高一数学函数的奇偶性
高一数学课本函数知识点总结

高一数学课本函数知识点总结高一数学课本函数知识点有哪些?下面就是给大家带来的高一数学课本函数知识点,希望能帮助到大家!高一数学课本知识点总结11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;(1)(a0,a≠1,b0,n∈R+);(2)logaN=(a0,a≠1,b0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a0,a≠1,N0);6.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一数学人教A版必修1课件1321函数的奇偶性

总结:(1)偶函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=f(x) ,那么函数 f(x)就叫做偶函数. (2)奇函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=-f(x) ,那么函数 f(x)就叫做奇函数.
【归纳提升】 (1)奇偶函数的定义域关于原点对称,如 果函数的定义域不关于原点对称,则此函数既不是奇函数也 不是偶函数.
(6)显然函数 f(x)的定义域关于原点对称. 当 x>0 时,-x<0,f(-x)=x2-x=-(x-x2)=-f(x), 当 x<0 时,-x>0,f(-x)=-x-x2=-(x2+x)=-f(x), ∴f(-x)=-f(x), ∴函数 f(x)为奇函数.
2 利用函数的奇偶性求解析式
学法指导:利用函数奇偶性求函数解析式 利用函数奇偶性求函数解析式的关键是利用奇偶函数的 关系式 f(-x)=-f(x)或 f(-x)=f(x)成立,但要注意求给定哪 个区间的解析式就设这个区间上的变量为 x,然后把 x 转化 为-x(另一个已知区间上的解析式中的变量),通过适当推导, 求得所求区间上的解析式.
[例 2] 已知函数 y=f(x)的图象关于原点对称,且当 x>0 时,f(x)=x2-2x+3.试求 f(x)在 R 上的表达式,并画出它的图 象,根据图象写出它的单调区间.
[分析] 由函数图象关于原点对称可知 y=f(x)是奇函 数.利用奇函数性质可求得解析式.
[解析] ∵函数 f(x)的图象关于原点对称. ∴f(x)为奇函数,则 f(0)=0, 设 x<0,则-x>0,∵x>0 时,f(x)=x2-2x+3, ∴f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3 于是有:
函数的奇偶性第一课时课件-高一数学人教A版(2019)必修第一册

A.-7
B.-5
C.-3
D.3
解析 ∵f(2 020)=a×2 0203+b×2 020-2=3, ∴a×2 0203+b×2 020=5, ∴f(-2 020)=-a×2 0203-b×2 020-2 =-5-2=-7. 答案 A
一个函数的部分可能 具有奇偶性,注意要 善于观察利用。
课堂精讲
已知 f(a)求 f(-a),判断 f(x)的奇偶性或构造已知奇偶性 的函数,利用奇偶性找出 f(a)与 f(-a)的关系即可.
判断函数是非奇非偶函数 ,只需找一适当的不符合 奇偶函数定义的特例即可
解 对任意 x∈(-∞,0)∪(0,+∞), f(-x)=(-x)2=x2=f(x), 则函数 f(x)为偶函数;
则 f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a≠0, 即 f(-1)≠-f(1),f(-1)≠f(1), 则函数 f(x)既不是奇函数也不是偶函数.
②当 a≠0 时,f(x)=x2+ax(x≠0), 取 x=1,得 f(1)=1+a,取 x=-1, 得 f(-1)=1-a,
综上所述,当 a≠0 时, 函数 f(x)既不是奇函数也不是偶函数; 当 a=0 时,函数 f(x)为偶函数.
课堂精讲
角度 4 含参函数奇偶性的判断 【例 1-4】 判断下列函数的奇偶性:
求证:f(x)为偶函数;
(3)若函数 f(x)的定义域为(-l,l)(l>0),证明:f(x)+f(-x)是偶函数,f(x)-f(-x)是奇函数.
(3)∵x∈(-l,l),∴-x∈(-l,l),
又 F(-x)=f(-x)+f(x)=F(x),
可见 f(-x)的定义域也是(-l,l).
G(-x)=f(-x)-f(x)=-[f(x)-f(-x)]
高一数学必修一函数专题:奇偶性

高一数学必修一函数专题:奇偶性第一部分:常见的奇函数和偶函数常见奇函数:第一种:nx x f =)((n 为奇数)例:x x f =)(;x x x f 1)(1==-;3)(x x f =;331)(xx x f ==-。
第二种:n x x f =)((n 为奇数)例:331)(x x x f ==;515)(x x x f ==。
第三种:)sin()(x A x f ϖ=例:)2sin()(x x f =;)sin()(x x f --=;x x f sin 21)(=。
第四种:)tan()(x A x f ϖ=例:x x f tan )(=;)21tan(2)(x x f --=;x x f tan 3)(=。
常见偶函数:第一种:n x x f =)((n 为偶数)例:2)(x x f =;221)(x x x f ==-;4)(x x f =;441)(x x x f ==-。
第二种:c x f =)((c 为常数)例:2)(=x f ;21)(-=x f 。
第三种:)cos()(x A x f ϖ=例:)cos(3)(x x f -=;)2cos(21)(x x f =;)cos()(x x f -=。
第四种:|)(|)(x g x f =()(x g 为奇函数或者偶函数)例:|)sin(2|)(x x f -=;||)(4x x f =;|tan |)(x x f =;|)21cos(|)(x x f -=。
两种特殊的奇偶函数:第一种:)()()()(x f x g x g x f ⇒-+=是偶函数例:x x e e x f -+=)(,假设:)()()()()()(x f x g x g x f e x g e x g x x ⇒-+=⇒=-⇒=-是偶函数。
第二种:)()()()(x f x g x g x f ⇒--=是奇函数例:x x x f 313)(-=,假设:)()()()(313)(3)(x f x g x g x f x g x g xx x ⇒--=⇒==-⇒=-是奇函数。
高一数学函数的奇偶性(经典复习资料)

〖一方教育〗函数的奇偶性一、函数奇偶性的判断:1、定义域关于原点对称;2、奇函数()()x f x f -=-,偶函数()()x f x f =-;3、奇函数图像关于原点对称、偶函数图像关于y 轴对称。
