遗传学复习(刘祖洞_高等教育出版社_第二版)
遗传学教程课后答案
遗传学教程课后答案遗传学教程课后答案【篇一:遗传学课后习题答案】章绪论1、遗传学:是研究生物遗传和变异的科学遗传:亲代与子代相似的现象就是遗传。
如“种瓜得瓜、种豆得豆”变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。
2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗传和变异。
遗传是相对的、保守的,而变异是绝对的、发展的。
没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。
遗传、变异和选择是生物进化和新品种选育的三大因素。
3、1953年瓦特森和克里克通过x射线衍射分析的研究,提出dna分子结构模式理念,这是遗传学发展史上一个重大的转折点。
第二章遗传的细胞学基础原核细胞:各种细菌、蓝藻等低等生物有原核细胞构成,统称为原核生物。
真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。
真核核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。
另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。
真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。
染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。
染色体:含有许多基因的自主复制核酸分子。
细菌的全部基因包容在一个双股环形dna构成的染色体内。
真核生物染色体是与组蛋白结合在一起的线状dna双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。
染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。
着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。
一般每个染一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。
细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。
其中有丝分裂过程分为:(1)dna合成前期(g1期);(2)dna合成期(s期);(3)dna合成后期(g2期);(4)有丝分裂期(m期)。
遗传学刘祖洞第二版课后习题答案
遗传学刘祖洞第二版课后习题答案遗传学刘祖洞第二版课后习题答案遗传学是生物学的一个重要分支,研究的是遗传信息的传递和变异。
刘祖洞的《遗传学》是一本经典教材,在学习遗传学的过程中,课后习题是非常重要的辅助工具。
本文将为读者提供刘祖洞第二版《遗传学》课后习题的答案。
第一章:绪论1. 遗传学的研究对象是什么?答:遗传学的研究对象是遗传信息的传递和变异。
2. 什么是基因?答:基因是生物体内控制遗传性状的一段遗传信息。
3. 请解释“遗传信息的传递和变异”。
答:遗传信息的传递是指从父代到子代的基因传递过程,变异是指在基因传递过程中产生的遗传变异。
第二章:遗传物质的结构和功能1. DNA是由什么组成的?答:DNA是由核苷酸组成的,核苷酸由糖、磷酸和碱基组成。
2. DNA的双螺旋结构是由谁发现的?答:Watson和Crick发现了DNA的双螺旋结构。
3. DNA的复制过程是什么?答:DNA的复制过程是指在细胞分裂过程中,DNA分子通过复制,生成两条完全相同的DNA分子。
第三章:遗传信息的传递1. 什么是等位基因?答:等位基因是指在同一基因位点上,不同基因型的基因。
2. 什么是基因型?什么是表现型?答:基因型是指一个个体拥有的基因的组合,表现型是指基因型在外部环境下表现出来的形态、结构或功能。
3. 请解释孟德尔的两个基本定律。
答:孟德尔的第一定律是性状在同一个体的两个等位基因中表现出来的比例为3:1;第二定律是不同基因分离独立地遗传。
第四章:基因的变异和突变1. 什么是基因变异?答:基因变异是指基因在传递过程中发生的突发性变化,包括基因突变和基因重组。
2. 请解释基因突变的类型。
答:基因突变包括点突变、缺失突变、插入突变和倒位突变等。
3. 基因突变是如何引起遗传病的?答:基因突变会导致基因的功能异常,进而引起遗传病的发生。
第五章:染色体的结构和功能1. 什么是染色体?答:染色体是细胞核中携带遗传信息的结构体,由DNA和蛋白质组成。
遗传学第一章
遗传学第一章遗传学主讲教材(1)《遗传学》第二版刘祖洞编著高等教育出版社(2)《人类遗传学导论》余其兴赵刚编著高等教育出版社Springer 出版社(3)《遗传学》王亚馥编著高等教育出版社学时:42考试方式:笔试任课教师:唐艳黑龙江大学生命科学学院第一章绪论本章重点遗传、遗传学、人类遗传学、变异、遗传工程的含义遗传与变异的关系,遗传学研究特点学时:2第一节遗传学的定义、研究内容和任务1.遗传学的研究内容(1)是研究生物遗传和变异的科学:遗传学与生命起源和生物进化有关。
(2)是研究生物体遗传信息和表达规律的科学:解决问题:物种→代代遗传性状→遗传(3)是研究和了解基因本质的科学遗传物质是什么?遗传物质→性状?∴遗传学是一门涉及生命起源和生物进化的理论科学,同时也是一门密切联系生产实际的基础科学,直接指导医学研究和植物、动物和微生物育种。
2.遗传和变异的定义(1). 遗传(heredity):一种生物只能繁衍同种生物,世代间相似的现象就是遗传。
“种瓜得瓜,种豆得豆……”。
“龙生龙,凤生凤,老鼠生的儿女会打洞……”。
(2). 变异(variation):亲代和子代之间、子代和子代之间相似而不完全相同,这种生物个体间的差异叫变异。
(3).遗传学(Genetics):是研究生物的遗传与变异规律的一门生物学分支科学;是研究遗传信息传递与表达的一门生物学分支科学。
(4).人类遗传学(Human genetics):是遗传学中的一个重要分支学科,专门探讨人类遗传和变异规律的一门科学。
(5)遗传与变异的关系:遗传是生物的一种属性,是生命世界的一种自然现象。
变异使物种推陈出新,没有变异就没有物种的形成与进化,遗传与变异是生物生存与进化的基础,遗传维持了生命的延续,没有遗传就没有延续的生命;就没有相对稳定的物种。
遗传与变异使得生物生生不息,造就了形形色色的生物世界。
遗传、变异和选择是生物进化和新品种选育的三大因素:遗传+ 变异+ 自然选择→形成物种遗传+ 变异+ 人工选择→动、植物品种遗传和变异的表现与环境不可分割。
(完整版)遗传学试题_刘祖洞版
For personal use only in study and research; not for commercial use第一章绪论一、选择题:1.涉及分析基因是如何从亲代传递给子代以及基因重组的遗传学分支是:( )A) 分子遗传学B) 植物遗传学C) 传递遗传学D) 种群遗传学2.被遗传学家作为研究对象的理想生物,应具有哪些特征?( )A)相对较短的生命周期B)种群中的各个个体的遗传差异较大C)每次交配产生大量的子代D)遗传背景较为熟悉E)以上均是理想的特征二、名词解释1.遗传学:2.遗传:3.变异:4.进化遗传学:5.发育遗传学:6.免疫遗传学:7.细胞遗传学:8.人类遗传学:三、问答题1.简述遗传学研究的对象和研究的任务。
2.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?3. 为什么研究生物的遗传和变异必须联系环境?4.遗传学建立和开始发展始于哪一年,是如何建立?5.为什么遗传学能如此迅速地发展?6.简述遗传学对于生物科学、生产实践的指导作用。
7.什么是遗传学?主要研究内容是什么?8.遗传学研究的对象是什么?9.遗传学在工农业生产和医疗保健上有何作用?10.在遗传学发展中大致分为几个阶段?有那些人做出了重大贡献?11.写出下列科学家在遗传学上的主要贡献。
