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍.角的表示形式是唯一的吗?角的集合的表示形式不是唯一的,如:终边在y 轴的负半轴上的角的集合可以表示为{x |x =k ·360°-90°,k ∈Z},也可以表示为{x |x =k ·360°+270°,k ∈Z}.(补充)2、正角 > 零角 > 负角3、下列概念应注意区分小于90°的角;锐角;第一象限的角;0°~90°的角.4、(1)终边落在坐标轴上的角1)终边落在x 轴非负半轴上的角{x|x =2kπ,k ∈Z }2)终边落在x 轴非正半轴上的角{x|x =2kπ+π,k ∈Z }终边落在x 轴上的角{x|x =kπ,k ∈Z }3)终边落在y 轴非负半轴上的角{x|x =2kπ+π2,k ∈Z }4)终边落在y 轴非正半轴上的角{x|x =2kπ+3π2,k ∈Z } 终边落在y 轴上的角{x|x =kπ+π2,k ∈Z }(2) 象限角 (自己课后完成)知识点二 弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2. 关键:基本公式180︒→=rad π《名师一号》P47 对点自测 3注意:1、《名师一号》P48 问题探究 问题3在角的表示中角度制和弧度制能不能混合应用?不能.在同一个式子中,采用的度量制度是一致的, 不可混用.2、弧长公式与扇形面积公式(扇形的圆心角为α弧度,半径为r )弧长公式||l r α= 扇形面积公式12S lr = (补充)(将扇形视为曲边三角形,记l 为底,r 为高)知识点三任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),则sinα=,cosα=,tanα=(x≠0).(补充)12(补充)关键:立足定义正弦……一二正,横为零余弦……一四正,纵为零正切……一三正,横为零,纵不存在3、特殊角的三角函数值(自己课后完成)知识点三任意角的三角函数(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线.《名师一号》P47 对点自测 6注意:《名师一号》P48 问题探究问题4如何利用三角函数线解不等式及比较三角函数值的大小?(1)先找到“正值”区间,即0~2π间满足条件的围,然后再加上周期.(2)先作出角,再作出相应的三角函数线,最后进行比较大小,应注意三角函数线的有向性.也可以利用相应图象求解二、例题分析:(一)角的表示及象限角的判定例1.《名师一号》P48 高频考点例1 (1)写出终边在直线y=3x上的角的集合;(2)已知α是第三象限角,求α2所在的象限.【思维启迪】(1)角的终边是射线,应分两种情况求解.(2)把α写成集合的形式,从而α2的集合形式也确定.解:(1)当角的终边在第一象限时,角的集合为{α|α=2kπ+π3,k∈Z},当角的终边在第三象限时,角的集合为{α|α=2kπ+43π,k∈Z},故所求角的集合为{α|α=2kπ+π3,k∈Z}∪{α|α=2kπ+43π,k∈Z}={α|α=kπ+π3,k∈Z}.(2)∵2kπ+π<α<2kπ+32π(k∈Z),∴kπ+π2<α2<kπ+34π(k∈Z).当k=2n(n∈Z)时,2nπ+π2<α2<2nπ+34π,α2是第二象限角,当k=2n+1(n∈Z)时,2nπ+3π2<α2<2nπ+74π,α2是第四象限角,综上知,当α是第三象限角时,α2是第二或第四象限角.注意:《名师一号》P48 高频考点例1 规律方法(1)若要确定一个绝对值较大的角所在的象限,一般是先将角化为2kπ+α(0≤α<2π)(k∈Z)的形式,然后再根据α所在的象限予以判断.(2)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需角.(二)弧度制的定义和公式例1.《名师一号》P48 高频考点例2(1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?解:(1)设圆心角是θ,半径是r ,则⎩⎪⎨⎪⎧ 2r +rθ=1012θ·r 2=4⇒⎩⎨⎧ r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12 故扇形圆心角为12. (2)设圆心角是θ,半径是r ,则2r +rθ=40.S =12θ·r 2=12r (40-2r )=r (20-r ) =-(r -10)2+100≤100,当且仅当r =10时,S max =100,θ=2.所以当r =10,θ=2时,扇形面积最大.《名师一号》P47 对点自测 4注意:《名师一号》P48 高频考点 例2 规律方法1.弧度制下l =|α|·r ,S =12lr ,此时α为弧度. 在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360, 此时n 为角度,它们之间有着必然的联系.2.在解决弧长、面积及弓形面积时要注意合理 应用圆心角所在的三角形.(三) 三角函数的定义及应用例1.《名师一号》P48 高频考点 例3(1)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255, 则y =________.解:(1)r =x 2+y 2=16+y 2,且sin θ=-255, 所以sin θ=y r =y 16+y2=-255, 所以θ为第四象限角,解得y =-8.《名师一号》P47 对点自测 5(3)(2015·日照模拟)已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角.解:(3)因为点P (sin θcos θ,2cos θ)位于第三象限,所以sin θcos θ<0,2cos θ<0,即⎩⎨⎧sin θ>0,cos θ<0,所以θ为第二象限角.※(2)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP→的坐标为________.解: (2)如图,连接AP ,分别过P ,A 作PC ,AB 垂直x 轴于C ,B 点,过A 作AD ⊥PC 于D 点, 由题意知BP 的长为2. ∵圆的半径为1,∴∠BAP =2.故∠DAP =2-π2. ∴DP =AP ·sin ⎝ ⎛⎭⎪⎫2-π2=-cos2. ∴PC =1-cos2,DA =AP cos ⎝ ⎛⎭⎪⎫2-π2=sin2.∴OC =2-sin2,故OP→=(2-sin2,1-cos2).注意:《名师一号》P48 高频考点 例2 规律方法1.利用定义求三角函数值.在利用三角函数的定义求角α的三角函数值时,若角α终边上点的坐标是以参数的形式给出的,则要根据问题的实际及解题的需要对参数进行分类讨论.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.2.三角函数值的符号及角的位置的判断.已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置,注意终边在坐标轴上的特殊情况.3.与向量等问题形成的交汇问题,抓住问题的实质,寻找相应的角度,然后通过解三角形求得解.练习:若一个角α的终边在直线3=-y x 上, 求310sin cos +αα的值。

