八年级数学上册第十一章三角形11.1与三角形有关的线段

合集下载

人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》

人教版数学八年级上册第十一章三角形第一课《与三角形有关的线段》
如果6厘米长的边为腰,设底边长为x 厘米,则2×6 + x = 20,解得x = 8.
由以上讨论可知,其他两边的长分别为7 厘米,7 厘米或6 厘米,8 厘米.
课堂小结
边、顶点、内角
A
概念
(直角、 锐角、钝
c
b

按角分 角)三角

分类 形B
a
C
形 按边分
性质
三角形两边的和大于第三边. 三角形两边的差小于第三边.
等腰三角形的周长为20厘米. (1)若已知腰长是底长的2倍,求各边的长; (2)若已知一边长为6厘米,求其他两边的长.
解:(1)设底边长为x厘米,则腰长为2x 厘米. x + 2x + 2x = 20, 解得 x = 4.
所以三边长分别为4cm,8cm,8cm.
(2)如果6 厘米长的边为底边,设腰长为x 厘米,则6 + 2x = 20,解得x = 7;
所以,三角形的特征有: (1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.
探究新知
①边:组成三角形的每条线段叫做三角形的边.
②顶点:每两条线段的交点叫做三角形的顶点.
③内角:相邻两边组成的角.
顶点A

边c
边b
顶点B
角 边a
角 顶点C
探究新知
三角形的表示: 三角形用符号“△”表示.
记作“△ ABC”读作“三角形ABC”.
课堂检测
基础巩固题
1. 如图,图中直角三角形共有( C )
A.1个 B.2个
C.3个
D.4个
2. 下列各组数中,能作为一个三角形三边边长的是
( C)
A.1,1,2
B.1,2,4

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习

八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习题一、选择题(本大题共8小题,共24.0分)1.已知三条线段的长度比如下: ①2:3:4; ②1:2:3; ③2:4:6; ④3:3:6; ⑤6:6:10; ⑥6:8:10,其中能构成三角形的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【解答】解: ①设三条线段的长分别为2x,3x,4x,则2x+3x>4x,故能构成三角形; ②设三条线段的长分别为x,2x,3x,则x+2x=3x,故不能构成三角形; ③设三条线段的长分别为2x,4x,6x,则2x+4x=6x,故不能构成三角形; ④设三条线段的长分别为3x,3x,6x,则3x+3x=6x,故不能构成三角形; ⑤设三条线段的长分别为6x,6x,10x,则6x+6x>10x,故能构成三角形; ⑥设三条线段的长分别为6x,8x,10x,则6x+8x>10x,故能构成三角形.故选C.2.已知三角形的两边长分别为3cm和4cm,则该三角形第三边的长不可能是()A. 1cmB. 3cmC. 5cmD. 6cm【答案】A【解析】解:∵三角形的两边长分别为3cm和4cm,∴1<第三边的长<7,故该三角形第三边的长不可能是1cm.故选:A.直接利用三角形三边关系得出第三边长的取值范围进而得出答案.此题主要考查了三角形三边关系,正确得出第三边长的取值范围是解题关键.3.如图,AD,BE,CF依次是△ABC的高、中线和角平分线,下列各式中错误的是()A. AE=CEB. ∠ADC=90∘C. ∠CAD=∠CBED. ∠ACB=2∠ACF【答案】C【解析】略4.下列说法正确的是()A. 所有的等腰三角形都是锐角三角形B. 等边三角形属于等腰三角形C. 不存在既是钝角三角形又是等腰三角形的三角形D. 一个三角形里有两个锐角,则一定是锐角三角形【答案】B【解析】解:A、错误,内角为30°,30°,120°的等腰三角形是钝角三角形;B、正确,等边三角形属于等腰三角形;C、错误,内角为30°,30°,120°的三角形既是钝角三角形又是等腰三角形的三角形;D、错误,内角为30°,30°,120°的三角形有两个锐角,是钝角三角形.故选:B.根据锐角三角形、钝角三角形、等腰三角形的定义一一判断即可.本题考查三角形的一个概念,解题的关键是搞清楚锐角三角形、钝角三角形、等腰三角形的定义,属于基础题,中考常考题型.5.画△ABC中AB边上的高,下列画法中正确的是()A. B.C. D.【答案】C【解析】略6.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它更加稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A,C两点之间B. E,G两点之间C. B,F两点之间D. G,H两点之间【答案】B【解析】选项A,C,D中都构成了三角形,增加了稳定性;选项B中,木条钉在E,G两点之间,没有构成三角形.故选B.7.将一张三角形纸片剪开分成两个三角形,这两个三角形不可能()A. 都是直角三角形B. 都是钝角三角形C. 都是锐角三角形D. 是一个直角三角形和一个钝角三角形【答案】C【解析】【分析】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形.【解答】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.,如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.,如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.,因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.故选C.8.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()A. 4个B. 5个C. 6个D. 7个【答案】A【解析】【分析】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=22−BC−22=10−12BC,为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二、填空题(本大题共2小题,共6.0分)9.三角形的三条中线相交于一点,这个点一定在三角形的________,这个点叫做三角形的__________.【答案】内部;重心【解析】略10.如图,在△ABC中,D是BC边上一点,E是AD边上一点.(1)以AC为边的三角形共有个,它们是;(2)∠1是△和△的内角;(3)在△ACE中,∠CAE的对边是.【答案】3△ACE,△ACD,△ACBBCECDECE【解析】略三、解答题(本大题共5小题,共40.0分)11.在如图所示的方格纸中,每个小正方形的边长均为1,点A,点B,点C均在小正方形的顶点上.(1)画出△ABC中BC边上的高AD;(2)画出△ABC中AC边上的中线BE;(3)直接写出△ABE的面积为.【答案】解:(1)如图所示,线段AD即为所求.(2)如图所示,线段BE即为所求.(3)4.【解析】(3)解:∵S△ABC=12BC⋅AD=12×4×4=8,∴△ABE的面积=12S△ABC=4.12.已知a、b、c为△ABC的三边长,且b、c满足(b−5)2+(c−7)2=0,a为方程|a−3|=2的解,求△ABC的周长,并判断△ABC的形状.【答案】解:∵(b −5)2+(c −7)2=0,∴{b −5=0,c −7=0,解得{b =5,c =7,∵a 为方程|a −3|=2的解,∴a =5或1,当a =1,b =5,c =7时,三边长分别为1,5,7,1+5<7,不能组成三角形,故a =1不符合题意;当a =5,b =5,c =7时,三边长分别为5,5,7,5+5>7,能组成三角形,故a =5符合题意,∴△ABC 的周长=5+5+7=17.∵a =b =5,∴△ABC 是等腰三角形.【解析】要注意检验三边长能否构成三角形.13. 若△ABC 的三边长分别为m −2,2m +1,8.(1)求m 的取值范围;(2)若△ABC 的三边均为整数,求△ABC 的周长.【答案】解:(1)根据三角形的三边关系,{2m +1−(m −2)<82m +1+m −2>8, 解得:3<m <5;(2)因为△ABC 的三边均为整数,且3<m <5,所以m =4.所以,△ABC 的周长为:(m −2)+(2m +1)+8=3m +7=3×4+7=19.【解析】(1)直接利用三角形三边关系得出不等式组求出答案;(2)利用m 的取值范围得出m 的值,进而得出答案.此题主要考查了三角形三边关系,正确得出不等式组是解题关键.14.如图,已知P是△ABC内一点.求证:PA+PB+PC>1(AB+BC+AC).2【答案】证明:在△ABP中,PA+PB>AB; ①在△PBC中,PB+PC>BC; ②在△PAC中,PA+PC>AC. ③ ①+ ②+ ③,得2(PA+PB+PC)>AB+BC+AC,(AB+BC+AC).即PA+PB+PC>12【解析】见答案15.在平面内,分别用3根、5根、6根⋯⋯火柴棒首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:火柴棒根数356示意图形状等边三角形等腰三角形等边三角形(1)用4根火柴棒能搭成三角形吗?(2)用8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图.【答案】解:(1)用4根火柴棒不能搭成三角形.(2)用8根火柴棒能搭成一种三角形,示意图如图 ①所示;用12根火柴棒能搭成三种不同形状的三角形,即:(4,4,4),(5,5,2),(3,4,5),示意图如图 ②所示.【解析】见答案。