(1)Mendel (2) Morgan (3) Muller (4) Beadle 和Tatum (5)Avery (6) Watson 和Crick (7)Chargaff (8) Crick (9) Monod 和Jacob第二章孟德尔定律一、选择题1、最早根据杂交实验的结果建立起遗传学基本原理的科学家是:( )A) James D. Watson B) Barbara McClintock C) Aristotle D) Gregor Mendel2、以下几种真核生物,遗传学家已广泛研究的包括:( )A) 酵母B) 果蝇C) 玉米D) 以上选项均是3、通过豌豆的杂交实验,孟德尔认为;( )A) 亲代所观察到的性状与子代所观察到相同性状无任何关联B) 性状的遗传是通过遗传因子的物质进行传递的C) 遗传因子的组成是DNAD) 遗传因子的遗传仅来源于其中的一个亲本E) A 和C 都正确4、生物的一个基因具有两种不同的等位基因,被称为:( )A) 均一体B) 杂合体C) 纯合体D) 异性体E) 异型体5、生物的遗传组成被称为:( )A) 表现型B) 野生型C) 表型模拟D) 基因型E) 异型6、孟德尔在他著名的杂交实验中采用了何种生物作为材料?从而导致了他遗传原理假说的提出。
(完整版)遗传学课后习题及答案-刘祖洞
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr 粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。
遗传学(下)刘祖洞第二版
第九章遗传物质的改变(一)染色体畸变应用前几章中讲过的一些遗传学基本定律,如分离和组合、连锁与交换,可在子代中得到亲代所不表现的新性状,或性状的新组合。
但这些“新”性状,追溯起来并不是真正的新性状,都是它们祖先中原来有的。
只有遗传物质的改变,才出现新的基因,形成新的基因型,产生新的表型。
遗传物质的改变,称作突变(mutation)。
突变可以分为两大类:(1)染色体数目的改变和结构的改变,这些改变一般可在显微镜下看到;(2)基因突变或点突变(genic or pointmutations),这些突变通常在表型上有所表达。
但在传统上,突变这一术语留给基因突变,而较明显的染色体改变,称为染色体变异或畸变(chromosomal variations or aberrations)。
第一节染色体结构的改变因为一个染色体上排列着很多基因,所以不仅染色体数目的变异可以引起遗传信息的改变,而且染色体结构的变化,也可引起遗传信息的改变。
一般认为,染色体的结构变异起因于染色体或它的亚单位——染色单体的断裂(breakage)。
每一断裂产生两个断裂端,这些断裂端可以沿着下面三条途径中的一条发展:(1)它们保持原状,不愈合,没有着丝粒的染色体片段(seg-ment)最后丢失。
(2)同一断裂的两个断裂端重新愈合或重建(restitution),回复到原来的染色体结构。
(3)某一断裂的一个或两个断裂端,可以跟另一断裂所产生的断裂端连接,引起非重建性愈合(nonrestitution union)。
依据断裂的数目和位置,断裂端是否连接,以及连接的方式,可以产生各种染色体变异,主要的有下列四种(图9-1):(1)缺失(deletion或deficiency)——染色体失去了片段;(2)重复(duplication或repeat)——染色体增加了片段;(3)倒位(inversion)——染色体片段作180°的颠倒,造成染色体内的重新排列;(4)易位(translocation)——非同源染色体间相互交换染色体片段,造成染色体间的重新排列。
刘祖洞(遗传学)课后习题标准答案!全面版
刘祖洞《遗传学》参考答案全面版ﻫ第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?(1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;ﻫ(2)答:因为ﻫ只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
ﻫ2、解:序号杂交基因型表现型(1)RR×rr Rr 红果色ﻫ(2) Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色(3)Rr×Rr 1/4RR,2/4Rr,1/4rr3/4红果色,1/4黄果色(4)Rr×RR 1/2RR,1/2Rr 红果色(5)rr×rr rr黄果色ﻫ3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr× RR(2)rr ×Rr(3)Rr ×Rr粉红红色白色粉红粉红粉红ﻫ解:序号杂交配子类型基因型表现型(1)Rr× RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红(2)rr × Rrr;R,r1/2Rr,1/2rr 1/2粉红,1/2白色4、在南瓜中,果实的白色(W)(3) Rr× Rr R,r1/4RR,2/4Rr,1/4rr1/4红色,2/4粉色,1/4白色ﻫ对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd解:ﻫ序号杂交基因型表现型1WWDD×wwdd WwDd 白色、盘状果实2WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/2wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、4黄色、盘状,1/4黄色、球状ﻫ球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球4Wwdd×WwDd1/8WWDd,1/8WWdd,2/8WwDd,2/状,1/4黄色、盘状,1/4黄色、球状ﻫ8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状ﻫ5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
遗传学刘祖洞第二版课后习题答案
遗传学刘祖洞第二版课后习题答案遗传学是生物学的一个重要分支,研究的是基因传递和表达的规律。
而刘祖洞的遗传学第二版课后习题是学习这门学科的重要辅助材料。
在这篇文章中,我将为大家提供一些遗传学刘祖洞第二版课后习题的答案,希望能够帮助大家更好地理解和掌握遗传学知识。
第一章:遗传学的基本概念和遗传物质的性质1. 遗传学的基本概念是什么?遗传学是研究遗传现象及其规律的科学,主要研究物质遗传规律和信息遗传规律。
2. DNA是什么?它的基本结构是什么?DNA是脱氧核糖核酸,是构成基因的遗传物质。
它由磷酸、脱氧核糖和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、鳟嘧啶)组成,通过磷酸二酯键连接起来,形成双螺旋结构。
3. RNA有几种类型?它在细胞中的功能是什么?RNA有三种类型:mRNA、tRNA和rRNA。
mRNA负责将DNA上的遗传信息转录成蛋白质的氨基酸序列;tRNA是转运RNA,负责将氨基酸运送到蛋白质合成的位置;rRNA是核糖体RNA,是蛋白质合成的主要组成部分。
第二章:遗传的分离规律1. 什么是孟德尔的遗传规律?孟德尔的遗传规律是指在杂交实验中,纯合子的两个基因型在子代中以1:2:1的比例分离表现。
2. 什么是显性和隐性?显性是指在杂合子中表现出来的性状,隐性是指在杂合子中不表现出来的性状。
3. 什么是基因型和表型?基因型是指个体所拥有的基因的组合,表型是指个体所表现出来的性状。
第三章:基因的连锁和染色体遗传1. 什么是连锁?连锁是指两个或多个基因位点位于同一条染色体上,它们之间存在着较小的重组频率。
2. 什么是染色体?染色体是细胞核中的遗传物质,由DNA和蛋白质组成,是基因的携带者。
3. 什么是自由互换?自由互换是指染色体上的两个非姐妹染色单体间的互换,它是染色体重组的一种形式。
第四章:基因的分离和重组1. 什么是基因的分离和重组?基因的分离是指在有性生殖过程中,父本的两个等位基因分别进入子代的不同配子中;基因的重组是指染色体上的两个非姐妹染色单体间的互换。
遗传学课后习题及答案-刘祖洞