1、奇偶性的判断①242)(x x x f +=; ②]1,1(,2)(3-∈+=x x x x f ; ③32)(2++=x x x f ;④24)(---=x x x f ;⑤2)(=x f ;⑥]2,1(,0)(-∈=x x f .⑦22)(34--=x x x x f ; ⑧|1||1|)(++-=x x x f ; ⑨xx x x f -+-=11)1()(; ⑩作出函数32)(2--=x x x f ;的图像.并判断函数)(x f 奇偶性(11).求证:函数⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y 是奇函数。
二、奇偶性的性质2、求值①已知函数()y f x =是定义域为R 的奇函数,求(0)f 的值.②已知函数2()(2)(1)3f x m x m x =-+-+是偶函数,求实数m 的值.③已知f(x)=x 5+2x 3+3x-8, f(-2)=10, f(2)=④若(),155,8)(57-=-+++=f cx bx ax x f 求)5(f . ⑤设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则()7.5f = 。
⑥已知函数y=()f x 是定义域为R 的偶函数,且当x ≥0时,f(x)=x 2-4x,试求方程f(x)=-3的解集。
3、求解析式①已知函数)(x f y =在R 上是奇函数,且在),0(+∞x x x f 2)(2-=,求)(x f 解析式.②已知()f x 是定义域为R 的奇函数,当x>0时,f(x)=x |x -2|,求x<0时,f(x)的解析式.③已知()f x 是定义域为R 的奇函数,且当x>0时,f(x)=x 2-2x+1,试求函数y=f(x)的表达式,并画出y=f(x)的图象。
高一数学 函数的奇偶性

奇偶性第1课时奇偶性的概念学习目标 1.理解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶函数图象的对称性解决简单问题.知识点一函数奇偶性的几何特征思考下列函数图象中,关于y轴对称的有哪些?关于原点对称的呢?答案①②关于y轴对称,③④关于原点对称.梳理一般地,图象关于y轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数.知识点二函数奇偶性的定义思考1为什么不直接用图象关于y轴(原点)对称来定义函数的奇偶性?答案因为很多函数图象我们不知道,即使画出来,细微之处是否对称也难以精确判断.思考2利用点对称来刻画图象对称有什么好处?答案好处有两点:(1)等价:只要所有点均关于y轴(原点)对称,则图象关于y轴(原点)对称,反之亦然.(2)可操作:要判断点是否关于y轴(原点)对称,只要代入解析式验证即可,不知道函数图象也能操作.梳理函数奇偶性的概念:(1)偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.其实质是函数f(x)上任一点(x,f(x))关于y轴的对称点(-x,f(x))也在f(x)图象上.(2)奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.其实质是函数f(x)上任一点(x,f(x))关于原点的对称点(-x,-f(x))也在f(x)图象上.知识点三奇(偶)函数的定义域特征思考如果一个函数f(x)的定义域是(-1,1],那么这个函数f(x)还具有奇偶性吗?答案 由函数奇偶性定义,对于定义域内任一元素x ,其相反数-x 必须也在定义域内,才能进一步判断f (-x )与f (x )的关系.而本问题中,1∈(-1,1],-1∉(-1,1],f (-1)无定义,自然也谈不上是否与f (1)相等了.所以该函数既非奇函数,也非偶函数.梳理 一般地,判断函数奇偶性要注意定义域优先原则,即首先要看定义域是否关于原点对称.类型一 证明函数的奇偶性命题角度1 已知函数解析式,证明奇偶性 例1 (1)证明f (x )=x 3-x 2x -1既非奇函数又非偶函数;(2)证明f (x )=(x +1)(x -1)是偶函数;(3)证明f (x )=1-x 2+x 2-1既是奇函数又是偶函数.证明 (1)因为它的定义域为{x |x ∈R 且x ≠1},所以对于定义域内的-1,其相反数1不在定义域内,故f (x )=x 3-x 2x -1既非奇函数又非偶函数. (2)函数的定义域为R ,因函数f (x )=(x +1)(x -1)=x 2-1,又因f (-x )=(-x )2-1=x 2-1=f (x ),所以函数为偶函数.(3)定义域为{-1,1},因为对定义域内的每一个x ,都有f (x )=0,所以f (-x )=f (x ),故函数f (x )=1-x 2+x 2-1为偶函数.又f (-x )=-f (x ),故函数f (x )=1-x 2+x 2-1为奇函数.即该函数既是奇函数又是偶函数.反思与感悟 利用定义法判断函数是否具有奇偶性时,首先应看函数定义域是否关于原点对称,即对于定义域内的任意一个x ,则-x 也一定属于定义域. 跟踪训练1 (1)证明f (x )=(x -2) 2+x2-x既非奇函数又非偶函数; (2)证明f (x )=x |x |是奇函数.证明 (1)由2+x2-x ≥0,得定义域为[-2,2),关于原点不对称,故f (x )为非奇非偶函数.(2)函数的定义域为R ,因f (-x )=(-x )|-x |=-x |x |=-f (x ),所以函数为奇函数. 命题角度2 证明分段函数的奇偶性例2 判断函数f (x )=⎩⎪⎨⎪⎧(x +5)2-4,x ∈(-6,-1],(x -5)2-4,x ∈[1,6)的奇偶性.解 由题意可知f (x )的定义域为(-6,-1]∪[1,6), 关于原点对称,当x ∈(-6,-1]时,-x ∈[1,6),所以f (-x )=(-x -5)2-4=(x +5)2-4=f (x ); 当x ∈[1,6)时,-x ∈(-6,-1],所以f (-x )=(-x +5)2-4=(x -5)2-4=f (x ). 综上可知对于任意的x ∈(-6,-1]∪[1,6), 都有f (-x )=f (x ),所以f (x )=⎩⎪⎨⎪⎧(x +5)2-4,x ∈(-6,-1],(x -5)2-4,x ∈[1,6)是偶函数.反思与感悟 分段函数也是函数,证明奇偶性也是抓住两点:(1)定义域是否关于原点对称;(2)对于定义域内的任意x ,是否都有f (-x )=f (x )(或-f (x )),只不过对于不同的x ,f (x )有不同的表达式,要逐段验证是否都有f (-x )=f (x )(或-f (x )).跟踪训练2 证明f (x )=⎩⎪⎨⎪⎧-x 2,x <0,x 2,x >0是奇函数.证明 定义域为{x |x ≠0}. 若x <0,则-x >0, ∴f (-x )=x 2,f (x )=-x 2, ∴f (-x )=-f (x ); 若x >0,则-x <0,∴f (-x )=-(-x )2=-x 2,f (x )=x 2, ∴f (-x )=-f (x );即对任意x ≠0,都有f (-x )=-f (x ). ∴f (x )为奇函数.