八年级数学上册全套讲解-带答案

八年级数学上册全套讲解-带答案

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边1.会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题.2.进一步认识三角形的概念及其基本要素,掌握三角形三边关系.重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.一、自学指导自学1:自学课本P2-3页,掌握三角形的概念、表示方法及分类,完成填空.(5分钟) 总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点.(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形.(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形.点拨精讲:等边三角形是特殊的等腰三角形.自学2:自学课本P3-4页“探究与例题”,掌握三角形三边关系.(5分钟)总结归纳:一般地,三角形两边的和大于第三边;三角形两边的差小于第三边.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图①,以A,B,C为顶点的三角形记作△,读作“三角形”,它的边分别是,,(或a,b,c),内角是∠A,∠B,∠C,顶点是点A,B,C.点拨精讲:三角形的边也可以用边所对顶点的小写字母表示.2.图②中有5个三角形,分别是△,△,△,△,△,以E为顶点的三角形是△,△,△,以∠D为角的三角形是△,△,以为边的三角形是△,△.3.下列长度的三条线段能组成三角形的有②:①3,4,11;②2,5,6;③3,5,8.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1一个等腰三角形的周长为28.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边的长为6,求其他两边的长.解:(1)设底边长为x,则腰长为3x,依题意得2×3x+x=28,解得x=4,3x=12,∴三边长分别为4,12,12.(2)设另一边长为x,依题意得,当6为底边时,2x+6=28,∴x=11;当6为腰长时,x +2×6=28,∴x=16.∵6+6<16,不符合三角形两边的和大于第三边,所以不能围成腰长为6的等腰三角形,∴其他两边的长为11,11.探究2某同学有两根长度为40,90的木条,他想钉一个三角形的木框,那么第三根应该如何选择?(40,50,60,90,130)解:设第三根木条长为x,依题意得90-40<x<40+90,∴50<x<130,∴第三根应选60或90.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.图中有6个三角形,以E为顶点的三角形有△,△,△;以为边的三角形有△,△,△.2.下列长度的三条线段能组成三角形的是C.A.3,4,8B.5,6,11C.2,4,53.等腰三角形一条边等于3,一条边等于6,则它的周长为15.点拨精讲:注意三角形三边关系.(3分钟)(3分钟)1.等边三角形是特殊的等腰三角形.2.在进行等腰三角形的相关计算时,要注意分类思想的运用,同时要注意运用三角形三边关系判断所求三条线段长能否构成三角形.3.已知三角形的两边长,可依据三边关系求出第三边的取值范围.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.2三角形的高、中线与角平分线1.了解三角形的高、中线、角平分线等有关概念.2.掌握三角形的高、中线与角平分线的画法;了解三角形的三条高、三条中线、三条角平分线分别交于一点.重点:三角形的高、中线、角平分线概念的简单运用及它们的几何语言表达.难点:钝角三角形的高的画法.一、自学指导自学1:自学课本P4页,掌握三角形的高的画法,完成下列填空.(4分钟)作出下列三角形的高:如图①,是△的边上的高,则有∠=∠=90°.总结归纳:三角形的高有3条,锐角三角形的三条高都在三角形的内部,相交于一点,直角三角形的三条高相交于三角形的直角顶点上;钝角三角形的三条高相交于三角形的外部.自学2:自学课本P4-5页,掌握三角形的中线的画法,理解重心的概念,完成下列填空.(5分钟)作出下列三角形的中线,回答下面问题:如图①,是△的边上的中线,则有==;总结归纳:三角形的中线有3条,相交于一点,且在三角形的内部,三角形三条中线的交点叫做三角形的重心.取一块质地均匀的三角形木板,试着找出它的重心.自学3:自学课本P5页,掌握三角形的角平分线的画法,理解三角形的角平分线与角的平分线的区别,完成下列填空.(3分钟)作出下列三角形的角平分线,回答下列问题:如图①,是△的角平分线,则有∠=∠=∠;总结归纳:三角形的角平分线有3条,相交于一点,且在三角形的内部.三角形的角平分线是线段,而角的角平分线是射线.点拨精讲:三角形的高、中线和角平分线都是线段.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P5页的练习题1,2.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,在△中,是中线,是角平分线,是高,则:(1)∵是△的中线,∴==;(2)∵是△的角平分线,∴∠=∠=∠;(3)∵是△的高,∴∠=∠=90°;(4)∵是△的中线,∴=,又∵S△=·,S△=·,∴S△=S△.点拨精讲:三角形的高、中线和角平分线的概念既是性质,也可以做为判定定理用.探究2如图,△中,=2,=4,△的高与的比是多少?解:∵·=·,=2,=4,∴=2,∴∶=1∶2.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.三角形的三条中线、三条角平分线、三条高都是(C)A.直线B.射线C.线段D.射线或线段2.一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(B)A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.能把三角形的面积分成两个相等的三角形的线段是(D)A.中线B.高C.角平分线D.以上都正确4.如图,D,E是边的三等分点:(1)图中有6个三角形,是三角形中边上的中线,是三角形中边上的中线,===,==;(2)S△=S△=S△=S△;(3)S△=S△=S△.(1分钟)1.三角形的高、中线和角平分线都是线段.2.三角形的高、中线和角平分线的概念既可得到角与线段的数量关系,也可做为判定三角形高、中线和角平分线的判定定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.3三角形的稳定性通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.重、难点:了解三角形稳定性在生产、生活中的实际应用.一、自学指导自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟)将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:(1)如图①,扭动三角形木架,它的形状会改变吗?(2)如图②,扭动四边形木架,它的形状会改变吗?总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变.(3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么?总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P7页练习题第1题.2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n边形(n>3)最少需要加(n-3)条线段才具有稳定性.点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.探究2等腰三角形一腰上的中线将此等腰三角形分成9,15两部分,求此等腰三角形的周长是多少?解:设等腰三角形的腰长为x,底边长为y,依题意得,当x>y时,解得当x<y时,解得∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24().答:此等腰三角形的周长为24.点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.课本P9页第10题.2.下列图形具有稳定性的有(C)A.梯形B.长方形C.三角形D.正方形3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.4.已知,分别是△的中线、高,且=5,=3,则△与△的周长之差为2;△与△的面积关系是相等.5.如图,D是△中边上的一点,∥交边于E,∥交边于F,且∠=∠.求证:是△的角平分线.证明:∵∥,∥,∴∠=∠,∠=∠,又∵∠=∠,∴∠=∠,∴是△的角平分线.(1分钟)三角形的稳定性与四边形的不稳定性在日常生活中非常常用.(学生总结本堂课的收获与困惑)(2分钟)(12分钟)11.2与三角形有关的角11.2.1三角形的内角(1)1.会用不同的方法证明三角形的内角和定理.2.能应用三角形内角和定理解决一些简单的问题.重点:三角形内角和定理的应用.难点:三角形内角和定理的证明.一、自学指导自学1:自学课本P11-12页“探究”,掌握三角形内角和定理的证明方法,完成下列填空.(5分钟)归纳总结:三角形内角和定理——三角形三个内角的和等于180°.已知:△.求证:∠A+∠B+∠C=180°.点拨精讲:为了证明的需要,在原来的图形上添画的线叫做辅助线.作辅助线是几何证明过程中常用到的方法,辅助线通常画成虚线.证明:延长到点D,过点B作∥,∵∥,∴∠1=∠A,∠2=∠C,∵∠1+∠2+∠=180°,∴∠A+∠+∠C=180°.自学2:自学课本P12-13“例1、例2”,掌握三角形内角和的应用.(5分钟)你可以用其他方法解决例2的问题吗?点拨精讲:可过点C作∥,可证得∥,同时将∠分成∠与∠,求出这两个角的度数,就能求出∠.解:过点C作∥,∵∥,∴∥,∵∥,∥,∴∠=∠=50°,∠=∠=40°,∴∠=∠+∠=50°+40°=90°,∵∠=∠-∠=80°-50°=30°,∴∠=180°-∠-∠=180°-30°-90°=60°.答:从B岛看A,C两岛的视角∠是60°,从C岛看A,B两岛的视角∠是90°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P13页的练习题1,2.点拨精讲:仰角是当视线在视平线上方时视线与视平线所夹的角.小组讨论交流解题思路,小组活动后选代表展示活动成果.(7分钟)探究1①一个三角形中最多有1个直角;②一个三角形中最多有1个钝角;③一个三角形中至少有2个锐角;④任意一个三角形中,最大的一个角的度数至少为60°.为什么?点拨精讲:三角形的内角和为180°.探究2如图,在△中,与交于点G,与的延长线交于点F,∠B=45°,∠F=30°,∠=70°,求∠A的度数.解:在△中,∠=180°-∠-∠F=180°-70°-30°=80°,∴∠=180°-∠=180°-80°=100°,在△中,∠A=180°-∠B-∠=180°-45°-100°=35°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.课本P16页复习巩固第1题.2.在△中,∠A=35°,∠B=43°,则∠C=102°.3.在△中,∠A∶∠B∶∠C=2∶3∶4,则∠A=40°,∠B=60°,∠C=80°.4.在△中,如果∠A=∠B=∠C,那么△是什么三角形?解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A +3∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△是直角三角形.(3分钟)(3分钟)为了说明三角形的内角和为180°,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.1三角形的内角(2)1.掌握直角三角形的表示方法,并理解直角三角形的性质与判定.2.能运用直角三角形的性质与判定解决实际问题.重、难点:理解和运用直角三角形的性质与判定.一、自学指导自学:自学课本P13-14页,掌握直角三角形的表示方法及其性质,完成下列填空.(5分钟)总结归纳:(1)直角三角形可以用符号“△”表示,直角三角形可以写成△.(2)直角三角形的两个锐角互余.(3)有两个角互余的三角形是直角三角形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(10分钟)1.在△中,∠C=90°,∠A=2∠B,求出∠A,∠B的度数.解:△中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠A=2∠B,∴2∠B+∠B=90°,∴∠B=30°,∠A=60°.2.如图,∠=90°,⊥,垂足为D,∠与∠B有什么关系?为什么?解:结论:∠=∠B.理由如下:在△中,∠A+∠B=90°,在△中,∠A+∠=90°,∴∠=∠B.点拨精讲:利用同角的余角相等可以方便地证出两角的相等关系.3.如图,∠C=90°,∠=∠B,△是直角三角形吗?为什么?解:结论:△是直角三角形.理由如下:在△中,∠A+∠B=90°(直角三角形的两个锐角相等).∵∠=∠B,∴∠A+∠=90°,∴△是直角三角形(有两个角互余的三角形是直角三角形).小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,∥,,分别平分∠,∠.求证:△是△.证明:∵∥,∴∠+∠=180°,∵,分别平分∠,∠,∴∠=∠,∠=∠,∴∠+∠=∠+∠=90°,∴△是△(有两个角互余的三角形是直角三角形).探究2如图,在△中,∠C=90°,,是∠,∠的角平分线,求∠D的度数.解:在△中,∠+∠=90°,∵,是∠,∠的角平分线,∴∠=∠,∠=∠,∴∠+∠=∠+∠=45°,在△中,∠D=180°-(∠+∠)=180°-45°=135°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.在△中,∠A∶∠B∶∠C=1∶2∶3,则此三角形是直角三角形.2.如图,在△中,∠=90°,∠=∠B.求证:△是△.证明:在△中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠=∠B,∴∠A+∠=90°,∴△是△(有两个角互余的三角形是直角三角形).(3分钟)(3分钟)1.直角三角形的性质:两个锐角互余.2.直角三角形的判定:①有一个角是直角;②两边互相垂直;③有两个角互余;(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.2三角形的外角1.探索并了解三角形的外角的两条性质,利用学过的定理证明这些性质.2.能利用三角形的外角性质解决实际问题.重点:三角形外角的性质.难点:运用三角形外角的性质解决有关角的计算及证明问题.一、自学指导自学1:自学课本P14页,掌握三角形外角的定义,完成下列填空.(3分钟)如图1,把△的边延长到D,我们把∠叫做三角形的外角.思考:①在△中,除了∠外,还有那些外角?请在图2中分别画出来;②以点C为顶点的外角有2个,所以△共有6个外角;③外角∠与内角∠的关系是:互为邻补角.总结归纳:三角形的一边与另一边的延长线组成的角,叫做三角形的外角;每一个三角形都有6个外角;每一个顶点相对应的外角都有2个;每个外角与它相邻的内角互为邻补角.自学2:自学课本P15页“探究与例4”,理解三角形外角的性质并学会运用.(7分钟)如图,△中,∠A=70°,∠B=60°,∠是△的一个外角.能由内角∠A,∠B求出外角∠吗?