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr (2)Rr×rr (3)Rr×Rr (4)Rr×RR (5)rr×rr3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR (2)rr × Rr (3)Rr × Rr 粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Wwdd×wwDd (4)Wwdd×WwDd5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。
(完整word版)刘祖洞遗传学考试库
遗传学试题库(一)一、名词解释:(每小题3分,共18分)1、外显子2、复等位基因3、F因子4、母性影响5、伴性遗传6、杂种优势矚慫润厲钐瘗睞枥庑赖。
二、填空题:(每空0.5分,共20分)1、豌豆中,高茎(T)对矮茎(t)为显性,黄子叶(Y)对绿子叶(y)为显性,假设这两个位点的遗传符合自由组合规律,若把真实遗传的高茎黄子叶个体与矮茎绿子叶个体进行杂交,F2中矮茎黄子叶的概率为。
聞創沟燴鐺險爱氇谴净。
2、人类中,苯丙酮尿症的常染色体隐性纯合体是一种严重的代谢缺馅。
如果正常的双亲生了一个患病的女儿,一个正常表型的儿子.问:儿子是此病基因携带者的概率是。
残骛楼諍锩瀨濟溆塹籟。
3、大麦中,密穗对稀穗为显性,抗条诱对不抗条诱为显性。
一个育种工作者现有一个能真实遗传的密穗染病材料和一个能真实遗传的稀穗抗病材料,他想用这两个材料杂交,以选出稳定的密穗抗病品种,所需要类型有第______代就会出现,所占比例为_______,到第________代才能肯定获得,如果在F3代想得到100个能稳定遗传的目标株系,F2代至少需种植_________株。
酽锕极額閉镇桧猪訣锥。
4、某一植物二倍体细胞有10条同源染色体,在减数分裂前期Ⅰ可观察到个双价体,此时共有条染色单体,到中期Ⅱ每一细胞可观察到条染色单体。
彈贸摄尔霁毙攬砖卤庑.5、人类的性别决定属于型,鸡的性别决定属于型,蝗虫的性别决定属于型.謀荞抟箧飆鐸怼类蒋薔。
6、有一杂交:CCDD ×ccdd,假设两位点是连锁的,而且相距20个图距单位。
F2中基因型(ccdd)所占比率为。
厦礴恳蹒骈時盡继價骚。
7、遗传力是指_____________________________;广义遗传力是_________方差占________方差的比值。
遗传力越_____,说明性状传递给子代的能力就越_____,选择效果越________.茕桢广鳓鯡选块网羈泪。
8、萝卜甘蓝是萝卜和甘蓝的杂种,若杂种体细胞染色体数为36,甘蓝亲本产生的配子染色体数为9条,萝卜单倍体数应为______条,可育的杂种是________倍体。
遗传学课后习题及答案-刘祖洞
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr × RR(2)rr × Rr(3)Rr × Rr 粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。
6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶。
遗传学课后习题及答案-刘祖洞
]第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子杂种后代的基因型和表型怎样(1)Rr × RR (2)rr × Rr (3)Rr × Rr 粉红红色白色粉红粉红粉红4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何(1)WWDD×wwdd(2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd23Wwdd×wwDd1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,》1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状4Wwdd×WwDd1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd(3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。
现在有下列两种杂交组合,问它们后代的表型如何(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。
遗传学课后习题及答案-刘祖洞
第二章孟德尔定律之袁州冬雪创作1、为什么分离现象比显、隐性现象有更重要的意义?答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表示是相对的、有条件的;2、只有遗传因子的分离和重组,才干表示出性状的显隐性.可以说无分离现象的存在,也就无显性现象的发生.2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以发生哪些基因型,哪些表示型,它们的比例如何(1)RR×rr(2)Rr×rr(3)Rr×Rr(4)Rr×RR(5)rr×rr3配子?杂种后代的基因型和表型怎样?(1)Rr×RR(2)rr×Rr(3)Rr×Rr粉红红色白色粉红粉红粉红4D)对球状(d)是显性,这两对基因是自由组合的.问下列杂交可以发生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Wwdd×wwDd(4)Wwdd×WwDd2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性.现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr×ttGgrr:即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8.杂交组合TtGgrr ×ttGgrr:即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8.6.在番茄中,缺刻叶和土豆叶是一对相对性状,显性基因C节制缺刻叶,基因型cc是土豆叶.紫茎和绿茎是另外一对相对性状,显性基因A 节制紫茎,基因型aa的植株是绿茎.把紫茎、土豆叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比.如果把F1:(1)与紫茎、土豆叶亲本回交;(2)与绿茎、缺刻叶亲本回交;以及(3)用双隐性植株测交时,下代表型比例各如何?解:题中F2分离比提示:番茄叶形和茎色为孟德尔式遗传.所以对三种交配可作如下分析:(1) 紫茎马铃暮叶对F1的回交:(2) 绿茎缺刻叶对F1的回交:(3)双隐性植株对F l测交:AaCc × aaccAaCc Aacc aaCc aacc1紫缺:1紫马:1绿缺:1绿马(即两对性状自由组合形成的4种类型呈1:1:1:1.)7.在下列表中,是番茄的五组分歧交配的成果,写出每交配中亲本植株的最可以的基因型.(这些数据不是实验资料,是为了说明方便而假设的.)序号亲本基因型子代基因型子代表示型1 AaCc × aaCc紫茎缺刻叶 ×绿茎缺刻叶1/8AaCC,2/8AaCc,1/8Aacc1/8aaCC,2/8aaCc,1/8aacc3/8紫缺,1/8紫马3/8绿缺,1/8绿马2 AaCc × Aacc紫茎缺刻叶 ×紫茎土豆叶1/8AACc,1/8AAcc,2/8AaCc2/8Aacc,1/8aaCc,1/8aacc3/8紫缺,3/8紫马1/8绿缺,1/8绿马3 AACc × aaCc紫茎缺刻叶 ×绿茎缺刻叶1/4AaCC,2/4AaCc,1/4Aacc 3/4紫缺,1/4紫马4 AaCC × aacc紫茎缺刻叶 ×绿茎土豆叶1/2AaCc,1/2aaCc 1/2紫缺,1/2绿缺5 Aacc × aaCc紫茎土豆叶 ×绿茎缺刻叶1/4AaCc,1/4Aacc1/4aaCc,1/4aacc1/4紫缺,1/4紫马1/4绿缺,1/4绿马8、纯质的紫茎番茄植株(AA)与绿茎的番茄植株(aa)杂交,F1植株是紫茎.F1植株与绿茎植株回交时,后代有482株是紫茎的,526株是绿茎的.问上述成果是否符合1:1的回交比例.用2检验.