命题角度3 证明抽象函数的奇偶性例3 f (x ),g (x )是定义在R 上的奇函数,试判断y =f (x )+g (x ),y =f (x )g (x ),y =f [g (x )]的奇偶性. 解 ∵f (x ),g (x )是定义在R 上的奇函数,∴f (-x )+g (-x )=-f (x )-g (x )=-[f (x )+g (x )],y =f (x )+g (x )是奇函数. f (-x )g (-x )=[-f (x )][-g (x )]=f (x )g (x ),y =f (x )g (x )是偶函数. f [g (-x )]=f [-g (x )]=-f [g (x )],y =f [g (x )]是奇函数.反思与感悟 利用基本的奇(偶)函数,通过加减乘除、复合,可以得到新的函数,判断这些新函数的奇偶性,主要是代入-x ,看总的结果.跟踪训练3 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A.f (x )g (x )是偶函数 B.|f (x )|g (x )是奇函数 C.f (x )|g (x )|是奇函数 D.|f (x )g (x )|是奇函数 答案 C解析 A :令h (x )=f (x )·g (x ),则h (-x )=f (-x )·g (-x )=-f (x )·g (x )=-h (x ),∴h (x )是奇函数,A 错. B :令h (x )=|f (x )|g (x ),则h (-x )=|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x )=h (x ),∴h (x )是偶函数,B 错.C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)·|g(-x)|=-f(x)|g(x)|=-h(x),∴h(x)是奇函数,C正确.D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.类型二奇偶性的应用命题角度1奇(偶)函数图象的对称性的应用例4定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.解(1)先描出(1,1),(2,0)关于原点的对称点(-1,-1),(-2,0),连线可得f(x)的图象如图.(2)xf(x)>0即图象上横坐标、纵坐标同号.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).引申探究把例4中的“奇函数”改为“偶函数”,重做该题.解(1)f(x)的图象如图所示:(2)xf(x)>0的解集是(-∞,-2)∪(0,2).反思与感悟鉴于奇(偶)函数图象关于原点(y轴)对称,可以用这一特性去画图,求值,求解析式,研究单调性.跟踪训练4已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f (x )<0的x 的取值集合. 解 (1)如图,在[0,5]上的图象上选取5个关键点O ,A ,B ,C ,D . 分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为(-2,0)∪(2,5). 命题角度2 利用函数奇偶性的定义求值例5 若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________. 答案 13解析 因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13,f (x )=13x 2+bx +b +1.又f (x )为偶函数,∴f (-x )=13(-x )2+b (-x )+b +1=f (x )=13x 2+bx +b +1,对定义域内任意x 恒成立,即2bx =0对任意x ∈[-23,23]恒成立,∴b =0.综上,a =13,b =0.反思与感悟 函数奇偶性的定义有两处常用:①定义域关于原点对称;②对定义域内任意x ,恒有f (-x )=f (x )(或-f (x ))成立,常用这一特点得一个恒成立的等式,或对其中的x 进行赋值.跟踪训练5 已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x >0为奇函数,则a +b =________.答案 0解析 由题意知⎩⎪⎨⎪⎧f (2)=-f (-2),f (1)=-f (-1),则⎩⎪⎨⎪⎧ 4a +2b =-2,a +b =0, 解得⎩⎪⎨⎪⎧a =-1,b =1. 当a =-1,b =1时,经检验知f (x )为奇函数,故a +b =0.1.下列函数为偶函数的是()A.f(x)=x-1B.f(x)=x2+xC.f(x)=2x-2-xD.f(x)=2x+2-x答案D解析D中,f(-x)=2-x+2x=f(x),∴f(x)为偶函数.2.函数f(x)=x(-1<x≤1)的奇偶性是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数答案C3.已知函数y=f(x)+x是偶函数,且f(2)=1,则f(-2)等于()A.-1B.1C.-5D.5答案D解析函数y=f(x)+x是偶函数,∴x=±2时函数值相等.∴f(-2)-2=f(2)+2,∴f(-2)=5,故选D.4.若函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,则m的值是()A.1B.2C.3D.4答案B5.下列说法错误的个数是()①图象关于原点对称的函数是奇函数;②图象关于y轴对称的函数是偶函数;③奇函数的图象一定过原点;④偶函数的图象一定与y轴相交;⑤既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).A.4B.3C.2D.0答案B1.两个定义:对于f(x)定义域内的任意一个x,如果都有f(-x)=-f(x)⇔f(-x)+f(x)=0⇔f(x)为奇函数;如果都有f(-x)=f(x)⇔f(-x)-f(x)=0⇔f(x)为偶函数.2.两个性质:函数为奇函数⇔它的图象关于原点对称;函数为偶函数⇔它的图象关于y轴对称.3.证明一个函数是奇函数,必须对f(x)的定义域内任意一个x,都有f(-x)=-f(x).而证明一个函数不是奇函数,只要能举出一个反例就可以了.课时作业一、选择题1.已知一个奇函数的定义域为{-1,2,a ,b },则a +b 等于( ) A.-1 B.1 C.0 D.2 答案 A解析 因为一个奇函数的定义域为{-1,2,a ,b }, 根据奇函数的定义域关于原点对称, 所以a 与b 有一个等于1,一个等于-2, 所以a +b =1+(-2)=-1, 故选A.2.