答案:0注意:立足定义是根本!三角函数的定义是三角函数的基础,由三角函数的定义可得同角三角函数的基本关系及各象限角的三角函数值符号等。

利用三角函数的定义解题时应先确定点的坐标及点的位置。

(四)以三角函数的定义为载体的创新问题《名师一号》P49 特色专题三角函数的概念是考查三角函数的重要工具,在高考命题中很少单独考查,但常结合三角函数的基础知识、三角恒等变换和向量等知识综合考查,涉及的知识点较多,且难度不大.【典例】如图所示,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(2,-2),角速度为1,那么点P到x轴的距离d关于时间t的函数图象大致为()A B C D【规解答】 用t 表示出OP 与x 轴正方向所成的角,然后利用三角函数的定义得到d 的函数表达式即可.∵P 0(2,-2),∴∠P 0Ox =π4. 按逆时针转时间t 后,得∠POP 0=t ,∠POx =t -π4. 由三角函数定义,知点P 的纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4. 因此d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4. 令t =0,则d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫-π4=2,当t =π4时,d =0, 故选C.【名师点评】 解决本题的关键有以下两点:(1)结合圆周运动,准确理解题意,根据三角函数定义,表示出d =2sin t -π4是关键. (2)涉及函数图象判定问题,结合函数的性质、特殊化思想是快捷求解的有效途径.练习:《名师一号》P49对应训练如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O沿l1以1 m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()A B C D解析圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cos α2=1-t,即cos x2=1-t,则y=cos x=2cos2x2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.课后作业计时双基练P241 基础1-11、培优1-4课本P48-49变式思考1、2、3;对应训练预习第三章第二节同角三角函数的基本关系。

相关文档
最新文档