解:根据题意,该回交子代个体的分离比数是:紫茎绿茎观测值(O)482 526预测值(e)504 504代入公式求2:这里,自由度df = 1.查表得概率值(P):<P<.根据概率水准,认为差别不显著.因此,可以结论:上述回交子代分离比符合实际分离比1:1.9、真实遗传的紫茎、缺刻叶植株(AACC)与真实遗传的绿茎、土豆叶植株(aacc)杂交,F2成果如下:紫茎缺刻叶紫茎土豆叶绿茎缺刻叶绿茎土豆叶247 90 83 34(1)在总共454株F2中,计算4种表型的预期数(2)停止2检验(3)问这两对基因是否是自由组合的?紫茎缺刻叶紫茎土豆叶绿茎缺刻叶绿茎土豆叶观测值(O ) 247 90 83 34 预测值(e ) (四舍五入)255858529当df = 3时,查表求得:0.50<P <81.7205.0.3=χ比较.可见该杂交成果符合F 2的预期分离比,因此结论,这两对基因是自由组合的.10、一个合子有两对同源染色体A 和A'及B 和B',在它的生长期间 (1)你预料在体细胞中是下面的哪类组合,AA'BB ?AABB'?AA'BB'?AABB ?A'A'B'B'?还是还有其他组合.(2)如果这个体成熟了,你预期在配子中会得到下列哪些染色体组合:(a )AA',AA ,A'A',BB',BB ,B'B'?(b )AA',BB',(c )A ,A',B ,B',(d )AB ,AB',A'B ,A'B'?(e )AA',AB',A'B ,BB'?解:(1)在体细胞中是AA'BB';(2)在配子中会得到(d )AB ,AB',A'B ,A'B' 11、如果一个植株有4对显性基因是纯合的.另外一植株有相应的4对隐性基因是纯合的,把这两个植株相互杂交,问F2中:(1)基因型,(2)表型全然象亲代父母本的各有多少?解:(1) 上述杂交成果,F 1为4对基因的杂合体.于是,F2的类型和比例可以图示如下:也就是说,基因型象显性亲本和隐性亲本的各是1/28.(2) 因为,当一对基因的杂合子自交时,表型同于显性亲本的占3/4,象隐性亲本的占1/4.所以,当4对基因杂合的F1自交时,象显性亲本的为(3/4)4,象隐性亲本的为(1/4)4 = 1/28.12、如果两对基因A和a,B和b,是独立分配的,而且A对a是显性,B对b是显性.(1)从AaBb个体中得到AB配子的概率是多少?(2)AaBb与AaBb杂交,得到AABB合子的概率是多少?(3)AaBb与AaBb杂交,得到AB表型的概率是多少?解:因形成配子时等位基因分离,所以,任何一个基因在个别配子中出现的概率是:(1) 因这两对基因是独立分配的,也就是说,自由组合之二非等位基因同时出现在同一配子中之频率是二者概率之积,即:(2) 在受精的过程中,两性之各类型配子的连系是随机的,因此某类型合子的概率是构成该合子的两性配子的概率的积.于是,AABB合子的概率是:(3) 在AaBb AaBb交配中,就各对基因而言,子代中有如下关系:但是,实际上,在形成配子时,非等位基因之间是自由组合进入配子的;而配子的连系又是随机的.因此同时思索这两对基因时,子代之基因型及其频率是:于是求得表型为AB的合子之概率为9/16.13、遗传性共济失调(hereditary ataxia)的临床表型是四肢运动失调,呐呆,眼球震颤.本病有以显性方式遗传的,也有以隐性方式遗传的.下面是本病患者的一个家系.你看哪类遗传方式更可以?请注明家系中各成员的基因型.如这病是由显性基因引起,用符号A;如由隐性基因引起,用符号a.解:在这个家系中,遗传性共济失调更可以是隐性遗传的.14、下面的家系的个别成员患有极为罕见的病,已知这病是以隐性方式遗传的,所以患病个体的基因型是aa.(1)注明Ⅰ-1,Ⅰ-2,Ⅱ-4,Ⅲ-2,Ⅳ-1和Ⅴ-1的基因型.这儿Ⅰ-1暗示第一代第一人,余类推.(2)Ⅴ-1个体的弟弟是杂合体的概率是多少?(3)Ⅴ-1个体两个mm 全是杂合体的概率是多少?(4)如果Ⅴ-1与Ⅴ-5成婚,那末他们第一个孩子有病的概率是多少?(5)如果他们第一个孩子已经出生,而且已知有病,那末第二个孩子有病的概率是多少?解:(1) 因为,已知该病为隐性遗传.从家系分析可知,II-4的双亲定为杂合子.因此,可写出各个体的基因型如下:(2) 由于V-1的双亲为杂合子,因此V-1,2,3,4任一个体为杂合子的概率皆为1/2,那末V-1的弟弟为杂合体的概率也就是1/2.(3)V-1个体的两个mm(V-2和V-3)为杂合体的概率各为1/2,由于二者独AA aa AaAaAaAa aaaaAa aa aaaaAaAaAaaaAaAaaaAaaaAa立,于是,她们全是杂合体的概率为:1/2 1/2 =1/4. (4) 从家系分析可知,由于V-5个体的父亲为患病者,可以必定V-5个体定为杂合子(Aa).因此,当V-1与V-5成婚,他们第一个孩子患病的概率是1/2. (5) 当V-1与V-5的第一个孩子确为患者时,因第二个孩子的出现与前者独立,所以,其为患病者的概率仍为1/2.15、假设地球上每对夫妇在第一胎生了儿子后,就停止生孩子,性比将会有什么变更?16、孟德尔的豌豆杂交试验,所以可以取得成果的原因是什么?第三章遗传的染色体学说1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那末,无性生殖会发生分离吗?试加说明.答:有丝分裂和减数分裂的区别列于下表:有丝分裂减数分裂发生在所有正在生长着的组织中从合子阶段开端,继续到个体的整个生活周期无联会,无交叉和互换使姊妹染色体分离的均等分裂每个周期发生两个子细胞,产品的遗传成分相同子细胞的染色体数与母细胞相同只发生在有性繁殖组织中高等生物限于成熟个体;许多藻类和真菌发生在合子阶段有联会,可以有交叉和互换后期I是同源染色体分离的减数分裂;后期II是姊妹染色单体分离的均等分裂发生四个细胞产品(配子或孢子)产品的遗传成分分歧,是父本和母本染色体的分歧组合为母细胞的一半有丝分裂的遗传意义:首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础.其次,复制的各对染色体有规则而平均地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体.减数分裂的遗传学意义首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有对折的染色体(n)雌雄性细胞受精连系为合子,受精卵(合子),又恢复为全数的染色体2n.包管了亲代与子代间染色体数目标恒定性,为后代的正常发育和性状遗传提供了物质基础,包管了物种相对的稳定性.其次,各对染色体中的两个成员在后期I分向南北极是随机的,即一对染色体的分离与任何另外一对染体的分离不发生关联,各个非同源染色体之间都可以自由组合在一个子细胞里,n对染色体,便可以有2n种自由组合方式.例如,水稻n=12,其非同源染色体分离时的可以组合数为212=4096.各个子细胞之间在染色体组成上将可以出现多种多样的组合.此外,同源染色体的非mm染色单体之间还可以出现各种方式的交换,这就更增加了这种差别的复杂性.为生物的变异提供了重要的物质基础.2、水稻的正常的孢子体组织,染色体数目是12对,问下列各组织的染色体数目是多少?(1)胚乳;(2)花粉管的管核;(3)胚囊;(4)叶;(5)根端;(6)种子的胚;(7)颖片;答;(1)36;(2)12;(3)12*8;(4)24;(5)24;(6)24;(7)24;3、用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例如何?4、某生物有两对同源染色体,一对染色体是中间着丝粒,另外一对是端部着丝粒,以形式图方式画出:(1)第一次减数分裂的中期图.(2)第二次减数分裂的中期图5、蚕豆的体细胞是12个染色体,也就是6对同源染色体(6个来自父本,6个来自母本).一个学生说,在减数分裂时,只有1/4的配子,它们的6个染色体完全来自父本或母本,你认为他的回答对吗?答:分歧错误.因为在减数分裂时,来自父本或母本的某一条染色体进入某个配子的概率是1/2,则6个完全来自父本或母本的染色体同时进入一个配子的概率应为2*1/2)6 = 1/32.6、在玉米中:(1)5个小孢子母细胞能发生多少配子?(2)5个大孢子母细胞能发生多少配子?(3)5个花粉细胞能发生多少配子?(4)5个胚囊能发生多少配子?