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( ) A.-3 B.-1 C.1 D.3 答案 A解析 ∵f (x )是奇函数, 当x ≤0时,f (x )=2x 2-x ,∴f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.3.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A.f (x )+|g (x )|是偶函数 B.f (x )-|g (x )|是奇函数 C.|f (x )|+g (x )是偶函数 D.|f (x )|-g (x )是奇函数 答案 A解析 由f (x )是偶函数,可得f (-x )=f (x ), 由g (x )是奇函数可得g (-x )=-g (x ), 故|g (x )|为偶函数, ∴f (x )+|g (x )|为偶函数.4.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A.-13B.13 C.12 D.-12答案 B解析 依题意b =0,且2a =-(a -1), ∴a =13,则a +b =13.5.函数f (x )=|x +1|-|x -1|为( ) A.奇函数 B.偶函数C.既是奇函数也是偶函数D.既不是奇函数也不是偶函数 答案 A解析 f (x )的定义域为R ,对于任意x ∈R ,f (-x )=|-x +1|-|-x -1|=|x -1|-|x +1|=-f (x ), ∴f (x )为奇函数.又f (-1)=-2,f (1)=2,f (-1)≠f (1), ∴f (x )不是偶函数.6.设奇函数f (x )在(0,+∞)上为增函数,且f (3)=0,则不等式f (x )-f (-x )2>0的解集为( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3) 答案 A解析 ∵f (x )为奇函数,f (3)=0, ∴f (-3)=0.又∵f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上也为增函数, ∴f (x )-f (-x )2=f (x )>0, ①当x >0时,则f (x )>f (3)=0,∴x >3; ②当x <0时,则f (x )>f (-3)=0,∴-3<x <0, 综上可得,原不等式的解集为(-3,0)∪(3,+∞). 二、填空题7.已知函数y =f (x )为偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是________. 答案 0解析 由于偶函数的图象关于y 轴对称,所以偶函数的图象与x 轴的交点也关于y 轴对称,因此,四个交点中,有两个在x 轴的负半轴上,另两个在x 轴的正半轴上,所以四个实根的和为0. 8.若函数f (x )=x 2-1+a -x 2为偶函数且非奇函数,则实数a 的取值范围为________. 答案 a >1解析 ∵函数f (x )=x 2-1+a -x 2为偶函数且非奇函数, ∴f (-x )=f (x )且f (-x )≠-f (x ).又∵⎩⎪⎨⎪⎧x 2-1≥0,a -x 2≥0,∴a ≥1.当a =1时,函数f (x )=x 2-1+a -x 2为偶函数且为奇函数, 故a >1.9.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.答案 43解析 根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.10.函数f (x )=⎩⎪⎨⎪⎧x (1-x ),x <0,x (1+x ),x >0为________.(填“奇函数”或“偶函数”)答案 奇函数解析 定义域关于原点对称,且f (-x )=⎩⎪⎨⎪⎧-x (1+x ),-x <0,-x (1-x ),-x >0=⎩⎪⎨⎪⎧-x (1+x ),x >0,-x (1-x ),x <0 =-f (x ), 所以f (x )是奇函数. 三、解答题11.判断下列函数的奇偶性: (1)f (x )=x 3+x 5; (2)f (x )=|x +1|+|x -1|; (3)f (x )=2x 2+2x x +1.解 (1)函数的定义域为R .∵f (-x )=(-x )3+(-x )5=-(x 3+x 5)=-f (x ),∴f (x )是奇函数. (2)f (x )的定义域是R .∵f (-x )=|-x +1|+|-x -1|=|x -1|+|x +1|=f (x ),∴f (x )是偶函数. (3)函数f (x )的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f (x )是非奇非偶函数. 12.若函数f (x )=x 2-|x +a |为偶函数,求实数a 的值. 解 ∵函数f (x )=x 2-|x +a |为偶函数, ∴f (-x )=f (x ),即(-x )2-|-x +a |=x 2-|x +a |, ∴|-x +a |=|x +a |,即|x -a |=|x +a |, ∴a =0.13.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)因为f (x )为奇函数,所以f (-1)=-f (1),即1-m =-(-1+2), 解得m =2.经检验m =2时函数f (x )是奇函数. 所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3]. 四、探究与拓展14.设奇函数f (x )的定义域为[-6,6],当x ∈[0,6]时,f (x )的图象如图所示,不等式f (x )<0的解集用区间表示为________.答案 [-6,-3)∪(0,3)解析 由f (x )在[0,6]上的图象知,满足f (x )<0的不等式的解集为(0,3).又f (x )为奇函数,图象关于原点对称,所以在[-6,0)上,不等式f (x )<0的解集为[-6,-3).综上可知,不等式f (x )<0的解集为[-6,-3)∪(0,3). 15.已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25,求函数f (x )的解析式. 解 ∵f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,即b1+02=0,∴b =0.又∵f ⎝⎛⎭⎫12=12a 1+14=25, ∴a =1,∴f (x )=x1+x 2.第2课时 奇偶性的应用学习目标 1.掌握用奇偶性求解析式的方法.2.理解奇偶性对单调性的影响并能用以解不等式.3.理解函数的奇偶性的推广——对称性.知识点一 用奇偶性求解析式思考 函数f (x )在区间[a ,b ]上的解析式与该区间函数图象上的点(x ,y )有什么关系?