如果能,外角∠与内角∠A,∠B有什么关系?认真思考,完成下面的填空:(1)∠=50°,∠=130°,∠A+∠B=130°,∠=∠A+∠B;(填“>”“<”或“=”)(2)∠>∠A,∠>∠B.(填“>”“<”或“=”)总结归纳:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,是△的外角有∠,∠,∠,以∠为外角的三角形是△,△.2.如图,∠1,∠2,∠3是△不同的三个外角,求∠1+∠2+∠3.解:∵∠1=∠+∠,∠2=∠+∠,∠3=∠+∠,∴∠1+∠2+∠3=2(∠+∠+∠),∵∠+∠+∠=180°,∴∠1+∠2+∠3=2×180°=360°.3.课本P15页练习题.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,在△中,∠A=α,△的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选一个结论加以证明.解:①β=α+90°;②β=α;③β=90°-α.证明:(略)探究2如图,∠A=50°,∠B=40°,∠C=30°,求∠的度数.解:连接并延长到点E,∵∠=∠B+∠,∠=∠C+∠,又∵∠=∠+∠,∴∠=∠B+∠+∠C+∠=∠+∠B+∠C=50°+40°+30°=120°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.若三角形的一个外角小于与它相邻的内角,则这个三角形是(C)A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2.已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为(C)A.90°B.110°C.100°D.120°3.如图,∠1+∠2+∠3+∠4+∠5+∠6=360°.,第3题图),第4题图) 4.如图,∥,∠B=50°,∠C=75°,求∠A的度数.解:∵∥,∴∠=∠C,∵∠=∠B+∠A,∴50°+∠A=75°,∴∠A=25°.(3分钟)(3分钟)1.三角形的每个顶点处都有2个外角,这两个外角互为对顶角,外角与它相邻的内角互为邻补角.2.在三角形的每个顶点处各取一个外角,这三个外角的和为360°.3.三角形外角的性质是三角形有关角的计算与证明的常用依据.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3多边形及其内角和11.3.1多边形1.理解多边形的相关概念.2.认识凸多边形及正多边形,掌握正多边形的定义及判定.重点:理解多边形的相关概述.难点:掌握正多边形的定义及判定.一、自学指导自学1:自学课本P19页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.自学2:自学课本P20页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:(1)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(3)各个角都相等,各条边都相等的多边形叫做正多边形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.四边形有4条边,4个顶点,4个内角,8个外角;五边形有5条边,5个顶点,5个内角,10个外角;n边形有n条边,n个顶点,n个内角,2n个外角.2.画出下列多边形的全部对角线:3.四边形的一条对角形将四边形分成2个三角形,从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1:过m边形的一个顶点有7条对角线,n边形没有对角线,求的平方根.解:由题意可得m-3=7,∴m=10,n=3,∴±=±.探究2:填表顶点数一个顶点可引的对角线条数对角线总共条数过一个顶点可分成三角形个数四边形 4 1 2 2五边形 5 2 5 3六边形 6 3 9 4……………n边形n n-3 n-2学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.下列图形中,是正多边形的是(D)A.直角三角形B.等腰三角形C.长方形D.正方形2.过n边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是10.3.一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数.解:设这是一个n边形,依题意得=4n,∵n≥3且为整数,∴n=11.(3分钟)1.在初中阶段所讲的多边形指的都是凸多边形.2.已知多边形的边,可以推导出其对角线的条数和分成的三角形的个数;反过来,已知过一点所画对角线的条数或分成的三角形的个数可以推导出多边形的边数.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3.2多边形的内角和探索多边形的内角和公式及外角和,会利用多边形的内角和公式解决问题.重点:掌握多边形的内角和公式.难点:探索多边形的内角和公式.一、自学指导自学1:自学课本P21-22页,掌握多边形内角和公式的推导方法,完成下列填空.(5分钟)填写下列表格:多边形三角形四边形五边形六边形…n边形一个顶点可引的对角线条数0 1 2 3 …n-3所引对角线分成三角形的个数 1 2 3 4 …n-2三角形的内角和为180度;任意四边形的内角和为360度;任意五边形的内角和等于540度;六边形的内角和等于720度;n边形的内角和等于(n-2)·180°;多边形的边数每增加一条,那么它的内角和就增加180°.点拨精讲:多边形可分成若干个三角形,将多边形内角和转化成三角形知识(如图1,2).自学2:自学课本P22-23例1,例2和探究,掌握多边形外角和应用.(5分钟)如图3,根据前面三角形的有关知识,探索在每个五边形顶点处各取一个外角,这些外角的和叫做五边形的外角和,五边形的外角和等于360度,六边形的外角和是360度.总结归纳:n边形的外角和是360°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P24页练习题1,2,3.2.七边形的内角和900°,十边形的内角和是1440°;如果一个多边形的内角和等于1260°,那么它是九边形.3.已知四边形中,∠A∶∠B∶∠C∶∠D=1∶2∶3∶4,则∠C=108°.4.求出正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角的度数.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1(1)一个多边形的内角和是外角和的一半,它是几边形?(2)一个多边形的内角和是外角和的2倍,它是几边形?解:(1)设它是n边形,则有180°·(n-2)=×360°,∴n=3.(2)设它是n边形,则有180°·(n-2)=2×360°,∴n=6.探究2如图,六边形的内角都相等,∠=60°,与有怎样的位置关系?与有这种关系吗?解:结论:∥,∥.证明:(略)学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.一个多边形的每个内角都等于150°,则它的边数为12.2.一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?3.已知一个多边形,它的内角和等于五边形的内角和的2倍,求这个多边形的边数.解:设这个边多形的边数为n,则有180°(n-2)=2×180°×(5-2),∴n=8.(3分钟)1.已知多边形的边数可以求出其内角和,根据其内角和也可以求出其边数.2.内角和的推理要用到转化的思想,将多边形的知识转化为三角形的知识.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)第十二章全等三角形12.1全等三角形1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.重点:掌握全等三角形的对应元素和性质的应用.难点:全等三角形性质的应用.一、自学指导自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟) 总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的对应边相等,全等三角形的对应角相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.下列图形中的全等图形是d与g,e与h.2.如图,△与△能重合,则记作△≌△,读作△全等于△,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:与,与,与;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.,第2题图),第3题图)3.如图,△≌△,C和B,A和D是对应顶点,相等的边有=,=,=,相等的角有∠A=∠D,∠C=∠B,∠=∠.点拨精讲:通常把对应顶点的字母写在对应的位置上.4.已知△≌△,若=3,=4,=6.则△的周长为13;若∠C=110°,∠A=30°,则∠=40°.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△可以经过怎样的变换得到另一个三角形?点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.解:①△≌△,A和D,B和E,C和F是对应顶点,与,与,与是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△是△经过平移得到的.②△≌△,A和D,B和B,C和C是对应顶点,与,与,与是对应边,∠A与∠D,∠与∠,∠与∠是对应角,△是△沿所在直线向下翻折得到的.③△≌△,A和A,B和E,C和D是对应顶点,与,与,与是对应边,∠与∠,∠B与∠E,∠C与∠D是对应角,△是△绕点A旋转180°得到的.探究2如图,△≌△,=,=,且点B,E,C,F在同一条直线上.(1)求证:=,∥;(2)若∠D+∠F=90°,试判断与的位置关系.解:(1)证明:∵△≌△,∴=,∠=∠,∴∥,-=-,∴=.(2)结论:⊥.证明:∵△≌△,∴∠A=∠D,∠=∠F,∵∠D+∠F=90°,∴∠A+∠=90°,∴∠B=90°,∴⊥.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,△≌△,求证:∥.证明:∵△≌△,∴∠=∠,∴∥.2.如图,△≌△,∠=∠,∠B=∠C,指出其他的对应边和对应角.解:对应边有与,与,与,对应角有∠=∠.(3分钟)找对应元素的常用方法有两种:(一)从运动角度看1.翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两个三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)12.2三角形全等的判定(1)1.掌握三角形全等的判定(),掌握简单的证明格式.2.初步体会尺规作图.重、难点:掌握三角形全等的判定().一、自学指导自学1:自学课本P35-36页“探究1,探究2及例1”,掌握三角形全等的判定条件,并掌握简单的证明格式,了解三角形的稳定性,完成填空.(7分钟)画△:①使=3;②使=3,=4;③使=3,=4,=5;④使∠A=30°;⑤使∠A=30°,∠B=50°;⑥使∠A=30°,∠B=50°,∠C=100°.每画完一个,与同桌画的三角形对比一下,形状与大小是一样的吗?总结归纳:(1)已知三角形的一个或两个元素,三角形的形状和大小不能确定,三个角相等的三角形形状确定,但大小不确定.(2)三边分别相等的两个三角形全等,简写成边边边或.(3)三角形三边的长度确定了,这个三角形的形状、大小也就确定了.自学2:自学课本P36-37页“探究与例题”,利用尺规作图画一个角等于已知角,初步体会尺规作图.(3分钟)。

初二数学上册(人教版)第十一章三角形11.1知识点总结含同步练习及答案

初二数学上册(人教版)第十一章三角形11.1知识点总结含同步练习及答案

描述:例题:初二数学上册(人教版)知识点总结含同步练习题及答案第十一章 三角形 11.1 与三角形有关的线段一、学习任务1. 理解三角形及其有关的概念.2. 掌握三角形三边关系,并能够熟练运用这个三角形的三边关系判定已知的三条线段能否构成三角形.3. 知道三角形具有稳定性,并且能够运用到实际问题中去.二、知识清单三角形的相关概念 三角形的三边关系 三角形的稳定性三、知识讲解1.三角形的相关概念三角形由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形(triangle ).按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形.三角形的高从三角形的一个顶点向它的对边画垂线,顶点和垂足之间的线段叫做三角形的高(altitude ).三角形的中线连接三角形的一个顶点和它对边中点的线段叫做三角形的中线(median ).三角形的角平分线三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线(angular bisector ).三角形的重心三角形三条中线的交点叫做三角形重心.三角形的内心三角形三条内角平分线的交点叫做三角形内心.三角形的垂心三角形三边上的三条高所在直线交于一点叫做三角形垂心.三角形的外心三角形三边的垂直平分线的交点叫做三角形外心.三角形的旁心三角形的一条内角平分线与其他两个角的外角平分线交于一点叫做三角形的旁心.一个三角形的三个内角的度数之比为 ,这个三角形是( )2:3:7中阴影部分的面积是_______.1∠DAE线,则 的度数为______.描述:例题:3.三角形的稳定性三角形具有稳定性,有着稳固、坚定、耐压的特点.四、课后作业 (查看更多本章节同步练习题,请到快乐学)(1) ,,;(2) ,,;(3) ,,();(4) ,,().解:(1) 不能;(2) 不能;(3) 能;(4) 不能.(1) 与 的和小于 ,所以不能组成三角形;(2) 与 的和等于 ,所以不能组成三角形;(3) , 均小于 ,而 ,因为 ,所以 ,所以 ,它们可以组成三角形;(4) 最大,而 ,因此不能组成三角形.3610358+3a 2+4a 2+7a 2a ≠03a 5a 8a a >03610358+3a 2+4a 2+7a 2(+3)+(+4)=2+7=(+7)+a 2a 2a 2a 2a 2a ≠0>0a 2(+3)+(+4)>+7a 2a 2a 28a 3a +5a =8a 一个不等边三角形的边长都是整数,且周长是 ,这样的三角形共有多少?分析:已知中的数较少,只知道周长为 ,应该抓住不等边三角形的边长都是整数这一个条件,依据三角形三边关系先确定出最大边的取值范围,则问题迎刃而解.解:设 ,则 ,即 ,所以 .因为 ,, 都是正整数,所以若 ,则其他两边必然为 ,.由于 ,即 ,故线段 ,, 不能组成三角形.当然 更不可能是 或 ,因而有 .当 时,,,不符合条件;当 时,,,符合条件.所以符合条件的三角形只有 个.1212a <b <c a +b +c >2c 2c <12c <6a b c c =3a =1b =21+2=3a +b =c a b c c 124⩽c <6c =4a =2b =3c =5a =3b =41下列图形中具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形解:C.答案: 1. 如图,在 中, 的对边是A .B .C .D .C △ABF ∠B ()ADAE AF AC2. 如果一个三角形的两边长分别为 和 ,则第三边长可能是 A .B .C .D .24()2468高考不提分,赔付1万元,关注快乐学了解详情。