答:(1)5个小孢子母细胞能发生20个配子;(2)5个大孢子母细胞能发生5个配子;(3)5个花粉细胞能发生5个配子;(4)5个胚囊能发生5个配子;7、马的二倍体染色体数是64,驴的二倍体染色体数是62.(1)马和驴的杂种染色体数是多少?(2)如果马和驴之间在减数分裂时很少或没有配对,你是否能说明马-驴杂种是可育还是不育?答:(1)马和驴的杂种染色体数是63.(2)如果马和驴之间在减数分裂时很少或没有配对,则马-驴杂种是不育的.8、在玉米中,与糊粉层着色有关的基因很多,其中三对是A—a,I—i,和Pr—pr.要糊粉层着色,除其他有关基因必须存在外,还必须有A基因存在,而且不克不及有Ⅰ基因存在.如有Pr存在,糊粉层紫色.如果基因型是prpr,糊粉层是红色.假使在一个隔离的玉米试验区中,基因型 AaprprII的种子种在偶数行,基因型 aaPrprii的种子种在奇数行.植株长起来时,允许天然授粉,问在偶数行生长的植株上的果穗的糊粉层颜色怎样?在奇数行上又怎样?(糊粉层是胚乳一部分,所以是3n).9、兔子的卵没有受精,颠末刺激,发育成兔子.在这种孤雌生殖的兔子中,其中某些兔子对有些基因是杂合的.你怎样诠释?(提示:极体受精.)答:动物孤雌生殖的类型有一种是:雌性二倍体通过减数分裂发生单倍体卵和极核,卵和极核融合形成二倍体卵,再发育成二倍体个体.例如,AaBb通过减数分裂可发生AB、Ab、aB、ab四种卵和极核,AB卵和AB极核来自同一个次级卵母细胞,二者融合形成AABB卵,这是纯合的.如果是AB卵和aB极核融合,则个体对A位点是杂合的.如果是AB卵和Ab极核融合,则个体对B位点是杂合的.如果是Ab卵和aB极核融合,则个体对A位点和B位点都是杂合的.可以是第二极体与卵细胞连系,有些基因才有可以是杂合的.第四章基因的作用及其与环境的关系1、从基因与性状之间的关系,怎样正确懂得遗传学上内因与外因的关系?2、在血型遗传中,现把双亲的基因型写出来,问他们子女的基因型应该如何?(1)(2)(3)解: ABO血型为孟德尔式遗传的复等位基因系列,以上述各种婚配方式之子女的血型是:(1)(2)(3)3、如果父亲的血型是B 型,母亲是O 型,有一个孩子是O 型,问第二个孩子是O 型的机会是多少?是B 型的机会是多少?是A 型或AB 型的机会是多少?的基因型为:第二个孩子是O 型的机会是0.5,是B 型的机会也是0.5,是A 型或AB 型的机会是0.4、分析图4-15的家系,请根据分析成果注明家系中各成员的有关基因型.解:5、当母亲的表型是ORh -MN ,子女的表型是ORh +MN 时,问在下列组合中,哪个或哪几个组合不成能是子女的父亲的表型,可以被解除?ABRh +M , ARh +MN , BRh -MN , ORh -N.解:ABO 、MN 和Rh 为平行的血型系统,皆遵循孟德尔遗传法则;ABO 血型是复等位基因系列,MN 血型是并显性,Rh 血型显性完全. 现对上述四类血型汉子停止分析如下:父亲,应予解除.6、某个女人和某个汉子成婚,生了四个孩子,有下列的基因型:iiRRL M L N ,I A iRrL N L N ,iiRRL N L N ,I B irrL M L M ,他们父母亲的基因型是什么解:他们父母亲的基因型是:I A iRrL M L N ,I B iRrL M L N7.兔子有一种病,叫做Pelger 异常(白血细胞核异常).有这种病的兔子,并没有什么严重的症伏,就是某些白细胞的核不分叶.如果把患有典型Pelger 异常的兔子与纯质正常的兔子杂交,下代有217只显示Pelger 异常,237只是正常的.你看Pelger 异常的遗传基础怎样? 解:从271:237数据分析,近似1:1.作2检验:当df = 1时,查表:0.10<p <0.50.根据0.05的概率水准,认为差别不显著.可见,符合实际的1:1.现在,某类型与纯质合子杂交得1:1的子代分离比,断定该未知类型为一对基因差别的杂合子.8、当有Pelger 异常的兔子相互交配时,得到的下一代中,223只正常,439只显示 Pelger 异常,39只极度病变.极度病变的个体除了有不正常的白细胞外,还显示骨骼系统畸形,几乎生后不久就全部死亡.这些极度病变的个体的基因型应该怎样?为什么只有39只,你怎样诠释?解:根据上题分析,pelger 异常为杂合子.这里,正常:异常=223:439 1:2.依此,极度病变类型(39)应属于病变纯合子:Pp ⨯ Pp↓PP 41正常Pp 21异常pp 41极度病变又,因39只极度病变类型生后不久死亡,可以推断,病变基因为隐性致死基因,但有显性效应.如果这样,不但39只的生后死亡不必费解,而且,病变纯合子比数这样低也是可以懂得的.原因是部分死于胚胎发育过程中.9、在小鼠中,有一复等位基因系列,其中三个基因列在下面:A Y= 黄色,纯质致死;A = 鼠色,野生型;a = 非鼠色(黑色).这一复等位基因系各位于常染色体上,列在前面的基因对列在后面的基因是显性.A Y A Y个体在胚胎期死亡.现在有下列5个杂交组合,问它们子代的表型如何?a 、A Y a (黄)×A Y a (黄)b 、A Y a (黄)×A YA (黄)c 、A Y a (黄)×aa (黑)d 、A Ya (黄)×AA (鼠色)e 、A Ya (黄)×Aa (鼠色)10、假定停止很多A Ya×Aa 的杂交,平均每窝生8只小鼠.问在同样条件下,停止很多 A Y a×A Ya 杂交,你预期每窝平均生几只小鼠? 解:根据题意,这两种杂交组合的子代类型及比例是:Aa a A Y ⨯↓A A Y 41a A Y 41Aa 41aa 412黄 : 1灰 : 1黑a A a A Y Y ⨯↓Y Y A A 41a A Y 21aa 41(死亡) 2黄 : 1黑4黄2黑.11、一只黄色雄鼠(A Y_)跟几只非鼠色雌鼠(aa )杂交,你能不克不及在子代中同时得到鼠色和非鼠色小鼠?为什么?12、鸡冠的种类很多,我们在图4-13中先容过4种.假定你最初用的是纯种豌豆冠和纯种玫瑰冠,问从什么样的交配中可以获得单冠? 解:知鸡冠形状是基因互作的遗传形式.各基因型及其相应表型是:基因型 表示型 R_P_ 胡桃冠 R_pp 玫瑰冠 rr P_豌豆冠 rrpp单片冠因此,RRpp rrPP ⨯↓RrPp↓⊗__169P R ,pp R _163,_163rrP ,rrpp 161胡桃冠 : 玫瑰冠 :豌豆冠 :单片冠13、Nilsson -Ehle 用两种燕麦杂交,一种是白颖,一种是黑颖,二者杂交,F1是黑颖.F2(F1×F1)共得560株,其中黑颖418,灰颖106,白颖36.1)说明颖壳颜色的遗传方式.(2)写出F2中白颖和灰颖植株的基因型.(3)停止2检验.实得成果符合你的实际假定吗? 解:(1)从题目给定的数据来看,F 2分离为3种类型,其比例为: 黑颖:灰颖:白颖=418:106:3612:3:1.即9:3:3:1的变形.可见,颜色是两对基因节制的,在表型关系上,呈显性上位.(2)假定B 为黑颖基因,G 为灰颖基因,则上述杂交成果是:P bbgg BBGG ⨯ 黑颖 白颖 ↓F 1BbGg 黑颖 ↓⊗F 2__169G B gg B _163_163bbG bbgg 16112黑颖 :3灰颖 :1白颖(3) 根据上述假定停止2检验:当df =2时,查表:<p <.认为差别不显著,即符合实际比率.因此,上述假定是正确的.14、在家蚕中,一个结白茧的个体与另外一结白茧的个体杂交,子代中结白茧的个体与结黄茧的个体的比率是3:1,问两个亲体的基因型怎样?解:在家蚕中,黄茧与白茧由一对等位基因节制,Y —黄色,y —白色,Y 对y 显性.但是,有一与其不等位的抑制基因I ,当I 存在时,基因型Y_表示白茧.根据题目所示,白:黄 = 3:1,标明在子代中,呈3:1分离.于是推论,就I —i 而言,二亲本皆为杂合子Ii ;就Y —y 而言,则皆表示黄色的遗传基础只是3/4被抑制.所以,双亲的基因型(交配类型)应该是:IiYY IiYY IiYY IiYy IiYY Iiyy IiYy iiyy15、在小鼠中,我们已知道黄鼠基因A Y对正常的野生型基因 A 是显性,别的还有一短尾基因T ,对正常野生型基因t 也是显性.这两对基因在纯合态时都是胚胎期致死,它们相互之间是独登时分配的.(1)问两个黄色短尾个体相互交配,下代的表型比率怎样? (2)假定在正常情况下,平均每窝有8只小鼠.问这样一个交配中,你预期平均每窝有几只小鼠?