答案 点(x ,y )满足y =f (x ).梳理 一般地,求解析式的任务就是要找到一个含有自变量因变量的等式,该等式同时满足两个条件: ①定义域符合要求;②图象上任意一点均满足该式.特别地,如果知道函数的奇偶性和一个区间[a ,b ]上的解析式,想求对称区间[-b ,-a ]上的解析式,那么就可以设出关于原点对称区间[-b ,-a ]上任一点(x ,y ),通过关于原点(或y 轴)的对称点(-x ,-y )(或(-x ,y ))满足的关系式间接找到(x ,y )所满足的解析式.知识点二 奇偶性与单调性思考 观察偶函数y =x 2与奇函数y =1x在(-∞,0)和(0,+∞)上的单调性,你有何猜想? 答案 偶函数y =x 2在(-∞,0)和(0,+∞)上的单调性相反;奇函数y =1x在(-∞,0)和(0,+∞)上的单调性相同.梳理 一般地,若函数f (x )为奇函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相同的单调性;若函数f (x )为偶函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相反的单调性. 知识点三 奇偶性的推广思考 对于定义域内任意x ,若f (-x )=-f (x ),则函数f (x )的图象关于(0,0)对称,那么若f (1-x )=-f (1+x ),函数f (x )的图象又有什么特点?答案 设1-x =x 1,1+x =x 2,则有⎩⎨⎧x 1+x 22=1,f (x 1)+f (x 2)2=0, 即点(x 1,f (x 1))与点(x 2,f (x 2))关于点(1,0)对称. 梳理 一般地,对于定义域内任意x , (1)若f (a -x )=2b -f (a +x ),则f (x )图象关于点(a ,b )对称.当a =b =0时,即为奇函数定义. (2)若f (a -x )=f (a +x ),则f (x )图象关于直线x =a 对称,当a =0时,即为偶函数定义.类型一 用奇偶性求解析式命题角度1 已知区间[a ,b ]上的解析式,求[-b ,-a ]上的解析式例1 函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求当x <0时,f (x )的解析式.解 设x <0,则-x >0,∴f (-x )=-(-x )+1=x +1,又∵函数f (x )是定义域为R 的奇函数,∴f (-x )=-f (x )=x +1,∴当x <0时,f (x )=-x -1.反思与感悟 求给定哪个区间的解析式就设这个区间上的变量为x ,然后把x 转化为-x ,此时-x 成为了已知区间上的解析式中的变量,通过应用奇函数或偶函数的定义,适当推导,即可得所求区间上的解析式. 跟踪训练1 已知y =f (x )是定义在 R 上的奇函数,且当x >0时,f (x )=2x -x 2.求y =f (x )的解析式. 解 设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-[2(-x )-(-x )2]=2x +x 2.因为y =f (x )是R 上的奇函数,所以f (0)=0.所以f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,2x -x 2,x >0. 命题角度2 已知一奇一偶两函数之和,求这两个函数的解析式例2 设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式. 解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ),由f (x )+g (x )=1x -1. ① 用-x 代替x 得f (-x )+g (-x )=1-x -1, ∴f (x )-g (x )=1-x -1, ② (①+②)÷2,得f (x )=1x 2-1; (①-②)÷2,得g (x )=x x 2-1. 反思与感悟 f (x )+g (x )=1x -1对定义域内任意x 都成立,所以可以对x 任意赋值,如x =-x . 因为f (x ),g (x )一奇一偶,才能把-x 的负号或提或消,最终得到关于f (x ),g (x )的二元方程组,从中解出f (x )和g (x ).跟踪训练2 设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+2x ,求函数f (x ),g (x )的解析式.解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ),由f (x )+g (x )=2x +x 2. ①用-x 代替x 得f (-x )+g (-x )=-2x +(-x )2,∴f (x )-g (x )=-2x +x 2, ②(①+②)÷2,得f (x )=x 2;(①-②)÷2,得g (x )=2x .类型二 奇偶性对单调性的影响命题角度1 由x 的取值情况推导f (x )的取值情况例3 设f (x )是偶函数,在区间[a ,b ]上是减函数,试证f (x )在区间[-b ,-a ]上是增函数.证明 设x 1,x 2是区间[-b ,-a ]上任意两个值,且有x 1<x 2.∵-b ≤x 1<x 2≤-a ,∴a ≤-x 2<-x 1≤b .∵f (x )在[a ,b ]上是减函数,∴f (-x 2)>f (-x 1).∵f (x )为偶函数,即f (-x )=f (x ),∴f (-x 2)=f (x 2),f (-x 1)=f (x 1).∴f (x 2)>f (x 1),即f (x 1)<f (x 2).∴函数f (x )在区间[-b ,-a ]上是增函数.引申探究区间[a ,b ]和[-b ,-a ]关于原点对称.(1)若f (x )为奇函数,且在[a ,b ]上有最大值M ,则f (x )在[-b ,-a ]上有最________值________.(2)若f (x )为奇函数,f (x )+2在[a ,b ]上有最大值M ,则f (x )+2在[-b ,-a ]上有最________值________. 答案 (1)小 -M (2)小 -M +4解析 (1)设x ∈[-b ,-a ],则-x ∈[a ,b ],∴f (-x )≤M 且存在x 0∈[a ,b ],使f (x 0)=M .∵f (x )为奇函数,∴-f (x )≤M ,f (x )≥-M ,且存在-x 0∈[-b ,-a ],使f (-x 0)=-M .∴f (x )在[-b ,-a ]上有最小值-M .(2)由(1)知,f (x )在[a ,b ]上有最大值M -2时,f (x )在[-b ,-a ]上有最小值-M +2.∴f (x )+2在[-b ,-a ]上有最小值-M +4.反思与感悟 与求解析式一样,证哪个区间上的单调性,设x 1,x 2属于哪个区间.