2023-2024学年八年级上学期数学:与三形有关的线段(附答案解析)

2023-2024学年八年级上学期数学:与三形有关的线段(附答案解析)

2023-2024学年八年级上数学:第十一章三角形
11.1
与三角形有关的线段
一、选择题
1.下列各组数中,不可能是同一个三角形的三边长的是()
A.3,4,5B.5,7,7C.6,8,10D.5,7,12 2.劳动课上,小莉要用三根木棒首尾相接钉一个三角形框架,现有两根木棒长分别为4cm,5cm,则第三根木棒的长可取()
A.1cm B.4cm C.9cm D.10cm
3.已知三角形的三边长分别为3、5、x,则x的取值范围为()
A.8
x<<
x<<D.28
x>C.08
x<B.2
4.如图所示,工人师傅在砌门时,通常用木条BD固定长方形门框ABCD,使其不变形,这样做的数学根据是()
A.两点确定一条直线B.两点之间,线段最短
C.同角的余角相等D.三角形具有稳定性
5.若三角形的两边长分别为4和7,则该三角形的周长可能为()
A.9B.14C.18D.22
6.下列说法中,正确的是()
第1页(共12页)。

与三角形有关的线段(课件)八年级数学上册(人教版)

与三角形有关的线段(课件)八年级数学上册(人教版)
1
1
AD×BC= BP×AC.
2
2
24
代入数值,可解得BP= .
5
【点睛】面积法的应用:若涉及两条高求长度,一般需结合面积(但不求出
面积),利用三角形面积的两种不同表示方法列等式求解.
如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.
(1)求△ABC的面积;
(2)求AD的长.
第十一章 三角形
11.1 与三角形有关的线段
(11.1.1-11.1.3)
情景引入
在我们日常生活中经常能看到三角形的影子.
减速慢行
注意儿童
前方村庄
11.1.1 三角形的边
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三
角形?
A
定义:由不在同一条直线上的三条
线段首尾顺次相接所组成的图形叫
解:
1
2
1
2
(1)由题意得:△ = AB×CE= ×6×9=27cm2 .
1
2
(2)∵△ = BC×AD,

1
27=
2
×12×AD
解得AD=4.5cm.
思考 已知D是BC的中点,试问△ABD的面积与△ADC的面积有何
关系?
连接△ABC的顶点A和它所对的边BC的
中点D,所得线段AD叫做△ABC的边BC
把一条线段分成两条相等的线段的点.
3.角平分线的定义:
一条射线把一个角分成两个相等的角,这条射线叫做这个角
的平分线.
思考 你还记得“过一点画已知直线的垂线”吗?
A
B
思考 如何求△ABC的面积?
D
从△ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所

人教版八年级上册数学第十一章三角形全章课件

人教版八年级上册数学第十一章三角形全章课件

B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c

最新人教部编版八年级数学上册《第十一章 三角形【全章】》精品PPT优质课件

最新人教部编版八年级数学上册《第十一章 三角形【全章】》精品PPT优质课件
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
Thank you!
Good Bye!
11.1 与三角形有关的线段
即三角形两边的和大于第三边. B
C
由不等式②③移项可得 BC >AB -AC, BC >AC -AB.由此你能得出什么结论?
A
三角形两边的差小于第三边.
B
C
问题:下列长度的三条线段能否组成三角形?为 什么?(1)3,4,5;(2)5,6,11;(3)5,6,10. 解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
解:①如果 4 cm 长的边为底边,设腰长为 x cm,则
4 + 2x = 18. 解得 x = 7. ②如果 4 cm 长的边为腰,设底边长为 x cm,则
4×2 + x = 18. 解得 x = 10.
因为4 + 4<10,不符合三角形两边的和大于第 三边,所以不能围成腰长为 4 的等腰三角形.
基础巩固
随堂演练
1.下列说法:①等边三角形是等腰三角形;②
三角形按边分类可分为等腰三角形、等边三角形、
不等边三角形;③三角形的两边之差大于第三边;
④三角形按角分类应分为锐角三角形、直角三角
形、钝角三角形. 其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
2.已知三角形的一边长为 5 cm,另一 边长为 3 cm .则第三边的长 x 的取值范围是 __2_c_m__<__x_<__8_c_m___.
拓展延伸 3.等腰三角形的周长为 20 厘米. (1)若已知腰长是底长的 2 倍,求各边的长; (2)若已知一边长为 6 厘米,求其他两边的长.

八年级数学上册第十一章三角形111与三角形有关的线段11.1.1三角形的边

八年级数学上册第十一章三角形111与三角形有关的线段11.1.1三角形的边

第十一章 11.1.1三角形的边知识点1:三角形的概念(1)定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.在此定义中,要特别注意“不在同一条直线上”、“三条线段”、“首尾顺次相接”这三个条件,缺一不可. 如图,在线段AB上取一点(除端点)C,三条线段AC、CB和AB是首尾顺次相接的,但它们却没有构成三角形.(2)组成:如图,三条边,即边AB、边BC、边CA;三个内角,即∠A、∠B、∠C;三个顶点,即点A、点B、点C. 三角形有三个顶点,三个角,三条边.(3)表示法:“三角形”用符号“△”表示,如上图,顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC” .另外,△ABC的三边,有时也用a,b,c来表示,一般地,∠A对边a,∠B对边b,∠C对边c.如图上,顶点A所对的边BC用a表示,边AC、边AB分别用b、c来表示.归纳整理:我们通常数三角形的方法有:(1)按图形的形成过程(即重新画一遍图形,按照三角形形成的先后顺序去数).(2)按照三角形的大小去数.(3)可以从图中的某一条线段开始沿着一定的方向去数.(4)先固定一个顶点,变化另两个顶点来数.注意:通过三角形的定义可知,三角形的特征有:①三条线段;②不在同一条直线上;③首尾顺次相接.这是判断是否是三角形的标准.知识点2:三角形的分类(1)三角形按边分类:三角形(2)三角形按角的大小分类:三角形(3)按边分类中各种三角形的关系:归纳整理:(1)三边都不相等的三角形是不等边三角形,不等边三角形应该是指“三边都不相等”的三角形;有两边相等的三角形叫做等腰三角形,相等的两边叫做等腰三角形的腰;三边都相等的三角形叫做等边三角形.(2)等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形.知识点3:三角形的三边关系(1) 三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边.归纳整理:(1)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可以求出第三边的取值范围.并且对于三角形三边关系通常要与等腰三角形的知识连用,结合分类讨论思想求解.(2)三角形三边关系是“两点之间,线段最短”的具体应用.考点1:三角形的数法【例1】如图,图中有几个三角形,哪几个三角形?解:有6个三角形.它们分别是△ABE、△ABD、△ABC、△AED、△AEC、△ADC.点拨:只要符合有不在同一条直线上的三条线段首尾顺次相接,就是一个三角形.在数三角形的个数的问题上,要注意不重不漏的问题.形如例1这样的三角形的个数也可以根据点E、D把BC分成了三段,所以三角形的个数为3+2+1=6(个).考点2:三角形的分类【例2】设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个选项中,能表示它们之间关系的是( ).解:A.点拨:本题主要考查了三角形的分类以及不同三角形之间的关系,只要正确地理顺三角形之间的关系即可.等腰三角形与直角三角形的公共部分是等腰直角三角形,等腰三角形包括等边三角形和等腰直角三角形,只有选项A符合题意.考点3:三角形边的求法【例3】已知等腰三角形的周长是600px.(1)腰长是底边长的2倍,求腰长;(2)已知其中一边长为150px,求其他两边长.解:(1)设底边长为xcm,则腰长为2xcm.根据题意,得x+2x+2x=24.解得x=4.8.故腰长=2x=2×4.8=9.6(cm).(2)因为长为150px的边可能是腰,也可能是底,所以要分两种情况计算.当长为150px的边为腰时,则底边为24-6×2=12.由6+6=12,两边之和等于第三边,所以150px长为腰不能组成三角形,舍去.当长为150px的边为底边时,则腰长为(24-6)÷2=9.∵150px,225px,225px可以组成三角形,∴三角形其他两边长均为225px.点拨:计算(1)可以通过设未知数来进行计算,得出方程,通过求方程的解从而求出答案,其中体现了方程思想.计算(2)要注意分两种情况考虑,因为题目中没有说明这条边究竟是腰还是底边,所以通过其中一边长为150px,求其他两边的长应该分成两种情况考虑:一种是150px长的边为腰,另一种是150px长的边为底,体现了数学中的分类讨论思想.并且计算结果还要注意检查是否符合两边之和大于第三边.考点4:三角形的三边关系【例4】用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为.解:能摆成不同形状的三角形的个数为2.点拨:设一根火柴棒的长度为单位1,最短边不能大于2,若最短边大于2,则周长至少是9,不合题意.①当最短边长为1时,另两边长可能为1,5;2,4;3,3;其中当边长为1,1,5;1,2,4时不能构成三角形,只有1,3,3能构成三角形;②当最短边长为2时,另两边长可能为2,3;3,2;边长为2,2,3和2,3,2能构成三角形,但这两种三角形的形状相同.。

八年级数学上册第十一章三角形11.1与三角形有关的线段11.1.1三角形的边

八年级数学上册第十一章三角形11.1与三角形有关的线段11.1.1三角形的边

第十一章 三角形 11.1 与三角形有关的线段 11.1.1 三角形的边学习目标 1.了解三角形的概念,会用符号语言表示三角形. 2.通过具体的实践活动理解三角形三边的不等关系.学习过程 一、自主学习 问题 1:观察下面的图片,你能找到哪些我们熟悉的图形?问题 2:在小学,我们学过三角形,你了解三角形的哪些性质? 二、深化探究 探究 1:观察三角形的构成,探索三角形的概念 问题 1:你能画出一个三角形吗?问题 2:结合你画的三角形,说明三角形是由什么组成的? 问题 3:下面的几个图形都是由三条线段组成的,它们都是三角形吗?问题 4:什么叫三角形?探究 2:自主学习三角形的表示方法及分类 阅读教材第 2 页到第 3 页探究前内容,回答下列问题. 问题 1:如图回答以下问题: (1)在三角形中,什么叫边?什么叫内角?什么叫顶点? (2)三角形有几条边?有几个内角?有几个顶点? (3)如何用符号表示三角形 ABC? (4)如何用小写字母表示三角形 ABC 的三条边?问题 2:如果将三角形分类,按照边的关系分可以分成几类?按照角的关系又如何分类呢?问题 3:如图,找出图中的三角形,用符号表示出来,并指出 AB,AD,CD 分别是哪个三角形的边.探究 3:通过观察实践,理解三角形三边关系 问题 1:任意画一个△ABC,假设有一只小虫从点 B 出发,沿三角形的边爬到点 C,它有几条线路 可以选择?各条线路的长一样吗?问题 2:联系三角形的三边,从问题 1 中你可以得到怎样的结论? 问题 3:用三条长度分别为 5,9,3 的线段能组成一个三角形吗?为什么? 三、练习巩固 练习 1:三角形是指( ) A.由三条线段所组成的封闭图形 B.由不在同一直线上的三条直线首尾顺次相接组成的图形 C.由不在同一直线上的三条线段首尾顺次相接组成的图形 D.由三条线段首尾顺次相接组成的图形 练习 2:图中有几个三角形?用符号表示这些三角形.练习 3.有三根木棒的长度分别为 3 cm,6 cm 和 4 cm,用这些木棒能否围成一个三角形?为什么?练习 4:用一条长 18 cm 的细绳围成一个等腰三角形. (1)如果腰长是底边的 2 倍,那么各边的长是多少? (2)能围成有一边的长为 4 cm 的等腰三角形吗?为什么?四、深化提高 练习 1:下面各组数中作为线段长不能构成三角形的一组是( ) A.0.2,0.6,0.7 B.5k,7k,10k(k>0) C.m-a,m,m+a(m>a,m>0,a>0) D.22,22,33 练习 2:小明想要钉一个三边长都是整数的三角形,现在他只有两根分别长 4 cm 和 5 cm 的木 条,那么第三根木条的长度可以是多少?(写出所有可能结果)练习 3:平面上有四个点 A,B,C,D,用它们作顶点可以组成几个三角形?参考答案 一、自主学习问题 1:三角形、四边形等. 问题 2:三条边;三个内角;具有稳定性;三角形的内角和是 180°. 二、深化探究 探究 1: 问题 1:能 问题 2:三角形是由三条线段组成的. 问题 3:只有第(1)个是三角形,其他的都不是. 问题 4:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 探究 2: 问题 1:组成三角形的三条线段都叫做三角形的边;相邻两边所组成的角叫做三角形的内角,简 称三角形的角;相邻两边的公共端点是三角形的顶点.三角形有三条边、三个内角、三个顶点.三角 形 ABC 用符号表示为△ABC.△ABC 的边 AB 为∠C 所对的边,可以用顶点 C 的小写字母 c 表示,同样, 边 AC 可用 b 表示,边 BC 可用 a 表示. 问题 2:三角形按照“有几条边相等”可以分为:{ 等边三角形 等腰三角形 三角形 不等边三角形也可以按照边的相等关系分为:{ { 不等边三角形等腰三角形底边和腰不相等的等腰三角形 等边三角形三角形三角形按照角的关系可以分为:{直角三角形锐角三角形 三角形 钝角三角形 问题 3:图中共有三个三角形,分别是△ABC,△ABD,△ADC,其中 AB 既是△ABC 的边,也是△ABD 的边,AD 既是△ABD 的边,也是△ADC 的边,CD 是△ADC 的边. 探究 3: 问题 1:小虫从点 B 出发沿三角形的边爬到点 C 有 2 条线路: (1)从 B→C,即线段 BC 的长; (2)从 B→A→C,即线段 BA 与线段 AC 长之和:BA+AC. 经过测量可得 BA+AC>BC,所以这两条线路的长不一样. 根据“两点的所有连线中,线段最短”,说明 BA+AC>BC. 问题 2:三角形两边的和大于第三边. 问题 3:用三条长度分别为 5,9,3 的线段不能组成一个三角形,因为 5+3<9. 三、练习巩固 答案:1.C 2.共有 5 个三角形.分别是:△ABC,△BCD,△BCE,△ABE,△CDE. 3.能,因为 3+4>6. 4.解:(1)设底边长为 x cm,则腰长 2x cm. x+2x+2x=18, 解得 x=3.6. 所以,三边长分别为 3.6 cm,7.2 cm,7.2 cm. (2)因为长 4 cm 的边可能是腰,也可能是底边,所以需要分情况讨论. 如果长 4 cm 的边为底边,设腰长为 x cm,则 4+2x=18, 解得 x=7. 如果长 4 cm 的边为腰,设底边长为 x cm,则 2×4+x=18, 解得 x=10. 因为 4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是 4 cm 的等腰三角形. 由以上讨论可知,可以围成一边长是 4 cm 的等腰三角形. 四、深化提高 练习 1:C 练习 2:解:第三根木条的长度可以是 2 cm,3 cm,4 cm,5 cm,6 cm,7 cm,8 cm. 练习 3:解:由于题中并没有说明这四个点是否在同一条直线上,所以要分情况讨论. (1)四点共线时,不能组成三角形. (2)三点共线时,可以组成三个三角形. (3)任意三点都不共线时,可以组成四个三角形.。

第11章 三角形 11.1 与三角形有关的线段(简答题)(老师版)