解:根据题意,此黄色短尾鼠为杂合子A yATt ,其子代情形可图示如下:(1)ATt A ATt A Y Y ⨯↓致死⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫AATT ATT A tt A A TtA A TT A A Y Y Y Y Y Y Y 161161161162161ATt A Y 164Att A Y 162AATt 162AAtt 161黄短 黄常 灰短 灰常灰色短尾:1灰色常态尾.(2) 在上述交配中,成活率只占受孕率的9/16.所以,假定正常交配每窝生8只小鼠时,这样交配平均每窝生4—5只.16、两个绿色种子的植物品系,定为X ,Y.各自与一纯合的黄色种子的植物杂交,在每个杂交组合中,F1都是黄色,再自花授粉发生F2代,每个组合的F2代分离如下:X :发生的F2代 27黄:37绿Y :发生的F2代,27黄:21绿请写出每交配中二个绿色亲本和黄色植株的基因型.解:F1的表型说明,决议黄色的等位基因对决议绿色的等位基因呈显性.F2的成果符合有若干对自由组合的基因的假设,当这些基因中有任何一对是纯合隐性时,发生绿色表型.黄色和绿色的频率计算如下:1品系X :aabbcc ,黄色品系AABBCC ,F1为AaBbCc假如在一个杂交中唯一一对基因分离(如Aa Aa ),;另外一些影响黄色的基因对都是纯合的(AaBBCC AaBBCC ).这一杂交发生黄色子代的比率是 绿色比率是如果这个杂交有两对基因分离(如AaBbCC AaBbCC ),那末黄色子代的比率是:绿色比率是三对基因分离(AaBbCc AaBbCc )时,黄色子代的比率是: 绿色比率是A 位点B 位点C 位点F2基因型F2表示型 AA 41BB 41CC 41 AABBCC6411黄 Cc 42 AABBCc6422黄cc 41 AABBcc6411绿 Bb 42CC 41 AABbCC 6422黄Cc 42 AABbCc6444黄cc 41 AABbcc6422绿 bb 41CC 41 AAbbCC 6411绿Cc 42 AAbbCc6422绿cc 41 AAbbcc6411绿 A 位点 B 位点 C 位点F2基因型F2表示型 Aa 42BB 41CC 41 AaBBCC 6422黄Cc 42 AaBBCc6444黄cc 41 AaBBcc6422绿 Bb 42CC 41 AaBbCC 6444黄Cc 42AaBbCc6488黄cc 41 AaBbcc6444绿 bb 41CC 41 AabbCC 6422绿Cc 42 AabbCc6444绿cc 41 Aabbcc6422绿 A 位点B 位点C 位点F2基因型F2表示型 aa 41BB 41CC 41 aaBBCC 6411绿 Cc 42 aaBBCc 6422绿cc 41 aaBBcc 6411绿 Bb 42CC 41 aaBbCC 6422绿 Cc 42 aaBbCc 6444绿cc 41 aaBbcc 6422绿 bb 41CC 41 aabbCC 6411绿 Cc 42 aabbCc 6422绿cc 41aabbcc 6411绿 汇总 黄: 绿 =27:37(2) 品系Y :aabbCC ,黄色品系AABBCC ,F1为AaBbCC ,这个杂交有两对基因分离(如AaBbCC AaBbCC ),的比率是:16/9)4/3(2=绿色比率是16/7)4/3(12=-9:绿7. 第五章性别决议与伴性遗传1、哺乳动物中,雌雄比例大致接近1∶1,怎样诠释?解:以人类为例.人类男性性染色体XY ,女性性染色体为XX.男性可发生含X 和Y 染色体的两类数目相等的配子,而女性只发生一种含X 染色体的配子.精卵配子连系后发生含XY 和XX 两类比例相同的合子,分别发育成男性和女性.因此,男女性比近于1 :1.2、你怎样区别某一性状是常染色体遗传,还是伴性遗传的?用例来讲明.3、在果蝇中,长翅(Vg )对残翅(vg )是显性,这基因在常染色体上;又红眼(W )对白眼(w )是显性,这基因在X 染色体上.果蝇的性决议是XY 型,雌蝇是XX ,雄蝇是XY ,问下列交配所发生的子代,基因型和表型如何?(l)WwVgvg×wvgvg (2)wwVgvg×WVgvg 解:上述交配图示如下: (1) WwVgvg wvgvg:Ww ⨯ wY↓Vgvg ⨯ vgvg↓1/4 Ww 1/2 Vgvg = 1/8 WwVgvg 红长♀1/2 vgvg = 1/8 Wwvgvg 红残♀1/4 ww 1/2 Vgvg = 1/8 wwVgvg 白长♀1/2 vgvg = 1/8 wwvgvg 白残♀1/4 WY 1/2 Vgvg = 1/8 WYVgvg 红长♂1/2 vgvg = 1/8 WYvgvg 红残♂1/4 wY 1/2 Vgvg = 1/8 wYVgvg 白长♂1/2 vgvg = 1/8 wYvgvg 白残♂即基因型:等比例的WwVgvg,WwVgvg, wwVgvg,wwvgvg,WYVgvg,WYvgvg, wYVgvg, wYvgvg.表示型:等比例的红长♀,红残♀,白长♀,白残♀,红长♂,红残♂,白长♂,白残♂.(2) wwVgvg WVgvg:ww ⨯ WY↓Vgvg ⨯ Vgvg↓1/2 Ww 1/4 VgVg = 1/8 WwVgVg 红长♀1/2 Vgvg = 1/4 WwVgvg 红长♀1/4 vgvg = 1/8 Wwvgvg 红残♀1/2 wY 1/4 VgVg = 1/8 wYVgVg 白长♂1/2 Vgvg = 1/4 wYVgvg 白长♂1/4 vgvg = 1/8 wYvgvg 白残♂即,基因型:1WwVgVg :2WwVgvg :1Wwvgvg :1wYVgVg :2wYVgvg :1wYvgvg.表示型: 3红长♀:1红残♀:3白长♂:1白残♂.4、纯种芦花雄鸡和非芦花母鸡交配,得到子一代.子一代个体互相交配,问子二代的芦花性状与性此外关系如何?解:家鸡性决议为ZW型,伴性基因位于Z染色体上.于是,上述交配及其子代可图示如下:P ♀ Z b W ⨯ Z B Z B♂↓F1♀ Z B W ⨯ Z B Z b♂↓F2 1Z B Z B:1Z B Z b:1Z B W :1Z b W芦花♂芦花♀非芦花♀5、在鸡中,羽毛的显色需要显性基因 C的存在,基因型 cc的鸡总是白色.我们已知道,羽毛的芦花花纹是由伴性(或Z连锁)显性基因B 节制的,而且雌鸡是异配性别.一只基因型是ccZ b W的白羽母鸡跟一只芦花公鸡交配,子一代都是芦花花纹,如果这些子代个体相互交配,它们的子裔的表型分离比是怎样的?注:基因型 C—Z b Z b和 C—Z b W鸡的羽毛是非芦花花纹.解:根据题意,芦花公鸡的基因型应为CCZ B Z B,这一交配可图示如下:因此,如果子代个体相互交配,它们的子裔的表型分离比为芦花:非芦花 = 9/16 :7/16.若按性别统计,则在雄性个体中芦花:非芦花 = 6/16 :2/16;在雌性个体中芦花:非芦花 = 3/16 :5/16;6、在火鸡的一个优良品系中,出现一种遗传性的白化症,养禽工作者把5只有关的雄禽停止检验,发现其中3只带有白化基因.当这3只雄禽与无亲缘关系的正常母禽交配时,得到 229只幼禽,其中45只是白化的,而且全是雌的.育种场中可以停止一雄多雌交配,但在表型正常的184只幼禽中,育种工作者除了为消除白化基因外,想尽可以多保管其他个体.你看火鸡的这种白化症的遗传方式怎样?哪些个体应该淘汰,哪些个体可以放心地保管?你怎样做?解:229只幼禽是3只雄禽的子代个体的统计数字.因而,根据题意,这3只雄禽基因型相同,所以,可视为同一亲本.由于雌禽为异配性别,又表示正常,于是推断,其基因型为ZW.雄禽为同配性别,又在子代中出现白化个体,而且全是雌的,所以这3只雄禽必定是白化基因杂合子,即ZZ a.于是,上述交配可图示如下:。
(完整版)遗传学复习(刘祖洞_高等教育出版社_第二版)
一.绪论遗传学:是研究生物遗传和变异的科学遗传:亲代与子代之间相似的现象变异:亲代与子代之间,子代与子代之间,总是存在不同程度差异的现象遗传与变异:没有变异,生物界就失去了前进发展的条件,遗传只能是简单的重复;没有遗传,变异不能积累,就失去意义,生物也就不能进化了。
二.孟德尔定律1.性状:生物体或其组成部分所表现的形态特征和生理特征称为性状2.单位性状:生物体所表现的性状总体区分为各个单位作为研究对象,这些被区分开得每一个具体性状称为单位性状,即生物某一方面的特征特性。