同样,求哪个区间上的最值,也设x 属于哪个区间.跟踪训练3 已知函数y =f (x )是偶函数,当x >0时,有f (x )=x +1x +2,则当x ∈[-4,-1]时,求函数f (x )的值域.解 设1≤x 1<x 2≤4,则f (x 1)-f (x 2)=x 1+1x 1+2-x 2+1x 2+2=(x 1+1)(x 2+2)-(x 1+2)(x 2+1)(x 1+2)(x 2+2) =x 1-x 2(x 1+2)(x 2+2). 因为1≤x 1<x 2≤4,所以x 1-x 2<0,x 1+2>0,x 2+2>0,所以x 1-x 2(x 1+2)(x 2+2)<0,即f (x 1)-f (x 2)<0, 所以f (x 1)<f (x 2).故函数f (x )在[1,4]上是增函数,所以当x ∈[1,4]时,函数f (x )的值域是[23,56]. 因为y =f (x )是偶函数,所以当x ∈[-4,-1]时,函数f (x )的值域也是[23,56]. 命题角度2 由f (x )的取值情况推导x 的取值情况例4 已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________. 答案 (-1,3)解析 ∵f (x )为偶函数,∴f (x -1)=f (|x -1|),又f (2)=0,∴f (x -1)>0,即f (|x -1|)>f (2),∵|x -1|,2∈[0,+∞),且f (x )在[0,+∞)上单调递减.∴|x -1|<2,即-2<x -1<2,∴x 的取值范围为(-1,3).反思与感悟 若f (x )在[a ,b ]上单调递增,则x 1,x 2∈[a ,b ]时,可由f (x 1)<f (x 2)推知x 1<x 2.但是如果不知道x 1或x 2是否在[a ,b ]内呢?这时如果已知函数奇偶性,可以借助奇偶性把x 1,x 2转化为在已知区间[a ,b ]内,如本例中x -1是否属于[0,+∞)不确定,但是|x -1|∈[0,+∞).跟踪训练4 奇函数f (x )在[0,+∞)上单调递减,解不等式f (x -1)+f (2x +3)>0.解 ∵f (x )在[0,+∞)上单调递减且为奇函数,∴f (x )在(-∞,+∞)上单调递减,∴f (x -1)+f (2x +3)>0⇔f (x -1)>-f (2x +3)=f (-2x -3)⇔x -1<-2x -3,解得x <-23,∴原不等式解集为{x |x <-23}. 类型三 对称问题例5 定义在R 上的奇函数f (x )满足:f (x -4)=-f (x ),且x ∈[0,2]时,f (x )=x ,试画出f (x )的图象. 解 ∵f (x )是奇函数,∴f (x -4)=-f (x )=f (-x ),∴f(x)关于直线x=-2对称.反复利用f(x)关于原点对称又关于直线x=-2对称,可画出f(x)的图象如图:反思与感悟奇偶性推广到一般的对称性后,要善于抓住特征识别对称中心(或对称轴),而应用对称性与应用奇偶性完全类似.跟踪训练5定义在R上的偶函数f(x)满足:f(x-4)=-f(x),且x∈[0,2]时,f(x)=x.试画出f(x)的图象.解∵f(x)是偶函数,∴f(x)的图象关于y轴对称.又∵f(x-4)=-f(x),∴f(x)关于点C(-2,0)对称.反复利用f(x)关于(-2,0)对称又关于y轴对称,可画出的图象如图:1.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数答案D2.已知f(x)是奇函数,且x>0时,f(x)=x-1,则x<0时f(x)等于()A.x+1B.x-1C.-x-1D.-x+1答案A3.若奇函数f(x)在R上是增函数,则函数y=f(-x)在R上是()A.单调递减的偶函数B.单调递减的奇函数C.单调递增的偶函数D.单调递增的奇函数答案B4.定义在R上的偶函数f(x)在[0,+∞)上是增函数,若f(a)<f(b),则一定可得()A.a<bB.a>bC.|a|<|b|D.0≤a<b或a>b≥0答案C5.已知对于函数f(x)=x2+ax定义域内任意x,有f(1-x)=f(1+x),则实数a等于()A.1B.-1C.2D.-2答案D1.函数的奇偶性是其相应图象特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.这种对称推广,就是一般的中心对称或轴对称.2.(1)根据奇函数的定义,如果一个奇函数在原点处有定义,即f(0)有意义,那么一定有f(0)=0.有时可以用这个结论来否定一个函数为奇函数.(2)偶函数的一个重要性质:f(|x|)=f(x),它能使自变量化归到[0,+∞)上,避免分类讨论.3.具有奇偶性的函数的单调性的特点:(1)奇函数在[a,b]和[-b,-a]上具有相同的单调性.(2)偶函数在[a,b]和[-b,-a]上具有相反的单调性.课时作业一、选择题1.已知奇函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(1)的x的取值范围是()A.(-∞,1)B.(-∞,-1)C.(0,1)D.[-1,1)答案A解析由于f(x)在[0,+∞)上单调递增,且是奇函数,所以f(x)在R上单调递增,f(x)<f(1)等价于x<1.故选A.2.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=x2+3x+1,则f(x)等于()A.x2B.2x2C.2x2+2D.x2+1答案D解析∵f(x)+g(x)=x2+3x+1,①∴f(-x)+g(-x)=x2-3x+1.又f(x)是偶函数,且g(x)是奇函数,∴f (x )-g (x )=x 2-3x +1.②由①②联立,得f (x )=x 2+1.3.若函数f (x )是R 上的偶函数,且在区间[0,+∞)上是增函数,则下列关系成立的是( )A.f (-3)>f (0)>f (1)B.f (-3)>f (1)>f (0)C.f (1)>f (0)>f (-3)D.f (1)>f (-3)>f (0)答案 B解析 ∵f (-3)=f (3),且f (x )在区间[0,+∞)上是增函数,∴f (-3)>f (1)>f (0).4.设f (x )是奇函数,当x ∈[0,+∞)时,f (x )≤m (m <0),则f (x )的值域是( )A.[m ,-m ]B.(-∞,m ]C.[-m ,+∞)D.(-∞,m ]∪[-m ,+∞)答案 D解析 当x ≥0时,f (x )≤m ;当x ≤0时,-x ≥0,所以f (-x )≤m ,因为f (x )是奇函数,所以f (-x )=-f (x )≤m ,即f (x )≥-m .5.定义在R 上的函数f (x )在(-∞,2)上是增函数,且f (x +2)=f (2-x )对任意x ∈R 恒成立,则( )A.f (-1)<f (3)B.f (0)>f (3)C.f (-1)=f (3)D.f (0)=f (3)答案 A解析 f (x )的图象关于直线x =2对称,所以f (3)=f (1),由于f (x )在(-∞,2)上是增函数,所以f (-1)<f (1)=f (3).6.