第11章 三角形 11.1 与三角形有关的线段(简答题)(老师版)

第11章三角形11.1与三角形有关的线段(简答题专练)1.在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为21厘米和12厘米两部分,求△ABC 各边的长.【答案】△ABC 各边的长为14cm 、14cm 、5cm .【解析】【分析】根据题意,画出示意图,利用三角形的中线定义及三角形周长和三角形的三边关系即可求解三角形三边的长,注意不符合题意的要舍去.【详解】如图,设AB =AC =2x cm ,BC =y cm∵BD 是中线∴AD =CD =x cm若AB +AD =21 cm ,BC +CD =12 cm即22112x x x y +=⎧⎨+=⎩解得:=7x ,5y =此时,AB =AC =14 cm ,BC =5 cm若AB +AD =12 cm ,BC +CD =21 cm即21221x x x y +=⎧⎨+=⎩ 解得:=4x ,17y =∵此时AB =AC =8 cm ,BC =17 cm ,AB +AC <BC∴=4x ,17y =不合题意,舍去综上所述,△ABC 各边的长为14cm 、14cm 、5cm .【点睛】本题考查了等腰三角形的性质及三角形的三边关系,在解决等腰三角形的相关问题时,由于等腰三角形的特殊性,一般情况下是需要对其进行分类讨论,才能得解,因此熟练掌握有关等腰三角形边的分类讨论及三边关系的确定是解决本题的关键.2.已知 a 、b 、c 分别表示∆ABC 的三条边长,且∆ABC 的周长为 48 .(1)若c 是三边中最长的边,则c 的最小值是 ;(2)若c = 3a ,求证: 6 < a < 8 ;(3)若 a - c = 10 ,求c 的取值范围;(4)若 a 、b 均为整数,c=16,则这样的三角形共有 个.【答案】(1)16;(2)见解析(3)7 < c < 14 ;(4)8【解析】【分析】(1)根据等边三角形的性质即可求解;(2)根据三角形的三边关系列出不等式的即可求解;(3)根据三角形的三边关系列出不等式的即可求解;(4)依次数出可能的三角形的三边,即可判断.【详解】(1)当∆ABC 为等边三角形时,c 取最小值为48÷3=16; (2)∵c = 3a ,a+b+c=48,∴b=48-4a,∵c+a>b,c-a<b即a+3a>48-4a,3a-a<48-4a,解得6 <a< 8 ;(3)∵a -c= 10,a+b+c=48,∴a=c+10,b=38-2c,∵a+c>b,a-c<b即c+10+c>38-2c,c+10-c<38-2c,解得7 <c< 14 ;(4)根据c=16,a+b+c=48,故所以的情况如下:16,16,16;15,16,17;14,16,18;13,16,19;12,16,20;11,16,21;10,16,22;9,16,23;故为8个.,【点睛】此题主要考查三角形的三边关系,解题的关键是熟知两边之和大于第三边,两边之差小于第三边. 3.一个三角形的三边长分别是xcm、(x+2)cm、(x+5)cm.它的周长不超过37cm.求x的取值范围.【答案】3<x≤10.【解析】【分析】根据三角形的三边关系以及周长不超过37cm列出不等式组,求出x的取值范围即可.【详解】解:∵一个三角形的三边长分别是xcm,(x+2)cm,(x+5)cm,它的周长不超过37cm,∴252537 x x xx x x+++⎧⎨++++≤⎩>,解得:3<x≤10.【点睛】本题考查了三角形的三边关系和不等式组的应用,解题的关键是正确列出不等式组.4.如图,已知ABC ∆,按要求作图.(1)过点A 作BC 的垂线段AD ;(2)过C 作AB 、AC 的垂线分别交AB 于点E 、F ;(3)15AB =,7BC =,20AC =,12AD =,求点C 到线段AB 的距离.【答案】(1)详见解析;(2)详见解析;(3)点C 到线段AB 的距离为285. 【解析】【分析】(1)、(2)根据几何语言作图;(3)利用三角形面积公式得到1122AB CE BC AD =,然后把15AB =,7BC =,12AD =代入计算可求出CE .【详解】解:(1)如图,AD 为所作;(2)如图,CE 、CF 为所作;(3)1122ABC S AB CE BC AD ∆==, 71228155BC AD CE AB ⨯∴===, 即点C 到线段AB 的距离为285. 【点睛】本题考查了作图以及三角形高线的定义,熟练掌握面积法求高线是解题关键.5.已知a 、b 、c 为三角形的三边,||||||P a b c b a c a b c =+----+-+.(1)化简P ;(2)计算()P a b c -+.【答案】(1)a b c +-;(2)2222a b c bc --+.【解析】【分析】(1)根据三角形的三边关系即可得到a+b >c ,a+c >b ,根据绝对值的性质即可去掉绝对值符号,从而化简.(2)将P 值代入进行计算即可.【详解】解:(1)由三角形三边关系知a b c +>,a c b +>,故0a b c +->,0b a c --<,0a b c -+>,||||||P a b c b a c a b c ∴=+----+-+a b c b a c a b c =+-+--+-+a b c =+-,(2)()P a b c -+()()a b c a b c =+--+222a ab ac ab b bc ac bc c =-++-+-+-2222a b c bc=--+.【点睛】此题考查三角形三边关系,绝对值,整式的加减,绝对值,解题关键在于灵活运用各计算法则. 6.如图,已知AD,AE分别是△ABC的高和中线,AB=3cm,AC=4cm,BC=5cm,∠CAB=90°,求:(1)AD的长;(2)△ACE和△ABE的周长的差.【答案】(1)AD的长度为125cm;(2)△ACE和△ABE的周长的差是1cm.【解析】【分析】(1)根据直角三角形的面积计算方法求解即可;(2)先按图写出两个三角形的周长,再作差计算即可.【详解】解:(1)∵∠BAC=90°,AD是边BC上的高,∴12AB•AC=12BC•AD,∴AD=341255AB ACBC⨯==(cm),即AD的长为125cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+CE+AE﹣(AB+BE+AE)=AC﹣AB=4﹣3=1(cm),即△ACE和△ABE的周长的差是1cm.【点睛】本题考查了利用直角三角形的面积计算斜边上的高和三角形的中线等知识,难度不大,属于基础题型.7.如图,点D与点E分别是△ABC的边长BC、AC的中点,△ABC的面积是20cm2.(1)求△ABD与△BEC的面积;(2)△AOE与△BOD的面积相等吗?为什么?【答案】(1)10,10;(2)相等,理由,见解析【解析】【分析】(1)要计算△ABE与△BCE的面积,可设点A到边BC的高为h,则S△ABD=12 BD·h,S△ACD=12CD·h;再根据中点的定义得BD=CD,然后利用等量代换即可得到S△ABD=S△ACD,同理S△ABE=S△BCE,再结合△ABC的面积即可解决;(2)结合上面的推理可得S△ABE=S△ABD,再根据图形可知S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,【详解】(1)可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h,∵点D是BC边的中点,∴BD=CD.∴S△ABD=S△ACD,同理S △ABE =S △BCE ,∴S △ABD =S △BCE =12S △ABC =12×20=10(cm 2). (2)△AOE 与△BOD 的面积相等,理由如下.根据(1)可得:S △ABE =S △ABD ,∵S △ABE =S △ABO +S △AOE ,S △ABD =S △ABO +S △BOD ,∴S △AOE =S △BOD .【点睛】此题考查中点的定义和三角形面积的计算方法,掌握定义及公式是解题的关键;8.已知三角形三边长为a 、b 、c ,且-+--a b c a b c += 10,求b 的值【答案】b=5【解析】【分析】根据三角形的三边关系得出a+b >c ,a−b <c ,再去绝对值即可.【详解】解:∵a 、b 、c 是三角形的三边长,∴a+b >c ,a−b <c , ∴-+--()210a b c a b c a b c a b c a b c a b c b +=+----=+--++==,∴b=5.【点睛】本题主要考查了三角形的三边关系,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.9.在△ABC 中,AB ﹦9,BC ﹦2,并且AC 为奇数,那么△ABC 的周长为多少?【答案】20【解析】【分析】根据三角形三边关系,找到AC 的取值范围,由AC 为奇数求出AC 长度,即可求出三角形周长.【详解】解:∵AB﹣BC<AC<AB﹢BC,(三角形三边关系)∴9﹣2<AC<9﹢2,即7<AC<11又A C为奇数,∴A C﹦9∴△ABC的周长﹦9+9+2﹦20【点睛】本题考查了三角形的三边关系,三角形的周长,属于简单题,熟悉三边关系是解题关键. 10.满足下列条件的三角形是锐角三角形、直角三角形还是钝角三角形.(1)△ABC中,∠A=30°,∠C=∠B;(2)三个内角的度数之比为1:2:3.【答案】(1)锐角三角形;(2)直角三角形.【解析】【分析】根据角的分类对三角形进行分类即可.【详解】(1)∵∠A=30°,∠C=∠B,∠A+∠C+∠B=180°,∴∠C=∠B=75°,∴满足条件的三角形是锐角三角形.(2)∵三个内角的度数之比为1∶2∶3,∴可求得每个内角的度数分别为30°,60°,90°,∴满足条件的三角形是直角三角形.【点睛】本题主要考查了三角形的分类问题.11.如图所示,∠1=∠2=∠3=∠4=24°,根据图形填空:(1)是∠2的3倍的角是_________________(用字母表示)(2)是∠AOD 的12的角有_________个; (3)射线OC 是哪个角的3等分线?又是哪个角的4等分线?【答案】(1)∠A0E 、∠BOC ;(2) 4个;(3)OC 是∠AOE 的3等分线,是∠AOB 的4等分线.【解析】【分析】(1)根据∠1=∠2=∠3=∠4,找出是∠2的3倍的角可以解题;(2)根据∠1=∠2=∠3=∠4,找出图中哪些角是∠AOD 的12, (3)根据∠1=∠2=∠3=∠4,找出射线OC 是哪个角的三等分线、四等分线.【详解】解:(1)1234∠=∠=∠=∠12332AOE ∴∠=∠+∠+∠=∠同理:42332BOC ∴∠=∠+∠+∠=∠(2)4个;(3)∵∠1=∠2=∠3,∴OC 是∠AOE 的三等分线.同理:OC 是∠AOB 的四等分线.【点睛】本题考查了角的度数的计算,考查了角平分线和三等分线的定义,本题中不要漏解是解题的关键.12.如图①,∠AOB=∠COD=90°,OM 平分∠AOC ,ON 平分∠BOD .(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.【答案】(1)∠MON=90°;(2)∠MON=90°;(3)∠MON=90°.【解析】【分析】(1)由∠AOB=∠COD=90°,∠BOC=20°,可得∠MOC=∠BON的度数,可得∠MON的度数:(2)同理由∠AOB=∠COD=90°,∠BOC=α,可得∠MOC=∠BON的度数,可得∠MON的度数:(3)由∠AOB=∠COD=90°,∠BOC=α,可得∠AOC=∠BOD=90°+α,∠MOC=∠BON=45°+α可得∠MON 的度数:【详解】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.【点睛】本题主要考查角平分线的性质及角度间的计算.13.如图,在△ABC中,D,E是BC,AC上的点,连接BE,AD,交于点F,问:(1)图中有多少个三角形?并把它们表示出来.(2)△BDF的三个顶点是什么?三条边是什么?(3)以AB为边的三角形有哪些?(4)以F为顶点的三角形有哪些?【答案】答案见解析【解析】试题分析:利用三角形的定义以及三角形有关的角和边概念分别得出即可.试题解析:(1)8个:△ABC,△ABF,△ABE,△ABD,△BDF,△AEF,△ACD,△BCE;(2)三个顶点:B,D,F;三条边:BD,BF,DF;(3)△ABC,△ABF,△ABD,△ABE;(4)△ABF,△BDF,△AEF.【点睛】此题主要考查了三角形有关定义,正确把握相关定义是解题关键.14.木工师傅在做完门框后为防止变形,常像下图中所示的那样,钉上两条斜的木条,即图中的AB,CD 两个木条,这是根据数学上什么原理?【答案】三角形的稳定性【解析】试题分析:用木条固定门框,即是组成三角形,故可用三角形的稳定性解释.如图加上AB,CD两个木条后,可形成两个三角形,防止门框变形.故这种做法根据的是三角形的稳定性.15.如图,ABCD是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE,小明的做法正确吗?说说你的理由.【答案】小明的做法正确,理由见解析.【解析】试题分析:根据三角形的稳定性可得出答案.小明的做法正确,理由:由三角形的稳定性可得出,四边形ABCD不再变形.。

人教版八年级上册数学与三角形有关的线段含答案

人教版八年级上册数学与三角形有关的线段含答案

第十一章三角形11.1与三角形有关的线段专题一三角形个数的确定1.如图,图中三角形的个数为()A.2 B.18 C.19 D.202.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C 没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数 1 2 3 (100)7构成不重叠的小三角3 5 …形的个数专题二根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是()A .-6<a <-3B .-5<a <-2C .2<a <5D .a <-5或a >-25. 在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有______个.6.若三角形的三边长分别是2、x 、8,且x 是不等式22x +>123x --的正整数解,试求第三边x 的长.状元笔记【知识要点】1.三角形的三边关系三角形两边的和大于第三边,两边的差小于第三边.2.三角形三条重要线段(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.3.三角形的稳定性三角形具有稳定性.【温馨提示】1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.2.三角形的高、中线、角平分线都是线段,而不是直线或射线.【方法技巧】1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.参考答案:1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.解:填表如下:△ABC内点的个数 1 2 3 (100)7构成不重叠的小三角形的个数3 5 7 (201)5解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。

人教版初中数学八年级上册11.1与三角形有关的线段(教案)

人教版初中数学八年级上册11.1与三角形有关的线段(教案)
3.重点难点解析:在讲授过程中,我会特别强调三角形的内角和定理及三角形高、中线、角平分线的性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的实际问题,如三角形稳定性在实际生活中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用牙签和糖果搭建三角形,观察三角形的稳定性。
人教版初中数学八年级上册11.1与三角形有关的线段(教案)
一、教学内容
人教版初中数学八年级上册第11章第1节“与三角形有关的线段”,本节课主要内容包括:
1.三角形的定义及分类;
2.三角形的ห้องสมุดไป่ตู้角和定理;
3.三角形的高、中线、角平分线及其性质;
4.三角形内角和与外角的关系;
5.三角形内角和与周长的关系。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由三条线段首尾相连围成的图形。它是研究几何图形的基础,具有很多独特的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析三角形在桥梁建筑中的应用,了解三角形的高、中线、角平分线如何帮助我们解决实际问题。
二、核心素养目标
1.培养学生的几何直观和空间想象能力,通过探究三角形的性质,使学生能够理解和运用几何图形及其特征,形成对几何图形的直观感知;
2.提升学生逻辑推理和问题解决能力,通过分析三角形内角和、高、中线、角平分线的性质,使学生掌握逻辑推理方法,解决实际问题;
3.培养学生的数据分析和数学抽象能力,让学生在研究三角形内角和与周长关系中,学会从数据中提炼规律,形成数学模型;
-针对内角和与外角的关系,设计相关练习题,让学生通过解题过程逐步突破难点。