3.相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异称为相对性状显性性状(dominant character ):F1中表现出来的那个亲本的性状。
如红花。
隐性性状(recessive character):F1中没有表现出来的那个亲本的性状。
如白花。
F2中,两个亲本的性状又分别表现,称为性状分离。
显性个体:隐性个体= 3:1。
分离规律及其实现的条件?分离规律1)(性母细胞中)成对的遗传因子在形成配子时彼此分离、分配到配子中,配子只含有成对因子中的一个。
2)杂种产生含两种不同因子(分别来自父母本)的配子,并且数目相等;各种雌雄配子受精结合是随机的,即两种遗传因子是随机结合到子代中。
实现条件1)研究的生物体必须是二倍体(体内染色体成对存在),并且所研究的相对性状差异明显。
2)在减数分裂过程中,形成的各种配子数目相等,或接近相等;不同类型的配子具有同等的生活力;受精时各种雌雄配子均能以均等的机会相互自由结合。
3)受精后不同基因型的合子及由合子发育的个体具有同样或大致同样的存活率。
4)杂种后代都处于相对一致的条件下,而且试验分析的群体比较大。
三.遗传的染色体学说1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。
答:有丝分裂和减数分裂的区别列于下表:有丝分裂的遗传意义:首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。
遗传学课后习题答案刘祖洞完整版pdf
遗传学课后习题答案刘祖洞完整版pdf农学院普通遗传学教研组第一章绪论(练习)一、解释下列名词:遗传学,遗传,变异二、什么是遗传学?为什么说遗传学诞生于1900年?三、在达尔文前后有哪些思想与达尔文理论有联系?四、和是生物界最普遍和最基本的两个特征。
五、、和是生物进化和新品种选育的三大因素。
第一章绪论(参考答案)一、遗传学:遗传学是研究生物遗传和变异的科学。
遗传:亲代与子代相似的现象就是遗传。
变异:亲代与子代之间、子代个体之间,总是存在着不同程度的差异二、答:真正系统研究生物的遗传和变异是从孟德尔开始的。
他在前人植物杂交试验的基础上,于1856-1864年从事豌豆杂交试验,进行细致的后代记载和统计分析,1866年发表“植物杂交试验”论文,首次提出分离和独立分配两个遗传基本规律,认为性状遗传是受细胞里的遗传因子控制的。
这一重要理论当时未能受到重视,直到1900年,狄.弗里斯、柴马克和柯伦斯三人同时重新发现孟德尔规律,这时才引起人们的重视,所以说遗传学诞生于1900年。
三、答:达尔文前的拉马克的用进废退学说,达尔文后的魏斯曼的种质连续论等。
四、遗传和变异是生物界最普遍和最基本的两个特征。
五、遗传、变异和选择是生物进化和新品种选育的三大因素。
第二章遗传的细胞学基础(练习)一、解释下列名词:染色体染色单体着丝点细胞周期同源染色体异源染色体无丝分裂有丝分裂单倍体联会胚乳直感果实直感二、植物的10个花粉母细胞可以形成:多少花粉粒?多少精核?多少管核?又10个卵母细胞可以形成:多少胚囊?多少卵细胞?多少极核?多少助细胞?多少反足细胞?三、玉米体细胞里有10对染色体,写出下列各组织的细胞中染色体数目。
四、假定一个杂种细胞里含有3对染色体,其中A、B、C来自父本、A’、B’、C’来自母本。
通过减数分裂能形成几种配子?写出各种配子的染色体组成。
五、有丝分裂和减数分裂在遗传学上各有什么意义?六、有丝分裂和减数分裂有什么不同?用图解表示并加以说明。
刘祖洞-遗传学-第二版-课后答案
第二章孟德尔定律1、为什么分离现象比显、隐性现象有更重要的意义?答:这是因为:(1)性状的分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;(2)只有基因发生分离和重组,才能表现出性状的显隐性。
可以说无分离现象的存在,也就无显性现象的发生。
2、在番茄中,红果色〔R〕对黄果色〔r〕是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何?〔1〕RR×rr〔2〕Rr×rr〔3〕Rr×Rr〔4〕Rr×RR〔5〕rr×rr解:3、下面是紫茉莉的几组杂交,基因型和表型已写明。
问它们产生哪些配子?杂种后代的基因型和表型怎样?〔1〕Rr × RR〔2〕rr × Rr〔3〕Rr × Rr粉红红色白色粉红粉红粉红解:4、在南瓜中,果实的白色〔W〕对黄色〔w〕是显性,果实盘状〔D〕对球状〔d〕是显性,这两对基因是自由组合的。
问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?〔1〕WWDD×wwdd〔2〕XwDd×wwdd〔3〕Wwdd×wwDd〔4〕Wwdd×WwDd解:2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状5.在豌豆中,蔓茎〔T〕对矮茎〔t〕是显性,绿豆荚〔G〕对黄豆荚〔g〕是显性,圆种子〔R〕对皱种子〔r〕是显性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.绪论遗传学:是研究生物遗传和变异的科学遗传:亲代与子代之间相似的现象变异:亲代与子代之间,子代与子代之间,总是存在不同程度差异的现象遗传与变异:没有变异,生物界就失去了前进发展的条件,遗传只能是简单的重复;没有遗传,变异不能积累,就失去意义,生物也就不能进化了。
二.孟德尔定律1.性状:生物体或其组成部分所表现的形态特征和生理特征称为性状2.单位性状:生物体所表现的性状总体区分为各个单位作为研究对象,这些被区分开得每一个具体性状称为单位性状,即生物某一方面的特征特性。
3.相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异称为相对性状显性性状(dominant character):F1中表现出来的那个亲本的性状。
如红花。
隐性性状(recessive character):F1中没有表现出来的那个亲本的性状。
如白花。
F2中,两个亲本的性状又分别表现,称为性状分离。
显性个体:隐性个体 = 3:1。
分离规律及其实现的条件?分离规律1)(性母细胞中)成对的遗传因子在形成配子时彼此分离、分配到配子中,配子只含有成对因子中的一个。
2)杂种产生含两种不同因子(分别来自父母本)的配子,并且数目相等;各种雌雄配子受精结合是随机的,即两种遗传因子是随机结合到子代中。
实现条件1)研究的生物体必须是二倍体(体内染色体成对存在),并且所研究的相对性状差异明显。
2)在减数分裂过程中,形成的各种配子数目相等,或接近相等;不同类型的配子具有同等的生活力;受精时各种雌雄配子均能以均等的机会相互自由结合。
3)受精后不同基因型的合子及由合子发育的个体具有同样或大致同样的存活率。
4)杂种后代都处于相对一致的条件下,而且试验分析的群体比较大。
三.遗传的染色体学说1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。
答:有丝分裂和减数分裂的区别列于下表:有丝分裂的遗传意义:首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。
其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。
减数分裂的遗传学意义首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色体(n)雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体2n。
保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。
其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n对染色体,就可能有2n种自由组合方式。
例如,水稻n=12,其非同源染色体分离时的可能组合数为212 = 4096。
各个子细胞之间在染色体组成上将可能出现多种多样的组合。