设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( ) A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)答案 C解析 ∵f (x )为奇函数,f (x )-f (-x )x <0,即f (x )x<0, ∵f (x )在(0,+∞)上为减函数且f (1)=0,∴当x >1时,f (x )<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f (x )为减函数且f (-1)=0,即x <-1时,f (x )>0.综上使f (x )x<0的解集为(-∞,-1)∪(1,+∞). 二、填空题7.若函数f (x )=(k -2)x 2+(k -1)x +3是偶函数,则f (x )的递减区间是________.答案 [0,+∞)解析 利用函数f (x )是偶函数,得k -1=0,k =1,所以f (x )=-x 2+3,其单调递减区间为[0,+∞).8.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是________. 答案 (13,23) 解析 由于f (x )是偶函数,因此f (x )=f (|x |),∴f (|2x -1|)<f (13),再根据f (x )的单调性, 得|2x -1|<13,解得13<x <23. 9.已知y =f (x )+x 2是奇函数且f (1)=1,若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 ∵y =f (x )+x 2是奇函数,∴f (-x )+(-x )2=-[f (x )+x 2],∴f (x )+f (-x )+2x 2=0,∴f (1)+f (-1)+2=0.∵f (1)=1,∴f (-1)=-3.∵g (x )=f (x )+2,∴g (-1)=f (-1)+2=-3+2=-1.10.若函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,g (x ),x <0为奇函数,则f [g (-1)]=________. 答案 -15解析 当x <0时,则-x >0,由f (x )是奇函数,所以f (-x )=-f (x )=(-x )2-2x =x 2-2x ,所以f (x )=-x 2+2x .即g (x )=-x 2+2x ,因此,f [g (-1)]=f (-3)=-9-6=-15.三、解答题11.已知函数y =f (x )的图象关于原点对称,且当x >0时,f (x )=x 2-2x +3.(1)试求f (x )在R 上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.解 (1)因为函数f (x )的图象关于原点对称,所以f (x )为奇函数,则f (0)=0.设x <0,则-x >0,因为x >0时,f (x )=x 2-2x +3.所以f (x )=-f (-x )=-(x 2+2x +3)=-x 2-2x -3.于是有f (x )=⎩⎪⎨⎪⎧ x 2-2x +3,x >0,0,x =0,-x 2-2x -3,x <0.(2)先画出函数在y 轴右侧的图象,再根据对称性画出y 轴左侧的图象,如图.由图象可知函数f (x )的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).12.设函数f (x )在R 上是偶函数,在区间(-∞,0)上单调递增,且f (2a 2+a +1)<f (2a 2-2a +3),求实数a 的取值范围.解 由f (x )在R 上是偶函数,在区间(-∞,0)上单调递增,可知f (x )在(0,+∞)上单调递减.∵2a 2+a +1=2(a +14)2+78>0, 2a 2-2a +3=2(a -12)2+52>0, 且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3,即3a -2>0,解得a >23. ∴实数a 的取值范围是a >23. 13.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数,且满足f (1)=52,f (2)=174. (1)求a ,b ,c 的值;(2)试判断函数f (x )在区间⎝⎛⎭⎫0,12上的单调性并证明.解 (1)∵f (x )为奇函数,∴f (-x )=-f (x ),∴-ax -b x +c =-ax -b x-c , ∴c =0,∴f (x )=ax +b x. 又∵f (1)=52,f (2)=174, ∴⎩⎨⎧ a +b =52,2a +b 2=174.∴a =2,b =12. 综上,a =2,b =12,c =0. (2)由(1)可知f (x )=2x +12x. 函数f (x )在区间⎝⎛⎭⎫0,12上为减函数. 证明如下:任取0<x 1<x 2<12, 则f (x 1)-f (x 2)=2x 1+12x 1-2x 2-12x 2=(x 1-x 2)⎝⎛⎭⎫2-12x 1x 2=(x 1-x 2)4x 1x 2-12x 1x 2. ∵0<x 1<x 2<12, ∴x 1-x 2<0,2x 1x 2>0,4x 1x 2-1<0.∴f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在⎝⎛⎭⎫0,12上为减函数. 四、探究与拓展14.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________. 答案 (-7,3)解析 因为f (x )为偶函数,所以f (|x +2|)=f (x +2),则f (x +2)<5可化为f (|x +2|)<5,则|x +2|2-4|x +2|<5,即(|x +2|+1)(|x +2|-5)<0,所以|x +2|<5,解得-7<x <3,所以不等式f (x +2)的解集是(-7,3).15.已知函数y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-x 2+ax .(1)若a =-2,求函数f (x )的解析式;(2)若函数f (x )为R 上的单调减函数,①求a 的取值范围;②若对任意实数m ,f (m -1)+f (m 2+t )<0恒成立,求实数t 的取值范围. 解 (1)当x <0时,-x >0,又∵f (x )为奇函数,且a =-2,∴f (x )=-f (-x )=x 2-2x ,∴f (x )=⎩⎪⎨⎪⎧x 2-2x ,x <0,-x 2-2x ,x ≥0. (2)①当a ≤0时,对称轴x =a 2≤0, ∴f (x )=-x 2+ax 在[0,+∞)上单调递减,由于奇函数在关于原点对称的区间上单调性相同,∴f (x )在(-∞,0)上单调递减,又在(-∞,0)上f (x )>0,在(0,+∞)上f (x )<0,∴当a ≤0时,f (x )为R 上的单调减函数.当a >0时,f (x )在(0,a 2)上单调递增,在(a 2,+∞)上单调递减,不合题意. ∴函数f (x )为单调减函数时,a 的取值范围为a ≤0.②∵f (m -1)+f (m 2+t )<0,∴f (m -1)<-f (m 2+t ),又∵f (x )是奇函数,∴f (m -1)<f (-t -m 2),又∵f (x )为R 上的单调减函数,∴m -1>-t -m 2恒成立,∴t >-m 2-m +1=-(m +12)2+54恒成立, ∴t >54.。