数学人教版八年级上第十一章11.1 与三角形有关的线段

数学人教版八年级上第十一章11.1 与三角形有关的线段

数学人教版八年级上第十一章11.1 与三角形有关的线段11.1 与三角形有关的线段1.三角形(1)定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)构成:如图所示,三角形ABC有三条边,三个内角,三个顶点.①边:组成三角形的线段叫做三角形的边.②角:相邻两边所组成的角叫做三角形的内角,简称三角形的角.③顶点:相邻两边的公共端点是三角形的顶点.(3)表示:三角形用符号“△”表示,三角形ABC用符号表示为△ABC. 注:顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示.(4)分类:①三角形按角分类如下:?直角三角形三角形?锐角三角形?钝角三角形②三角形按边的相等关系分类如下:破疑点等边三角形和等腰三角形的关系等边三角形是特殊的等腰三角形,即等边三角形是底边和腰相等的等腰三角形.【例1】如图所示,图中有几个三角形,分别表示出来,并写出它们的边和角.分析:根据三角形的定义及构成得出结论.解:图中有三个三角形,分别是:△ABC,△ABD,△ADC.△ABC的三边是:AB,BC,AC,三个内角分别是:∠BAC,∠B,∠C;△ABD的三边是:AB,BD,AD,三个内角分别是:∠BAD,∠B,∠ADB;△ADC的三边是:AD,DC,AC,三个内角分别是:∠ADC,∠DAC,∠C.2.三角形的三边关系 (1)三边关系:三角形两边的和大于第三边,用字母表示:a+b>c,c+b>a,a+c>b.三角形两边的差小于第三边,用字母表示为:c-b边的取值范围;②根据所给三条线段长度判断这三条线段能否构成三角形.“两点之间线段最短”是三边关系得出的理论依据.破疑点三角形三边关系的理解三角形两边之和大于第三边指的是三角形中任意两边之和都大于第三边,即a+b>c,c+b>a,a+c>b三个不等式同时成立.【例2】下列长度的三条线段(单位:厘米)能组成三角形的是( ).A.1,2,3.5 B.4,5,9 C.5,8,15 D.6,8,9解析:选择最短的两条线段,计算它们的和是否大于最长的线段,若大于,则能构成三角形,否则构不成三角形,只有6+8=14>9,所以D能构成三角形.答案:D3.三角形的高 (1)定义:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.(2)描述方法:高的描述方法有三种,这三种方法都能得出AD是BC边上的高.如图所示.①AD是△ABC的高;②AD⊥BC,垂足为D;③D在BC上,且∠ADB=∠ADC=90°. (3)性质特点:①因为高是通过作垂线得出的,因而有高一定有垂直和直角.常用关系式为:因为AD是BC边上的高,所以∠ADB=∠ADC=90°.②“三角形的三条高(所在直线)交于一点”,当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部.如图所示.破疑点三角形的高线的理解三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.【例3】三角形的三条高在( ). A.三角形的内部 B.三角形的外部C.三角形的边上 D.三角形的内部、外部或边上解析:三角形的三条高交于一点,但有感谢您的阅读,祝您生活愉快。

2024年人教版八年级上册第十一章 三角形与三角形有关的线段

2024年人教版八年级上册第十一章 三角形与三角形有关的线段

11.1.1三角形的边课时目标1.结合具体的实例,进一步认识三角形的概念及其基本要素,发展学生的抽象能力.2.会用符号、字母表示三角形,学生通过观察、推理、归纳,能从不同角度对三角形进行分类,锻炼学生的探究能力,增强学生的合作意识.3.理解三角形两边的和大于第三边与两边的差小于第三边的性质,并会初步应用这些性质解决相关的计算和推理问题,发展应用意识.学习重点三角形三边关系的探究和应用.学习难点三角形三边关系的应用.课时活动设计情境引入教师出示图片,并提出问题:(1)从古埃及的金字塔到现代建筑物,从巨大的钢架桥到微小的分子结构,都有什么样的形状?(2)在我们的生活中有没有这样的形状呢?教师引导学生观察图片,小组交流后回答问题.设计意图:由实际例子引出,抽象出三角形,通过学生自主探究、合作交流,发现日常生活中的三角形,让学生感悟数学来源于生活,并应用于生活的辩证思想,引导学生产生强烈的求知欲,为下面探究新知识打下基础.探究新知探究1三角形及其有关概念我们已经知道三角形是由三条线段组成的.教师引导学生观察上面的五幅图,并回答下面的问题.(1)判断上面各图是否是由三条线段首尾顺次相接所组成的图形.(2)上图中哪些是三角形?三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.其中三条线段必须满足以下条件:①不在一条直线上;②首尾顺次相接.阅读教材第2页第一部分至思考,结合下图并回答以下问题:(1)三角形有几条边,几个内角,几个顶点?(2)三角形ABC用符号表示为什么?(3)三角形ABC的边AB,AC和BC可用小写字母分别表示为什么?解:(1)三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边组成的角,叫做三角形的内角;相邻两边的公共端点是三角形的顶点.(2)三角形ABC用符号表示为△ABC.(3)三角形的三边,如图,顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示.探究2三角形的分类问题1:小学中已经学过,如何将三角形进行分类?解:按照三个内角的大小,可将三角形分为锐角三角形、直角三角形和钝角三角形.问题2:如何将三角形按边的关系进行分类?教师提出问题,学生举手回答.教师提示分类的标准是什么.解:以“有几条边相等”分类,可将三角形分为有两边相等、有三边相等和三边都不相等.三角形{等边三角形等腰三角形(不等边)三角形总结:在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的角叫做底角.等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形.师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法:1.三角形按边的相等关系分类如下:三角形{三边都不相等的三角形等腰三角形{底边和腰不相等的等腰三角形底边和腰相等的等边三角形2.三角形按角分类如下:三角形{直角三角形斜三角形{锐角三角形钝角三角形探究3三角形的三边关系如图是一个△ABC,假设有一只小狗从点A出发,沿三角形的边到点C吃香肠.(1)小狗有几条路线可以选择?(2)各条路线的长有什么关系?教师提出问题,学生观察后进行讨论,思考问题并回答.解:(1)小狗从点A出发沿三角形的边到点C吃到香肠有如下路线:①从A→C,即线段AC的长;②从A→B→C,即AB+BC的长.(2)两条路线长度不一样,从A→C路线最短.教师进一步提出问题:这条路线为什么是最短的?解:两点之间,线段最短.师生共同归纳,可得AB+BC>AC.①同理可得AC+BC>AB.②AB+AC>BC.③即三角形两边的和大于第三边.问题:(1)将不等式①②③移项,你能得到怎样的不等式?(2)通过得到的不等式,你有什么发现?解:(1)由不等式①②③移项,可得BC>AC-AB,BC>AB-AC,AC>BC-AB,AC>AB-BC,AB>AC-BC,AB>BC-AC.(2)三角形中,任意两边的差小于第三边.师生共同归纳:一般地,三角形两边的和大于第三边,三角形两边的差小于第三边.设计意图:通过问题串,教师引导学生自主探究三角形及其相关概念.设置有趣的问题,激发学生的求知欲.通过经历观察、推理、归纳合作探究三角形的三边关系的这个过程,锻炼学生的探究能力,增强学生的合作意识.典例精讲例用一条长为18 cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长是4 cm的等腰三角形吗?为什么?解:(1)设底边长为x cm,则腰长为2x cm.x+2x+2x=18.解得x=3.6.所以,三边长分别为3.6 cm,7.2 cm,7.2 cm.(2)因为长为4 cm的边可能是腰,也可能是底边,所以需要分情况讨论.如果4 cm长的边为底边,设腰长为x cm,则4+2x=18.解得x=7.如果4 cm长的边为腰,设底边长为x cm,则2×4+x=18.解得x=10.因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4 cm 的等腰三角形.由以上讨论可知,可以围成底边长是4 cm的等腰三角形.设计意图:通过例题,使学生更加理解构成三角形的条件,体会分类讨论的数学思想.巩固练习1.以下列各组数值为长度的线段中,能组成三角形的是(D)A.2,4,7B.3,3,6C.5,8,2D.4,5,62.若三角形的三边长分别是4,9,a,则a的值可能是(D)A.3B.4C.5D.63.已知等腰三角形ABC,其中有两边长是3和5,则此三角形的周长为11或13.设计意图:这个环节充分发挥了学生的主观能动性,是对本节课学习内容的巩固和内化.课堂小结教师和学生一起回顾本节课所学主要内容:1.三角形的有关概念(边、角、顶点),会用符号表示一个三角形.2.三角形的分类.3.通过实践了解三角形三边的不等关系.设计意图:培养学生的概括能力,使知识形成体系,并渗透数学思想方法.课堂8分钟.1.教材第4页练习第1,2题.2.七彩作业.11.1.1三角形的边1.三角形及其有关概念.2.三角形的分类:(1)按角分类:(2)按边分类:三角形{直角三角形锐角三角形钝角三角形三角形{三边都不相等的三角形等腰三角形{底边和腰不相等的等腰三角形底边和腰相等的等边三角形3.三角形的三边关系:任意两边的和大于第三边,任意两边的差小于第三边.教学反思11.1.2三角形的高、中线与角平分线课时目标1.通过经历画图的实践过程,认识三角形的高、中线与角平分线,会运用它们解决一些应用问题,感受数学语言的准确性,提高学生的观察能力和语言表达能力,发展推理能力.2.会用工具画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在直线)交于一点.通过类比探究三角形的三条中线,三角形的三条角平分线都交于一点.3.以学生实践为主,在已学内容的基础上进行更深一步的探究,从而发现新的结论,以此提高学生的观察能力和语言表达能力,发展推理能力.学习重点掌握三角形的高、中线及角平分线的概念及画法.学习难点1.钝角三角形高的画法.2.探究三角形的三条高、三条中线、三条角平分线都各交于一点的过程.课时活动设计复习导入1.如图1,P为线段AB右上方一点,过点P作线段AB的垂线.2.如图2,如果C是线段AB的中点,那么你能得到什么结论?3.如图3,如果OC是∠AOB的平分线,那么你能得到什么结论?设计意图:通过复习旧知,温故知新.回顾前面所学的垂线、线段的中点和角平分线等,为下面探究三角形的高、中线、角平分线打下基础,降低教学难度,提高课堂效率.探究新知探究1三角形的高教师提问,学生回答:(1)如何求三角形的面积?×三角形的底边长×底边上的高.解:三角形的面积=12(2)什么是三角形的高,怎样画三角形的高?解:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足之间的线段叫做三角形的高.如图,AD是△ABC的边BC上的高,即AD⊥BC,垂足为D.想一想:一个三角形有几条高?解:三条.学生在纸上画一个锐角三角形、一个直角三角形和一个钝角三角形.学生动手操作,观察并回答问题:(1)分别画出每个三角形的三条高.(2)观察每个三角形的三条高之间有怎样的位置关系?(3)观察三条高是否交于一点,是在三角形的内部还是外部?学生自主探究,合作交流,然后归纳结果.归纳总结:三角形的三条高(或高所在的直线)相交于一点,锐角三角形三条高的交点在三角形的内部,直角三角形三条高的交点在三角形的直角顶点,钝角三角形三条高的交点在三角形的外部.注意:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.探究2三角形的中线如图,如果D是线段BC的中点,那么线段AD就叫做△ABC的边BC上的中线,即BD=CD=1BC.2类比三角形的高的概念,试说明什么叫三角形的中线?结论:三角形中,连接一个顶点和它所对边的中点的线段,叫做中线.想一想:一个三角形有几条中线?学生在纸上分别画出一个锐角三角形、一个直角三角形和一个钝角三角形.学生动手操作,观察并回答问题:(1)分别画出每个三角形的三条中线.(2)观察三角形的三条中线有何特点?(3)如图,在△ABC中,AD是△ABC的中线,AE是△ABC的高.试判断△ABD和△ACD的面积有什么关系?为什么?教师引导学生自主探究,合作交流,然后归纳结果.归纳总结:三角形的三条中线都在三角形的内部,且它们相交于一点,交点叫重心.三角形的一条中线将三角形的面积分成相等的两部分.探究3三角形的角平分线如图,在△ABC中,画∠A的角平分线AD,交∠A所对的边BC于点D,所得线∠BAC.段AD叫做△ABC的角平分线,即∠1=∠2=12类比三角形的高的概念,试说明什么叫三角形的角平分线?结论:三角形的一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段,叫做角平分线.想一想:一个三角形有几条角平分线?学生在纸上分别画出一个锐角三角形、一个直角三角形和一个钝角三角形.学生动手操作,观察并回答问题:(1)分别画出每个三角形的三条角平分线.(2)观察三角形的三条角平分线有何特点?学生自主探究,合作交流,然后归纳结果.归纳总结:无论是锐角三角形还是直角三角形或钝角三角形,它们的三条角平分线都在三角形的内部,且交于一点.三角形的高、中线、角平分线都是线段.设计意图:为了突出重点,突破难点,学生自主探究,动手画图,经历猜想、验证、合作交流的过程,理解并掌握三角形的高的概念及性质,通过类比的方法,探究三角形的中线及角平分线的概念及其性质.引导学生从简单的数学问题入手,层层深入,让学生体会思考和解决数学问题的步骤.培养学生的语言表达能力、探究能力和合作精神.典例精讲例1 如图,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4.若点P 在边AC 上移动,则BP 的最小值为多少?解:由题意,得当BP ⊥AC 时,BP 有最小值.∵S △ABC =12BC ·AD =12BP ·AC ,AB =AC =5,BC =6,AD =4,∴12×4×6=12×5×BP. ∴BP =245.∴BP 的最小值为245.方法归纳:利用面积相等作桥梁(但不求面积),求三角形的高或底,这种解题方法通常称“面积法”.例2 如图,在△ABC 中,AC =5 cm,AD 是△ABC 的中线.若△ABD 的周长比△ADC 的周长大2 cm,则BA 的值为多少?解:△ABD 的周长=AB +BD +AD ,△ADC 的周长=AD +DC +AC.∵AD 是△ABC 的中线,∴BD =DC.又∵△ABD 的周长比△ADC 的周长大2 cm,AC =5 cm,∴(AB +BD +AD )-(AD +DC +AC )=AB -AC =2 cm .∴AB =7 cm .方法归纳:三角形任何一边上的中线把三角形分成的两个小三角形周长之差等于原三角形长边与短边之差.例3 如图,在△ABC 中,E 是BC 边上的一点,EC =2BE ,D 是AC 的中点,若S △ABC =12,则S △ADF -S △BEF 的值是多少?解:∵S △ADF =S △ADB -S △AFB ,S △BEF =S △ABE -S △AFB .∴S △ADF -S △BEF =S △ADB -S △AFB -S △ABE +S △AFB =S △ADB -S △ABE . 又∵D 是AC 的中点,EC =2BE. ∴S △ADB =12S △ABC =6,S △ABE =13S △ABC =4. ∴S △ADF -S △BEF =S △ADB -S △ABE =6-4=2.方法归纳:三角形的中线将三角形分成面积相等的两部分:高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.设计意图:通过例题讲解,巩固及应用新知,使学生熟练应用三角形的三线解决有关问题,让学生体会知识的不同考法,提高自身的解题能力.巩固练习1.下列说法正确的是( B ) A.三角形三条高都在三角形内 B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线2.下列图形中,能够表示AD 是△ABC 的BC 边上的高的是( D )3.如图,在△ABC 中,AD 为中线,BE 为角平分线,则在以下等式中:①∠BAD =∠CAD ;②∠ABE =∠CBE ;③BD =DC ;④AE =EC.正确的是 ②③ .4.如图,在△ABC中,CD是中线,已知BC-AC=5 cm,△DBC的周长为25 cm,求△ADC的周长.解:∵CD是△ABC的中线,∴BD=AD.∵△DBC的周长=BC+BD+CD=25 cm,则BD+CD=25-BC.∴△ADC的周长=AD+CD+AC=BD+CD+AC=25-BC+AC=25-(BC-AC)=25-5=20(cm).设计意图:当堂检测,及时反馈学习效果.课堂小结1.谈谈你对三角形的高、中线、角平分线的认识.2.教师引导学生归纳三角形的高、中线、角平分线的相关性质.设计意图:引导学生回顾知识产生和发展的过程,学会总结反思,培养学生的归纳概括能力.课堂8分钟.1.教材第5页练习第1,2题.2.七彩作业.11.1.2三角形的高、中线与角平分线三角形的高、中线、角平分线三角形的高三条高所在直线交于一点面积法三角形的中线三条中线交于一点(内部) 中线平分三角形面积三角形的角平分线三条角平分线交于一点(内部)教学反思11.1.3三角形的稳定性课时目标1.通过观察、猜想、探究、合作等活动,让学生了解三角形具有稳定性,四边形具有不稳定性,锻炼学生动手能力,培养学生的合作精神.2.了解三角形的稳定性和四边形的不稳定性在实际生活中的应用,体会数学与生活的紧密联系,锻炼学生的探究能力.学习重点了解三角形稳定性及应用.学习难点了解三角形稳定性及应用.课时活动设计情境导入盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,如图所示,为什么要这样做呢?设计意图:从实际生活现象入手,提出问题,引发学生思考,让学生进一步体会数学与生活的紧密联系,数学来源于生活,又应用于生活.探究新知探究1三角形的稳定性学生动手操作并观察:1.将三根木条用钉子钉成一个三角形木架(如图1),然后扭动它,它的形状会改变吗?2.将四根木条用钉子钉成一个四边形木架(如图2),然后扭动它,它的形状会改变吗?3.从上面的操作过程中,你能得出什么结论?学生交流,教师归纳.总结:三角形木架的形状不会改变,四边形木架的形状会改变.这就是说,三角形具有稳定性,而四边形没有稳定性.只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做三角形的稳定性.4.三角形的稳定性有广泛的应用,你能举一些例子吗?学生自主交流.探究2四边形的不稳定性1.在四边形的木架上再钉一根木条,将它的一对不相邻的顶点连接起来(如图),然后扭动它,它的形状会改变吗?为什么?通过上述操作,学生自主探究,师生共同交流发现:斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,所以斜钉一根木条的四边形木架不会改变形状.同样,窗框在未安装好之前斜钉一根木条也不会变形.2.想一想:四边形的不稳定性是我们常常需要克服的,那么四边形的不稳定性在生活中有没有应用价值呢?如果有,你能举出实例吗?设计意图:本环节让学生通过动手操作,根据实际举例子,运用新知解决生活中的问题,进一步体会数学与生活的紧密联系,锻炼了学生的探究能力以及增强了学生的合作意识.典例精讲例下列图形中哪些具有稳定性?解:图形①③⑤具有稳定性.设计意图:通过例题讲解,巩固和应用所学知识,使学生熟练掌握三角形的稳定性.巩固训练如图,钉子架容易转动,怎样做可以使它稳定?请在图中画一画.解:如图所示.设计意图:本环节通过解决实际生活中的问题对课内所学知识进行巩固练习,让学生体会到知识的不同考法,提高自身的解题能力,当堂训练,复习巩固,查漏补缺.课堂小结三角形具有稳定性,四边形没有稳定性.它们都有一定的实用价值.设计意图:复习巩固本节课的知识,学会总结反思.课堂8分钟.1.教材第8,9页习题11.1第5,10题.2.七彩作业.教学反思。