此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。
为生物的变异提供了重要的物质基础。
染色体超微结构:核小体是染色体结构的最基本单位。
核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。
密集成串的核小体形成了核质中的100埃左右的纤维,这就是染色体的“一级结构”。
在这里,脱氧核糖核酸分子大约被压缩了7倍。
染色体的一级结构经螺旋化形成中空的线状体,称为螺线体或核丝,这是染色体的“二级结构”,其外径约300埃,内径100埃,相邻螺旋间距为110埃。
螺丝体的每一周螺旋包括6个核小体,因此脱氧核糖核酸的长度在这个等级上又被再压缩了6倍。
300埃左右的螺线体(二级结构)再进一步螺旋化,形成直径为0.4微米(μm)的筒状体,称为超螺旋体。
这就是染色体的“三级结构”。
到这里,脱氧核糖核酸又再被压缩了40倍。
超螺旋体进一步折叠盘绕后,形成染色单体—染色体的“四级结构”。
两条染色单体组成一条染色体。
到这里,脱氧核糖核酸的长度又再被压缩了5倍。
从染色体的一级结构到四级结构,脱氧核糖核酸分子一共被压缩了7×6×40×5=8400倍。
例如,人的染色体中脱氧核糖核酸分子伸展开来的长度平均约为几个厘米,而染色体被压缩到只有几个微米长。
四.基因的作用及其与环境的关系表现型:指生物个体的性状表现,简称表型。
基因型+环境 = 表型(决定发育的可能性)(可能性实现的条件)(基因型与环境相互作用的结果)表现度(expressivity):个体间基因表达的变化程度。
外显率(penetrance):某一基因型个体显示其预期表型的比率。
基因型:指生物个体基因组合,表示生物个体的遗传组成,又称遗传型等位基因:同源染色体上非姊妹染色单体相同位点上的基因,互称等位基因复等位基因:一个基因存在很多等位形式,称为复等位现象,这组基因就叫复等位基因。
纯合基因型:从基因的组合来看,等位基因相同,这在遗传学上称为纯合基因型纯合体:具有纯合基因型的个体称为纯合体回交:子一代和两个亲本的任一个进行杂交的方法叫做回交。
自交:指具有相同基因型的两个个体进行交配的遗传学实验。
测交:用隐性基因纯合体作为杂交亲本之一的实验方法。
杂交:通过不同基因型个体间的交配而取得某些双亲基因重新组合的个体的方法。
致死基因:致死基因是指那些使生物体不能存活的等位基因。
隐性致死:纯合体是致死的。
例:镰形细胞贫血显性致死:致死作用在杂合体中表现。
配子致死:致死基因的作用发生在配子期合子致死:致死基因的作用发生在胚胎期或成体阶段返祖现象:后代表现其祖先的野生性状的现象。
多因一效:许多基因影响同一个性状的表现,这称为多因一效一因多效:一个基因可以影响到若干性状,这就叫一因多效或叫基因的多效性等位基因间显隐性关系的相对性完全显性:F1所表现得性状都和亲本之一完全一样,这样的显性表现成为完全显性不完全显性:有些性状其杂种F1的性状表现是双亲性状的中间型,这称为不完全显性也叫半显性共显性:如果双亲的性状同时在F1个体上表现出来,这种显性表现为共显性。
例:MN血型镶嵌显性:双亲的性状在后代的同一个体不同部位表现出来,形成镶嵌图式互补基因:不同对的两个基因相互作用,出现了新的性状,这两个互作的基因叫做互补基因。
非等位基因间的相互作用有哪几种类型,各类型的表现如何?互补效应(F1自交得F2为9:7)——两对独立遗传基因分别处于纯合显性或杂合状态时,共同决定一种性状的发育,当只有一对基因是显性,或两对基因都是隐性时,则表现为另一种性状积加效应(F2为9:6:1)——两非等位基因都为显性表现为中间型,都为隐性时为另一种不同的表现型,单显性表现相同,但不同于纯合基因型的表现;重叠作用(15:1)——只要有一个显性重叠基因存在,该性状就能表现,但无累积效应;显性上位(12:3:1)——两非等位基因控制不同的表现型,但某一显性非等位基因能抑制另一对基因的表现隐性上位(9:3:4)---两对互作的基因中,其中一对隐性基因对另一对基因起上位性作用,显现隐性基因抑制作用(13:3)——两对独立基因中,其中一对显性基因本身并不控制性状的表现,但对另一对基因的表现有抑制,显现显性基因五.性别决定与伴性遗传1.性别决定的方式有几种?1.) 雄杂合型(XY型)2)XO型:与XY型相似,但只有一条性染色体X;雄性个体只有一条X染色体(XO,不成对),它产生含X染色体和不含性染色体两种类型的配子;雌性个体性染色体为XX。
例:蝗虫、蟋蟀。
3)雌杂合型(ZW型):两种性染色体分别为Z、W染色体;雌性个体性染色体组成为ZW(异配子性别),产生两种类型的配子,分别含Z和W染色体;雄性个体则为ZZ(同配子性别),产生一种配子含Z染色体。
性比一般是1 : 1。
例:蛾类、蝶类,鸡鸭等。
伴性遗传:性染色体上基因的遗传与性别相联系,这种遗传方式称为伴性遗传。
例:果蝇白眼伴X隐性;人类血友病,色盲,X隐限性遗传:受XY型中Y染色体或ZW型中W染色体上基因控制或因激素作用使得某些性状只能在某性别表现的现象。
从性遗传:控制性状的基因位于常染色体上,但是在个体上的显隐性表现受性别的影响(羊角遗传)。
六.染色体和连锁群杂交试验中,原来为同一亲本所具有的两个性状在F2中不符合独立分配规律,而常有连在一起遗传的倾向,这种现象叫做连锁遗传现象。
连锁群:存在于同一染色体上的基因群,称为连锁群完全连锁:如果连锁基因的杂种F1(双杂合体)只产生两种亲本类型的配子,而不产生非亲本类型的(重组)配子,就称为完全连锁。
例如雄果蝇和雌家蚕中通常不发生交换,连锁基因完全连锁,不发生重组。
不完全连锁:指连锁基因的杂种F1不仅产生亲本类型的配子,还会产生重组型配子。
交换:同源染色体非姐妹染色单体在粗线期交换。
测交法(Ft重组型个体数÷Ft总个体数;因Ft的的表现型及比例=被测亲本配子的基因型及其比例)自交法(相引相:交换值=1-2*(F2中双隐性个体频率)开平方;相斥相:交换值=2*(F2中双隐性个体频率)开平方)。
试述交换值、连锁强度和基因距离之间三者的关系。
答:交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频率,或等于交换型配子占总配子数的百分率。
交换值的幅度变动在0~50%之间。
交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞数越少。
当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。
由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。
交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。
三点实验计算题!七.细菌和噬菌体的重组和连锁转化:指外源DNA片段不经中间媒介体直接进入感受态细胞进行基因重组形成重组体的过程。
转导:指以病毒作为载体把遗传信息从一个细菌细胞转移到另一个细菌的过程。
接合:是指原核生物的遗传物质从供体转移到受体内的过程。
性导:指利用F′因子将供体菌的基因导入受体菌形成部分二倍体的过程。
F因子:又叫性因子或致育因子,是一种能自我复制的、微小的、染色体外的环状DNA分子。
F’因子:指整合态的F因子从Hfr上异常切割下来,携带了细菌个别基因的缺陷型F因子F-、F′、F+、Hfr的区别?a.没有F因子,即F-;b.一个自主状态F因子,即F+,供体;c.一个整合到自己染色体内的F因子,即Hfrd.F因子整合到宿主细胞染色体的过程可逆,当发生环出时,F因子又重新离开染色体,并且携带有染色体的一些基因,称F’性导:(1) F ’× F- → F’, F’(部分二倍体)特点:转移Fˊ因子还转移细菌个别基因,F-转变成F’(2) F+ × F- → F+, F+ (不导入供体菌基因)特点:转移F因子不转移细菌基因F- 转变成 F+(3) Hfr × F- → Hfr,F- (很少成为Hfr,导入大量供体菌基因)特点:极少转移F因子,大量转移细菌基因八.数量性状遗传数量性状与质量性状的区别:九.染色体变异缺失:一对同源染色体,一正常一缺失重复:类别:顺接、反接、臂内、臂间有重复必有缺失,有缺失不一定有重复重复环和缺失环的却别:重复:环由不正常的染色体形成;缺失:由正常染色体形成。