八年级数学上册全套讲义-带答案

八年级数学上册全套讲义-带答案

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边1.会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题.2.进一步认识三角形的概念及其基本要素,掌握三角形三边关系.重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.一、自学指导自学1:自学课本P2-3页,掌握三角形的概念、表示方法及分类,完成填空.(5分钟) 总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点.(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形.(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形.点拨精讲:等边三角形是特殊的等腰三角形.自学2:自学课本P3-4页“探究与例题”,掌握三角形三边关系.(5分钟)总结归纳:一般地,三角形两边的和大于第三边;三角形两边的差小于第三边.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图①,以A,B,C为顶点的三角形记作△ABC,读作“三角形ABC”,它的边分别是AB,AC,BC(或a,b,c),内角是∠A,∠B,∠C,顶点是点A,B,C.点拨精讲:三角形的边也可以用边所对顶点的小写字母表示.2.图②中有5个三角形,分别是△ABE,△ABC,△BEC,△CDE,△BCD,以E为顶点的三角形是△ABE,△BEC,△CDE,以∠D为角的三角形是△CDE,△BCD,以AB为边的三角形是△ABE,△ABC.3.下列长度的三条线段能组成三角形的有②:①3,4,11;②2,5,6;③3,5,8.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1一个等腰三角形的周长为28 cm.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边的长为6 cm,求其他两边的长.解:(1)设底边长为x cm,则腰长为3x cm,依题意得2×3x+x=28,解得x=4,3x=12,∴三边长分别为4 cm,12 cm,12 cm.(2)设另一边长为x cm,依题意得,当6 cm为底边时,2x+6=28,∴x=11;当6 cm为腰长时,x+2×6=28,∴x=16.∵6+6<16,不符合三角形两边的和大于第三边,所以不能围成腰长为6 cm的等腰三角形,∴其他两边的长为11 cm,11 cm.探究2某同学有两根长度为40 cm,90 cm的木条,他想钉一个三角形的木框,那么第三根应该如何选择?(40 cm,50 cm,60 cm,90 cm,130 cm)解:设第三根木条长为x cm,依题意得90-40<x<40+90,∴50<x<130,∴第三根应选60 cm或90 cm.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.图中有6个三角形,以E为顶点的三角形有△ABE,△ADE,△ACE;以AD为边的三角形有△ABD,△ADE,△ACD.2.下列长度的三条线段能组成三角形的是C.A.3,4,8B.5,6,11C.2,4,53.等腰三角形一条边等于3 cm,一条边等于6 cm,则它的周长为15_cm.点拨精讲:注意三角形三边关系.(3分钟)(3分钟)1.等边三角形是特殊的等腰三角形.2.在进行等腰三角形的相关计算时,要注意分类思想的运用,同时要注意运用三角形三边关系判断所求三条线段长能否构成三角形.3.已知三角形的两边长,可依据三边关系求出第三边的取值范围.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.2 三角形的高、中线与角平分线1.了解三角形的高、中线、角平分线等有关概念.2.掌握三角形的高、中线与角平分线的画法;了解三角形的三条高、三条中线、三条角平分线分别交于一点.重点:三角形的高、中线、角平分线概念的简单运用及它们的几何语言表达.难点:钝角三角形的高的画法.一、自学指导自学1:自学课本P4页,掌握三角形的高的画法,完成下列填空.(4分钟)作出下列三角形的高:如图①,AD 是△ABC 的边BC 上的高,则有∠ADB =∠ADC =90°. 总结归纳:三角形的高有3条,锐角三角形的三条高都在三角形的内部,相交于一点,直角三角形的三条高相交于三角形的直角顶点上;钝角三角形的三条高相交于三角形的外部.自学2:自学课本P4-5页,掌握三角形的中线的画法,理解重心的概念,完成下列填空.(5分钟)作出下列三角形的中线,回答下面问题:如图①,AD 是△ABC 的边BC 上的中线,则有DB =DC =12BC ; 总结归纳:三角形的中线有3条,相交于一点,且在三角形的内部,三角形三条中线的交点叫做三角形的重心.取一块质地均匀的三角形木板,试着找出它的重心.自学3:自学课本P5页,掌握三角形的角平分线的画法,理解三角形的角平分线与角的平分线的区别,完成下列填空.(3分钟)作出下列三角形的角平分线,回答下列问题:如图①,AD 是△ABC 的角平分线,则有∠BAD =∠DAC =12∠BAC ; 总结归纳:三角形的角平分线有3条,相交于一点,且在三角形的内部.三角形的角平分线是线段,而角的角平分线是射线.点拨精讲:三角形的高、中线和角平分线都是线段.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P5页的练习题1,2.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则:(1)∵AE 是△ABC 的中线,∴BE =CE =12BC ; (2)∵AD 是△ABC 的角平分线,∴∠BAD =∠DAC =12∠BAC ; (3)∵AF 是△ABC 的高,∴∠AFB =∠AFC =90°;(4)∵AE 是△ABC 的中线,∴BE =CE ,又∵S △ABE =12BE ·AF ,S △AEC =12CE ·AF ,∴S △ABE =S △ACE .点拨精讲:三角形的高、中线和角平分线的概念既是性质,也可以做为判定定理用.探究2 如图,△ABC 中,AB =2,BC =4,△ABC 的高AD 与CE 的比是多少?解:∵12AB·CE =12BC·AD ,AB =2,BC =4,∴CE =2AD ,∴AD ∶CE =1∶2. 学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.三角形的三条中线、三条角平分线、三条高都是(C )A .直线B .射线C .线段D .射线或线段2.一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(B )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.能把三角形的面积分成两个相等的三角形的线段是(D )A .中线B .高C .角平分线D .以上都正确4.如图,D ,E 是边AC 的三等分点:(1)图中有6个三角形,BD 是三角形ABE 中AE 边上的中线,BE 是三角形DBC 中CD边上的中线,AD =DE =EC =13AC ,AE =DC =23AC ; (2)S △ABD =S △DBE =S △EBC =13S △ABC ; (3)S △ABE =S △DBC =23S △ABC .(1分钟)1.三角形的高、中线和角平分线都是线段.2.三角形的高、中线和角平分线的概念既可得到角与线段的数量关系,也可做为判定三角形高、中线和角平分线的判定定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.3 三角形的稳定性通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.重、难点:了解三角形稳定性在生产、生活中的实际应用.一、自学指导自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟) 将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:(1)如图①,扭动三角形木架,它的形状会改变吗?(2)如图②,扭动四边形木架,它的形状会改变吗?总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变. (3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么? 总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P7页练习题第1题.2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟) 探究1 要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n 边形(n >3)最少需要加(n -3)条线段才具有稳定性.点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.探究2 等腰三角形一腰上的中线将此等腰三角形分成9 cm ,15 cm 两部分,求此等腰三角形的周长是多少?解:设等腰三角形的腰长为x cm ,底边长为y cm ,依题意得,当x >y 时,⎩⎨⎧x +12x =15,y +12x =9,解得⎩⎪⎨⎪⎧x =10,y =4;当x <y 时,⎩⎨⎧x +12x =9,y +12x =15,解得⎩⎪⎨⎪⎧x =6,y =12,∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24(cm ).答:此等腰三角形的周长为24 cm .点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.课本P9页第10题.2.下列图形具有稳定性的有(C )A .梯形B .长方形C .三角形D .正方形3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.4.已知AD ,AE 分别是△ABC 的中线、高,且AB =5 cm ,AC =3 cm ,则△ABD 与△ADC 的周长之差为2_cm ;△ABD 与△ADC 的面积关系是相等.5.如图,D 是△ABC 中BC 边上的一点,DE ∥AC 交AB 边于E ,DF ∥AB 交AC 边于F ,且∠ADE =∠ADF.求证:AD 是△ABC 的角平分线.证明:∵DE∥AC,DF∥AB,∴∠ADE=∠DAC,∠ADF=∠DAB,又∵∠ADE=∠ADF,∴∠DAC=∠DAB,∴AD是△ABC的角平分线.(1分钟)三角形的稳定性与四边形的不稳定性在日常生活中非常常用.(学生总结本堂课的收获与困惑)(2分钟)(12分钟)11.2与三角形有关的角11.2.1三角形的内角(1)1.会用不同的方法证明三角形的内角和定理.2.能应用三角形内角和定理解决一些简单的问题.重点:三角形内角和定理的应用.难点:三角形内角和定理的证明.一、自学指导自学1:自学课本P11-12页“探究”,掌握三角形内角和定理的证明方法,完成下列填空.(5分钟)归纳总结:三角形内角和定理——三角形三个内角的和等于180°.已知:△ABC.求证:∠A+∠B+∠C=180°.点拨精讲:为了证明的需要,在原来的图形上添画的线叫做辅助线.作辅助线是几何证明过程中常用到的方法,辅助线通常画成虚线.证明:延长BC到点D,过点B作BE∥AC,∵BE∥AC,∴∠1=∠A,∠2=∠C,∵∠1+∠2+∠ABC=180°,∴∠A+∠ABC+∠C=180°.自学2:自学课本P12-13“例1、例2”,掌握三角形内角和的应用.(5分钟)你可以用其他方法解决例2的问题吗?点拨精讲:可过点C作CF∥AD,可证得CF∥BE,同时将∠ACB分成∠ACF与∠BCF,求出这两个角的度数,就能求出∠ACB.解:过点C作CF∥AD,∵AD∥BE,∴CF∥BE,∵CF∥AD,CF∥BE,∴∠ACF=∠DAC =50°,∠FCB=∠CBE=40°,∴∠ACB=∠ACF+∠FCB=50°+40°=90°,∵∠CAB=∠DAB -∠DAC=80°-50°=30°,∴∠ABC=180°-∠CAB-∠ACB=180°-30°-90°=60°.答:从B岛看A,C两岛的视角∠ABC是60°,从C岛看A,B两岛的视角∠ACB是90°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P13页的练习题1,2.点拨精讲:仰角是当视线在视平线上方时视线与视平线所夹的角.小组讨论交流解题思路,小组活动后选代表展示活动成果.(7分钟)探究1①一个三角形中最多有1个直角;②一个三角形中最多有1个钝角;③一个三角形中至少有2个锐角;④任意一个三角形中,最大的一个角的度数至少为60°.为什么?点拨精讲:三角形的内角和为180°.探究2如图,在△ABC中,EF与AC交于点G,与BC的延长线交于点F,∠B=45°,∠F=30°,∠CGF=70°,求∠A的度数.解:在△CGF中,∠GCF=180°-∠CGF-∠F=180°-70°-30°=80°,∴∠ACB=180°-∠GCF =180°-80°=100°,在△ABC 中,∠A =180°-∠B -∠ACB =180°-45°-100°=35°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.课本P16页复习巩固第1题.2.在△ABC 中,∠A =35°,∠B =43°,则∠C =102°. 3.在△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A =40°,∠B =60°,∠C =80°.4.在△ABC 中,如果∠A =12∠B =13∠C ,那么△ABC 是什么三角形? 解:∵∠A =12∠B =13∠C ,∴∠B =2∠A ,∠C =3∠A ,∵∠A +∠B +∠C =180°,∴∠A +2∠A +3∠A =180°,∴∠A =30°,∴∠B =60°,∠C =90°,∴△ABC 是直角三角形.(3分钟)(3分钟)为了说明三角形的内角和为180°,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.1三角形的内角(2)1.掌握直角三角形的表示方法,并理解直角三角形的性质与判定.2.能运用直角三角形的性质与判定解决实际问题.重、难点:理解和运用直角三角形的性质与判定.一、自学指导自学:自学课本P13-14页,掌握直角三角形的表示方法及其性质,完成下列填空.(5分钟)总结归纳:(1)直角三角形可以用符号“Rt△”表示,直角三角形ABC可以写成Rt△ABC.(2)直角三角形的两个锐角互余.(3)有两个角互余的三角形是直角三角形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(10分钟)1.在Rt△ABC中,∠C=90°,∠A=2∠B,求出∠A,∠B的度数.解:Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠A=2∠B,∴2∠B+∠B=90°,∴∠B=30°,∠A=60°.2.如图,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?解:结论:∠ACD=∠B.理由如下:在Rt△ACB中,∠A+∠B=90°,在Rt△ACD中,∠A+∠ACD=90°,∴∠ACD =∠B.点拨精讲:利用同角的余角相等可以方便地证出两角的相等关系.3.如图,∠C =90°,∠AED =∠B ,△ADE 是直角三角形吗?为什么? 解:结论:△ADE 是直角三角形.理由如下:在Rt △ABC 中,∠A +∠B =90°(直角三角形的两个锐角相等).∵∠AED =∠B ,∴∠A +∠AED =90°,∴△ADE 是直角三角形(有两个角互余的三角形是直角三角形).小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 如图,AB ∥CD ,AE ,CE 分别平分∠BAC ,∠ACD.求证:△ACE 是Rt △. 证明:∵AB ∥CD ,∴∠BAC +∠ACD =180°,∵AE ,CE 分别平分∠BAC ,∠ACD ,∴∠EAC =12∠BAC ,∠ACE =12∠ACD ,∴∠EAC +∠ACE =12∠BAC +12∠ACD =90°,∴△ACE 是Rt △(有两个角互余的三角形是直角三角形).探究2 如图,在Rt △ABC 中,∠C =90°,AD ,BD 是∠CAB ,∠CBA 的角平分线,求∠D 的度数.解:在Rt △ABC 中,∠CAB +∠CBA =90°,∵AD ,BD 是∠CAB ,∠CBA 的角平分线,∴∠DAB =12∠CAB ,∠DBA =12∠CBA ,∴∠DAB +∠DBA =12∠CAB +12∠CBA =45°,在△ADB 中,∠D =180°-(∠DAB +∠DBA)=180°-45°=135°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则此三角形是直角三角形.2.如图,在△ABC中,∠ACB=90°,∠ACD=∠B.求证:△ACD是Rt△.证明:在Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠ACD=∠B,∴∠A+∠ACD=90°,∴△ACD是Rt△(有两个角互余的三角形是直角三角形).(3分钟)(3分钟)1.直角三角形的性质:两个锐角互余.2.直角三角形的判定:①有一个角是直角;②两边互相垂直;③有两个角互余;(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.2三角形的外角1.探索并了解三角形的外角的两条性质,利用学过的定理证明这些性质.2.能利用三角形的外角性质解决实际问题.重点:三角形外角的性质.难点:运用三角形外角的性质解决有关角的计算及证明问题.一、自学指导自学1:自学课本P14页,掌握三角形外角的定义,完成下列填空.(3分钟)如图1,把△ABC的边BC延长到D,我们把∠ACD叫做三角形的外角.思考:①在△ABC中,除了∠ACD外,还有那些外角?请在图2中分别画出来;②以点C为顶点的外角有2个,所以△ABC共有6个外角;③外角∠ACD与内角∠ACB的关系是:互为邻补角.总结归纳:三角形的一边与另一边的延长线组成的角,叫做三角形的外角;每一个三角形都有6个外角;每一个顶点相对应的外角都有2个;每个外角与它相邻的内角互为邻补角.自学2:自学课本P15页“探究与例4”,理解三角形外角的性质并学会运用.(7分钟)如图,△ABC 中,∠A =70°,∠B =60°,∠ACD 是△ABC 的一个外角.能由内角∠A ,∠B 求出外角∠ACD 吗?如果能,外角∠ACD 与内角∠A ,∠B 有什么关系?认真思考,完成下面的填空:(1)∠ACB =50°,∠ACD =130°,∠A +∠B =130°,∠ACD =∠A +∠B ;(填“>”“<”或“=”)(2)∠ACD >∠A ,∠ACD >∠B.(填“>”“<”或“=”)总结归纳:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,是△BFD 的外角有∠CDA ,∠BFC ,∠DFE ,以∠AEB 为外角的三角形是△CEF ,△CEB .2.如图,∠1,∠2,∠3是△ABC 不同的三个外角,求∠1+∠2+∠3.解:∵∠1=∠ABC +∠ACB ,∠2=∠BAC +∠ACB ,∠3=∠ABC +∠CAB ,∴∠1+∠2+∠3=2(∠ABC +∠ACB +∠BAC),∵∠ABC +∠ACB +∠BAC =180°,∴∠1+∠2+∠3=2×180°=360°.3.课本P15页练习题.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 如图,在△ABC 中,∠A =α,△ABC 的内角平分线或外角平分线交于点P ,且∠P =β,试探求下列各图中α与β的关系,并选一个结论加以证明.解:①β=12α+90°;②β=12α;③β=90°-12α.证明:(略)探究2如图,∠A=50°,∠B=40°,∠C=30°,求∠BPC的度数.解:连接AP并延长到点E,∵∠BPE=∠B+∠BAP,∠CPE=∠C+∠CAP,又∵∠BPC =∠BPE+∠CPE,∴∠BPC=∠B+∠BAP+∠C+∠CAP=∠BAC+∠B+∠C=50°+40°+30°=120°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.若三角形的一个外角小于与它相邻的内角,则这个三角形是(C)A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2.已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为(C)A.90°B.110°C.100°D.120°3.如图,∠1+∠2+∠3+∠4+∠5+∠6=360°.错误!错误!,第4题图)4.如图,BE∥CF,∠B=50°,∠C=75°,求∠A的度数.解:∵BE∥CF,∴∠ADE=∠C,∵∠ADE=∠B+∠A,∴50°+∠A=75°,∴∠A=25°.(3分钟)(3分钟)1.三角形的每个顶点处都有2个外角,这两个外角互为对顶角,外角与它相邻的内角互为邻补角.2.在三角形的每个顶点处各取一个外角,这三个外角的和为360°.3.三角形外角的性质是三角形有关角的计算与证明的常用依据.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3多边形及其内角和11.3.1多边形1.理解多边形的相关概念.2.认识凸多边形及正多边形,掌握正多边形的定义及判定.重点:理解多边形的相关概述.难点:掌握正多边形的定义及判定.一、自学指导自学1:自学课本P19页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.自学2:自学课本P20页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:(1)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(3)各个角都相等,各条边都相等的多边形叫做正多边形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.四边形有4条边,4个顶点,4个内角,8个外角;五边形有5条边,5个顶点,5个内角,10个外角;n边形有n条边,n个顶点,n个内角,2n个外角.2.画出下列多边形的全部对角线:3.四边形的一条对角形将四边形分成2个三角形,从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1:过m边形的一个顶点有7条对角线,n边形没有对角线,求mn的平方根.解:由题意可得m-3=7,∴m=10,n=3,∴±mn=±30.探究2:填表顶点数一个顶点可引的对角线条数对角线总共条数过一个顶点可分成三角形个数四边形 4 1 2 2 五边形 5 2 5 3 六边形 6 3 9 4 … … … … … n 边形nn -3n (n -3)2n -2学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.下列图形中,是正多边形的是(D )A .直角三角形B .等腰三角形C .长方形D .正方形2.过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是10.3.一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数.解:设这是一个n 边形,依题意得n (n -3)2=4n ,∵n ≥3且为整数,∴n =11.(3分钟)1.在初中阶段所讲的多边形指的都是凸多边形.2.已知多边形的边,可以推导出其对角线的条数和分成的三角形的个数;反过来,已知过一点所画对角线的条数或分成的三角形的个数可以推导出多边形的边数.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)11.3.2多边形的内角和探索多边形的内角和公式及外角和,会利用多边形的内角和公式解决问题.重点:掌握多边形的内角和公式.难点:探索多边形的内角和公式.一、自学指导自学1:自学课本P21-22页,掌握多边形内角和公式的推导方法,完成下列填空.(5分钟)填写下列表格:多边形三角形四边形五边形六边形…n边形一个顶点可引的对角线条数0 1 2 3 …n-3所引对角线分成三角形的个数 1 2 3 4 …n-2总结归纳:三角形的内角和为180度;任意四边形的内角和为360度;任意五边形的内角和等于540度;六边形的内角和等于720度;n边形的内角和等于(n-2)·180°;多边形的边数每增加一条,那么它的内角和就增加180°.点拨精讲:多边形可分成若干个三角形,将多边形内角和转化成三角形知识(如图1,2).自学2:自学课本P22-23例1,例2和探究,掌握多边形外角和应用.(5分钟)如图3,根据前面三角形的有关知识,探索在每个五边形顶点处各取一个外角,这些外角的和叫做五边形的外角和,五边形的外角和等于360度,六边形的外角和是360度.总结归纳:n边形的外角和是360°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P24页练习题1,2,3.2.七边形的内角和900°,十边形的内角和是1440°;如果一个多边形的内角和等于1260°,那么它是九边形.3.已知四边形ABCD中,∠A∶∠B∶∠C∶∠D=1∶2∶3∶4,则∠C=108°.4.求出正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角的度数.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 (1)一个多边形的内角和是外角和的一半,它是几边形? (2)一个多边形的内角和是外角和的2倍,它是几边形? 解:(1)设它是n 边形,则有180°·(n -2)=12×360°,∴n =3.(2)设它是n 边形,则有180°·(n -2)=2×360°,∴n =6.探究2 如图,六边形ABCDEF 的内角都相等,∠DAB =60°,AB 与DE 有怎样的位置关系?BC 与FE 有这种关系吗?解:结论:AB ∥DE ,BC ∥FE. 证明:(略)学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.一个多边形的每个内角都等于150°,则它的边数为12.2.一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?3.已知一个多边形,它的内角和等于五边形的内角和的2倍,求这个多边形的边数.解:设这个边多形的边数为n ,则有180°(n -2)=2×180°×(5-2),∴n =8.(3分钟)1.已知多边形的边数可以求出其内角和,根据其内角和也可以求出其边数.2.内角和的推理要用到转化的思想,将多边形的知识转化为三角形的知识.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)第十二章全等三角形12.1全等三角形1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.重点:掌握全等三角形的对应元素和性质的应用.难点:全等三角形性质的应用.一、自学指导自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟) 总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的对应边相等,全等三角形的对应角相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.下列图形中的全等图形是d与g,e与h.2.如图,△ABC与△DEF能重合,则记作△ABC≌△DEF,读作△ABC全等于△DEF,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:AB与DE,AC与DF,BC与EF;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.,第2题图),第3题图)3.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有AC=DB,AO=DO,CO=BO,相等的角有∠A=∠D,∠C=∠B,∠COA=∠BOD.点拨精讲:通常把对应顶点的字母写在对应的位置上.4.已知△OCA≌△OBD,若OC=3 cm,BD=4 cm,OD=6 cm.则△OCA的周长为13_cm;若∠C=110°,∠A=30°,则∠BOD=40°.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△ABC可以经过怎样的变换得到另一个三角形?点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.解:①△ABC≌△DEF,A和D,B和E,C和F是对应顶点,AB与DE,AC与DF,BC与EF是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△DEF是△ABC经过平移得到的.②△ABC≌△DBC,A和D,B和B,C和C是对应顶点,AB与DB,AC与DC,BC与BC是对应边,∠A与∠D,∠ABC与∠DBC,∠ACB与∠DCB是对应角,△DBC是△ABC 沿BC所在直线向下翻折得到的.③△ABC≌△AED,A和A,B和E,C和D是对应顶点,AB与AE,AC与AD,BC与ED是对应边,∠BAC与∠EAD,∠B与∠E,∠C与∠D是对应角,△AED是△ABC绕点A 旋转180°得到的.探究2如图,△ABC≌△DEF,AB=DE,AC=DF,且点B,E,C,F在同一条直线上.(1)求证:BE=CF,AC∥DF;(2)若∠D+∠F=90°,试判断AB与BC的位置关系.解:(1)证明:∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴AC∥DF,BC-EC=EF-EC,∴BE=CF.(2)结论:AB⊥BC.证明:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠F,∵∠D+∠F=90°,∴∠A+∠ACB =90°,∴∠B=90°,∴AB⊥BC.。

八年级数学上册全套讲义带答案

八年级数学上册全套讲义带答案

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边1.会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题.2.进一步认识三角形的概念及其基本要素,掌握三角形三边关系.重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.一、自学指导自学1:自学课本P2-3页,掌握三角形的概念、表示方法及分类,完成填空.(5分钟)总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点.(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形.(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形.点拨精讲:等边三角形是特殊的等腰三角形.自学2:自学课本P3-4页“探究与例题”,掌握三角形三边关系.(5分钟)总结归纳:一般地,三角形两边的和大于第三边;三角形两边的差小于第三边.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图①,以A,B,C为顶点的三角形记作△ABC,读作“三角形ABC”,它的边分别是AB,AC,BC(或a,b,c),内角是∠A,∠B,∠C,顶点是点A,B,C.点拨精讲:三角形的边也可以用边所对顶点的小写字母表示.2.图②中有5个三角形,分别是△ABE,△ABC,△BEC,△CDE,△BCD,以E为顶点的三角形是△ABE,△BEC,△CDE,以∠D为角的三角形是△CDE,△BCD,以AB为边的三角形是△ABE,△ABC.3.下列长度的三条线段能组成三角形的有②:①3,4,11;②2,5,6;③3,5,8.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1一个等腰三角形的周长为28cm.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边的长为6cm,求其他两边的长.解:(1)设底边长为x cm,则腰长为3x cm,依题意得2×3x+x=28,解得x=4,3x=12,∴三边长分别为4cm,12cm,12cm.(2)设另一边长为x cm,依题意得,当6cm为底边时,2x+6=28,∴x=11;当6cm为腰长时,x+2×6=28,∴x=16.∵6+6<16,不符合三角形两边的和大于第三边,所以不能围成腰长为6cm的等腰三角形,∴其他两边的长为11cm,11cm.探究2某同学有两根长度为40cm,90cm的木条,他想钉一个三角形的木框,那么第三根应该如何选择?(40cm,50cm,60cm,90cm,130cm)解:设第三根木条长为x cm,依题意得90-40<x<40+90,∴50<x<130,∴第三根应选60cm或90cm.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.图中有6个三角形,以E为顶点的三角形有△ABE,△ADE,△ACE;以AD为边的三角形有△ABD,△ADE,△ACD.2.下列长度的三条线段能组成三角形的是C.A.3,4,8B.5,6,11C.2,4,53.等腰三角形一条边等于3cm,一条边等于6cm,则它的周长为15_cm.点拨精讲:注意三角形三边关系.(3分钟)(3分钟)1.等边三角形是特殊的等腰三角形.2.在进行等腰三角形的相关计算时,要注意分类思想的运用,同时要注意运用三角形三边关系判断所求三条线段长能否构成三角形.3.已知三角形的两边长,可依据三边关系求出第三边的取值范围.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.2三角形的高、中线与角平分线1.了解三角形的高、中线、角平分线等有关概念.2.掌握三角形的高、中线与角平分线的画法;了解三角形的三条高、三条中线、三条角平分线分别交于一点.重点:三角形的高、中线、角平分线概念的简单运用及它们的几何语言表达.难点:钝角三角形的高的画法.一、自学指导自学1:自学课本P4页,掌握三角形的高的画法,完成下列填空.(4分钟)作出下列三角形的高:如图①,AD是△ABC的边BC上的高,则有∠ADB=∠ADC =90°.总结归纳:三角形的高有3条,锐角三角形的三条高都在三角形的内部,相交于一点,直角三角形的三条高相交于三角形的直角顶点上;钝角三角形的三条高相交于三角形的外部.自学2:自学课本P4-5页,掌握三角形的中线的画法,理解重心的概念,完成下列填空.(5分钟)作出下列三角形的中线,回答下面问题:如图①,AD是△ABC的边BC上的中线,则有DB=DC=BC;总结归纳:三角形的中线有3条,相交于一点,且在三角形的内部,三角形三条中线的交点叫做三角形的重心.取一块质地均匀的三角形木板,试着找出它的重心.自学3:自学课本P5页,掌握三角形的角平分线的画法,理解三角形的角平分线与角的平分线的区别,完成下列填空.(3分钟)作出下列三角形的角平分线,回答下列问题:如图①,AD是△ABC的角平分线,则有∠BAD=∠DAC=∠BAC;总结归纳:三角形的角平分线有3条,相交于一点,且在三角形的内部.三角形的角平分线是线段,而角的角平分线是射线.点拨精讲:三角形的高、中线和角平分线都是线段.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P5页的练习题1,2.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:(1)∵AE是△ABC的中线,∴BE=CE=BC;(2)∵AD是△ABC的角平分线,∴∠BAD=∠DAC=∠BAC;(3)∵AF是△ABC的高,∴∠AFB=∠AFC=90°;(4)∵AE是△ABC的中线,∴BE=CE,又∵S△ABE=BE·AF,S△AEC=CE·AF,∴S△ABE=S△ACE.点拨精讲:三角形的高、中线和角平分线的概念既是性质,也可以做为判定定理用.探究2如图,△ABC中,AB=2,BC=4,△ABC的高AD与CE的比是多少?解:∵AB·CE=BC·AD,AB=2,BC=4,∴CE=2AD,∴AD∶CE=1∶2.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.三角形的三条中线、三条角平分线、三条高都是(C)A.直线B.射线C.线段D.射线或线段2.一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(B)A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.能把三角形的面积分成两个相等的三角形的线段是(D)A.中线B.高C.角平分线D.以上都正确4.如图,D,E是边AC的三等分点:(1)图中有6个三角形,BD是三角形ABE中AE边上的中线,BE是三角形DBC中CD边上的中线,AD=DE=EC=AC,AE =DC=AC;(2)S△ABD=S△DBE=S△EBC=S△ABC;(3)S△ABE=S△DBC=S△ABC.(1分钟)1.三角形的高、中线和角平分线都是线段.2.三角形的高、中线和角平分线的概念既可得到角与线段的数量关系,也可做为判定三角形高、中线和角平分线的判定定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.3三角形的稳定性通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.重、难点:了解三角形稳定性在生产、生活中的实际应用.一、自学指导自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟)将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:(1)如图①,扭动三角形木架,它的形状会改变吗?(2)如图②,扭动四边形木架,它的形状会改变吗?总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变.(3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么?总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P7页练习题第1题.2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n边形(n >3)最少需要加(n-3)条线段才具有稳定性.点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.探究2等腰三角形一腰上的中线将此等腰三角形分成9cm,15cm两部分,求此等腰三角形的周长是多少?解:设等腰三角形的腰长为x cm,底边长为y cm,依题意得,当x>y时,解得当x<y时,解得∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24(cm).答:此等腰三角形的周长为24cm.点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.课本P9页第10题.2.下列图形具有稳定性的有(C)A.梯形B.长方形C.三角形D.正方形3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.4.已知AD,AE分别是△ABC的中线、高,且AB=5cm,AC=3cm,则△ABD与△ADC的周长之差为2_cm;△ABD与△ADC的面积关系是相等.5.如图,D是△ABC中BC边上的一点,DE∥AC交AB 边于E,DF∥AB交AC边于F,且∠ADE=∠ADF.求证:AD是△ABC的角平分线.证明:∵DE∥AC,DF∥AB,∴∠ADE=∠DAC,∠ADF=∠DAB,又∵∠ADE=∠ADF,∴∠DAC=∠DAB,∴AD是△ABC 的角平分线.(1分钟)三角形的稳定性与四边形的不稳定性在日常生活中非常常用.(学生总结本堂课的收获与困惑)(2分钟)(12分钟)11.2与三角形有关的角11.2.1三角形的内角(1)1.会用不同的方法证明三角形的内角和定理.2.能应用三角形内角和定理解决一些简单的问题.重点:三角形内角和定理的应用.难点:三角形内角和定理的证明.一、自学指导自学1:自学课本P11-12页“探究”,掌握三角形内角和定理的证明方法,完成下列填空.(5分钟)归纳总结:三角形内角和定理——三角形三个内角的和等于180°.已知:△ABC.求证:∠A+∠B+∠C=180°.点拨精讲:为了证明的需要,在原来的图形上添画的线叫做辅助线.作辅助线是几何证明过程中常用到的方法,辅助线通常画成虚线.证明:延长BC到点D,过点B作BE∥AC,∵BE∥AC,∴∠1=∠A,∠2=∠C,∵∠1+∠2+∠ABC=180°,∴∠A+∠ABC +∠C=180°.自学2:自学课本P12-13“例1、例2”,掌握三角形内角和的应用.(5分钟)你可以用其他方法解决例2的问题吗?点拨精讲:可过点C作CF∥AD,可证得CF∥BE,同时将∠ACB分成∠ACF与∠BCF,求出这两个角的度数,就能求出∠ACB.解:过点C作CF∥AD,∵AD∥BE,∴CF∥BE,∵CF∥AD,CF∥BE,∴∠ACF=∠DAC=50°,∠FCB=∠CBE=40°,∴∠ACB =∠ACF+∠FCB=50°+40°=90°,∵∠CAB=∠DAB-∠DAC =80°-50°=30°,∴∠ABC=180°-∠CAB-∠ACB=180°-30°-90°=60°.答:从B岛看A,C两岛的视角∠ABC是60°,从C岛看A,B两岛的视角∠ACB是90°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P13页的练习题1,2.点拨精讲:仰角是当视线在视平线上方时视线与视平线所夹的角.小组讨论交流解题思路,小组活动后选代表展示活动成果.(7分钟)探究1①一个三角形中最多有1个直角;②一个三角形中最多有1个钝角;③一个三角形中至少有2个锐角;④任意一个三角形中,最大的一个角的度数至少为60°.为什么?点拨精讲:三角形的内角和为180°.探究2如图,在△ABC中,EF与AC交于点G,与BC的延长线交于点F,∠B=45°,∠F=30°,∠CGF=70°,求∠A 的度数.解:在△CGF中,∠GCF=180°-∠CGF-∠F=180°-70°-30°=80°,∴∠ACB=180°-∠GCF=180°-80°=100°,在△ABC中,∠A=180°-∠B-∠ACB=180°-45°-100°=35°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.课本P16页复习巩固第1题.2.在△ABC中,∠A=35°,∠B=43°,则∠C=102°.3.在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A=40°,∠B=60°,∠C=80°.4.在△ABC中,如果∠A=∠B=∠C,那么△ABC是什么三角形?解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,∴∠A=30°,∴∠B =60°,∠C=90°,∴△ABC是直角三角形.(3分钟)(3分钟)为了说明三角形的内角和为180°,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.1三角形的内角(2)1.掌握直角三角形的表示方法,并理解直角三角形的性质与判定.2.能运用直角三角形的性质与判定解决实际问题.重、难点:理解和运用直角三角形的性质与判定.一、自学指导自学:自学课本P13-14页,掌握直角三角形的表示方法及其性质,完成下列填空.(5分钟)总结归纳:(1)直角三角形可以用符号“Rt△”表示,直角三角形ABC可以写成Rt△ABC.(2)直角三角形的两个锐角互余.(3)有两个角互余的三角形是直角三角形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(10分钟)1.在Rt△ABC中,∠C=90°,∠A=2∠B,求出∠A,∠B的度数.解:Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠A=2∠B,∴2∠B+∠B=90°,∴∠B=30°,∠A=60°.2.如图,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?解:结论:∠ACD=∠B.理由如下:在Rt△ACB中,∠A+∠B=90°,在Rt△ACD中,∠A+∠ACD=90°,∴∠ACD=∠B.点拨精讲:利用同角的余角相等可以方便地证出两角的相等关系.3.如图,∠C=90°,∠AED=∠B,△ADE是直角三角形吗?为什么?解:结论:△ADE是直角三角形.理由如下:在Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角相等).∵∠AED=∠B,∴∠A+∠AED=90°,∴△ADE是直角三角形(有两个角互余的三角形是直角三角形).小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,AB∥CD,AE,CE分别平分∠BAC,∠ACD.求证:△ACE是Rt△.证明:∵AB∥CD,∴∠BAC+∠ACD=180°,∵AE,CE分别平分∠BAC,∠ACD,∴∠EAC=∠BAC,∠ACE=∠ACD,∴∠EAC+∠ACE=∠BAC+∠ACD=90°,∴△ACE是Rt△(有两个角互余的三角形是直角三角形).探究2如图,在Rt△ABC中,∠C=90°,AD,BD是∠CAB,∠CBA的角平分线,求∠D的度数.解:在Rt△ABC中,∠CAB+∠CBA=90°,∵AD,BD是∠CAB,∠CBA的角平分线,∴∠DAB=∠CAB,∠DBA=∠CBA,∴∠DAB+∠DBA=∠CAB+∠CBA=45°,在△ADB中,∠D=180°-(∠DAB+∠DBA)=180°-45°=135°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则此三角形是直角三角形.2.如图,在△ABC中,∠ACB=90°,∠ACD=∠B.求证:△ACD是Rt△.证明:在Rt△ABC中,∠A+∠B=90°(直角三角形的两个锐角互余).∵∠ACD=∠B,∴∠A+∠ACD=90°,∴△ACD是Rt△(有两个角互余的三角形是直角三角形).(3分钟)(3分钟)1.直角三角形的性质:两个锐角互余.2.直角三角形的判定:①有一个角是直角;②两边互相垂直;③有两个角互余;(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.2.2三角形的外角1.探索并了解三角形的外角的两条性质,利用学过的定理证明这些性质.2.能利用三角形的外角性质解决实际问题.重点:三角形外角的性质.难点:运用三角形外角的性质解决有关角的计算及证明问题.一、自学指导自学1:自学课本P14页,掌握三角形外角的定义,完成下列填空.(3分钟)如图1,把△ABC的边BC延长到D,我们把∠ACD叫做三角形的外角.思考:①在△ABC中,除了∠ACD外,还有那些外角?请在图2中分别画出来;②以点C为顶点的外角有2个,所以△ABC 共有6个外角;③外角∠ACD与内角∠ACB的关系是:互为邻补角.总结归纳:三角形的一边与另一边的延长线组成的角,叫做三角形的外角;每一个三角形都有6个外角;每一个顶点相对应的外角都有2个;每个外角与它相邻的内角互为邻补角.自学2:自学课本P15页“探究与例4”,理解三角形外角的性质并学会运用.(7分钟)如图,△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC 的一个外角.能由内角∠A,∠B求出外角∠ACD吗?如果能,外角∠ACD与内角∠A,∠B有什么关系?认真思考,完成下面的填空:(1)∠ACB=50°,∠ACD=130°,∠A+∠B=130°,∠ACD=∠A+∠B;(填“>”“<”或“=”)(2)∠ACD>∠A,∠ACD>∠B.(填“>”“<”或“=”)总结归纳:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图,是△BFD的外角有∠CDA,∠BFC,∠DFE,以∠AEB为外角的三角形是△CEF,△CEB.2.如图,∠1,∠2,∠3是△ABC不同的三个外角,求∠1+∠2+∠3.解:∵∠1=∠ABC+∠ACB,∠2=∠BAC+∠ACB,∠3=∠ABC+∠CAB,∴∠1+∠2+∠3=2(∠ABC+∠ACB+∠BAC),∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=2×180°=360°.3.课本P15页练习题.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1如图,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选一个结论加以证明.解:①β=α+90°;②β=α;③β=90°-α.证明:(略)探究2如图,∠A=50°,∠B=40°,∠C=30°,求∠BPC 的度数.解:连接AP并延长到点E,∵∠BPE=∠B+∠BAP,∠CPE =∠C+∠CAP,又∵∠BPC=∠BPE+∠CPE,∴∠BPC=∠B+∠BAP+∠C+∠CAP=∠BAC+∠B+∠C=50°+40°+30°=120°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.若三角形的一个外角小于与它相邻的内角,则这个三角形是(C)A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2.已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为(C)A.90°B.110°C.100°D.120°3.如图,∠1+∠2+∠3+∠4+∠5+∠6=360°.,第4题图)4.如图,BE∥CF,∠B=50°,∠C=75°,求∠A的度数.解:∵BE∥CF,∴∠ADE=∠C,∵∠ADE=∠B+∠A,∴50°+∠A=75°,∴∠A=25°.(3分钟)(3分钟)1.三角形的每个顶点处都有2个外角,这两个外角互为对顶角,外角与它相邻的内角互为邻补角.2.在三角形的每个顶点处各取一个外角,这三个外角的和为360°.3.三角形外角的性质是三角形有关角的计算与证明的常用依据.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3多边形及其内角和11.3.1多边形1.理解多边形的相关概念.2.认识凸多边形及正多边形,掌握正多边形的定义及判定.重点:理解多边形的相关概述.难点:掌握正多边形的定义及判定.一、自学指导自学1:自学课本P19页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.自学2:自学课本P20页,掌握多边形的相关概念,完成下列填空.(5分钟)总结归纳:(1)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(3)各个角都相等,各条边都相等的多边形叫做正多边形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.四边形有4条边,4个顶点,4个内角,8个外角;五边形有5条边,5个顶点,5个内角,10个外角;n边形有n条边,n个顶点,n个内角,2n个外角.2.画出下列多边形的全部对角线:3.四边形的一条对角形将四边形分成2个三角形,从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1:过m边形的一个顶点有7条对角线,n边形没有对角线,求mn的平方根.解:由题意可得m-3=7,∴m=10,n=3,∴±=±.探究2:填表……………n边形n n-3 n-2学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.下列图形中,是正多边形的是(D)A.直角三角形B.等腰三角形C.长方形D.正方形2.过n边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是10.3.一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数.解:设这是一个n边形,依题意得=4n,∵n≥3且为整数,∴n=11.(3分钟)1.在初中阶段所讲的多边形指的都是凸多边形.2.已知多边形的边,可以推导出其对角线的条数和分成的三角形的个数;反过来,已知过一点所画对角线的条数或分成的三角形的个数可以推导出多边形的边数.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.3.2多边形的内角和探索多边形的内角和公式及外角和,会利用多边形的内角和公式解决问题.重点:掌握多边形的内角和公式.难点:探索多边形的内角和公式.一、自学指导自学1:自学课本P21-22页,掌握多边形内角和公式的推导方法,完成下列填空.(5分钟)填写下列表格:总结归纳:三角形的内角和为180度;任意四边形的内角和为360度;任意五边形的内角和等于540度;六边形的内角和等于720度;n边形的内角和等于(n-2)·180°;多边形的边数每增加一条,那么它的内角和就增加180°.点拨精讲:多边形可分成若干个三角形,将多边形内角和转化成三角形知识(如图1,2).自学2:自学课本P22-23例1,例2和探究,掌握多边形外角和应用.(5分钟)如图3,根据前面三角形的有关知识,探索在每个五边形顶点处各取一个外角,这些外角的和叫做五边形的外角和,五边形的外角和等于360度,六边形的外角和是360度.总结归纳:n边形的外角和是360°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P24页练习题1,2,3.2.七边形的内角和900°,十边形的内角和是1440°;如果一个多边形的内角和等于1260°,那么它是九边形.3.已知四边形ABCD中,∠A∶∠B∶∠C∶∠D=1∶2∶3∶4,则∠C=108°.4.求出正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角的度数.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1(1)一个多边形的内角和是外角和的一半,它是几边形?(2)一个多边形的内角和是外角和的2倍,它是几边形?解:(1)设它是n边形,则有180°·(n-2)=×360°,∴n=3.(2)设它是n边形,则有180°·(n-2)=2×360°,∴n=6.探究2如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB与DE有怎样的位置关系?BC与FE有这种关系吗?解:结论:AB∥DE,BC∥FE.证明:(略)学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.一个多边形的每个内角都等于150°,则它的边数为12.2.一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?3.已知一个多边形,它的内角和等于五边形的内角和的2倍,求这个多边形的边数.解:设这个边多形的边数为n,则有180°(n-2)=2×180°×(5-2),∴n=8.(3分钟)1.已知多边形的边数可以求出其内角和,根据其内角和也可以求出其边数.2.内角和的推理要用到转化的思想,将多边形的知识转化为三角形的知识.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)第十二章全等三角形12.1全等三角形1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.重点:掌握全等三角形的对应元素和性质的应用.难点:全等三角形性质的应用.一、自学指导自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟)总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的对应边相等,全等三角形的对应角相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.下列图形中的全等图形是d与g,e与h.2.如图,△ABC与△DEF能重合,则记作△ABC≌△DEF,读作△ABC全等于△DEF,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:AB与DE,AC与DF,BC与EF;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.,第2题图),第3题图) 3.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有AC=DB,AO=DO,CO=BO,相等的角有∠A=∠D,∠C=∠B,∠COA=∠BOD.点拨精讲:通常把对应顶点的字母写在对应的位置上.4.已知△OCA≌△OBD,若OC=3cm,BD=4cm,OD=6cm.则△OCA的周长为13_cm;若∠C=110°,∠A=30°,则∠BOD=40°.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△ABC可以经过怎样的变换得到另一个三角形?点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.解:①△ABC≌△DEF,A和D,B和E,C和F是对应顶点,AB与DE,AC与DF,BC与EF是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△DEF是△ABC经过平移得到的.②△ABC≌△DBC,A和D,B和B,C和C是对应顶点,AB 与DB,AC与DC,BC与BC是对应边,∠A与∠D,∠ABC与∠DBC,∠ACB与∠DCB是对应角,△DBC是△ABC沿BC所在直线向下翻折得到的.③△ABC≌△AED,A和A,B和E,C和D是对应顶点,AB 与AE,AC与AD,BC与ED是对应边,∠BAC与∠EAD,∠B 与∠E,∠C与∠D是对应角,△AED是△ABC绕点A旋转180°得到的.探究2如图,△ABC≌△DEF,AB=DE,AC=DF,且点B,E,C,F在同一条直线上.(1)求证:BE=CF,AC∥DF;(2)若∠D+∠F=90°,试判断AB与BC的位置关系.解:(1)证明:∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴AC∥DF,BC-EC=EF-EC,∴BE=CF.(2)结论:AB⊥BC.证明:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠F,∵∠D +∠F=90°,∴∠A+∠ACB=90°,∴∠B=90°,∴AB⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,△ABC≌△CDA,求证:AB∥CD.证明:∵△ABC≌△CDA,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档