人教版高一数学必修第三节 函数的奇偶性与周期性

第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).5.设f (x )是定义在R 上周期为2的奇函数,当0≤x ≤1时,f (x )=x 2-x ,则f ⎝⎛⎭⎫-52=( ) A .-14B .-12C.14D.12解析:选C 因为f (x )是定义在R 上周期为2的奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12.又当0≤x ≤1时,f (x )=x 2-x ,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-12=-14,则f ⎝⎛⎭⎫-52=14. 6.(2019·益阳、湘潭调研)定义在R 上的函数f (x ),满足f (x +5)=f (x ),当x ∈(-3,0]时,f (x )=-x -1,当x ∈(0,2]时,f (x )=log 2x ,则f (1)+f (2)+f (3)+…+f (2 019)的值等于( )A .403B .405C .806D .809解析:选B 定义在R 上的函数f (x ),满足f (x +5)=f (x ),即函数f (x )的周期为5.又当x ∈(0,2]时,f (x )=log 2x ,所以f (1)=log 21=0,f (2)=log 22=1.当x ∈(-3,0]时,f (x )=-x -1,所以f (3)=f (-2)=1,f (4)=f (-1)=0,f (5)=f (0)=-1.故f (1)+f (2)+f (3)+…+f (2 019)=403×[f (1)+f (2)+f (3)+f (4)+f (5)]+f (2 016)+f (2 017)+f (2 018)+f (2 019)=403×1+f (1)+f (2)+f (3)+f (4)=403+0+1+1+0=405.7.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2的值为________. 解析:由已知可得f ⎝⎛⎭⎫1e 2=ln 1e2=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2). 又因为f (x )是偶函数,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2)=f (2)=ln 2. 答案:ln 28.(2019·惠州调研)已知函数f (x )=x +1x -1,f (a )=2,则f (-a )=________.解析:法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x 为奇函数,故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2. 所以f (a )+f (-a )=-2,故f (-a )=-4. 法二:由已知得f (a )=a +1a-1=2,即a +1a =3,所以f (-a )=-a -1a -1=-⎝⎛⎭⎫a +1a -1=-3-1=-4. 答案:-49.(2019·陕西一测)若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax,x ∈[-4,-1]的值域为________.解析:由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即⎣⎡⎦⎤-2,-12. 答案:⎣⎡⎦⎤-2,-12 10.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是____________.解析:当x >0时,lg x >0,所以x >1, 当x <0时,由奇函数的对称性得-1<x <0, 故填(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)11.f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式. 解:当x <0时,-x >0,则f (-x )=-2(-x )2+3(-x )+1=-2x 2-3x +1. 由于f (x )是奇函数,故f (x )=-f (-x ), 所以当x <0时,f (x )=2x 2+3x -1. 因为f (x )为R 上的奇函数,故f (0)=0.综上可得f (x )的解析式为f (x )=⎩⎪⎨⎪⎧-2x 2+3x +1,x >0,0,x =0,2x 2+3x -1,x <0.12.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x 成立. (1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值. 解:(1)证明:由f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x ,且f (-x )=-f (x ),知f (3+x )=f ⎣⎡⎦⎤32+⎝⎛⎭⎫32+x =-f ⎣⎡⎦⎤32-⎝⎛⎭⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函数,且T =3是其一个周期. (2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.B 级1.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9解析:选B 因为f (x )是最小正周期为2的周期函数,且0≤x <2时,f (x )=x 3-x =x (x -1)(x +1),所以当0≤x <2时,f (x )=0有两个根,即x 1=0,x 2=1.由周期函数的性质知,当2≤x <4时,f (x )=0有两个根,即x 3=2,x 4=3;当4≤x ≤6时,f (x )=0有三个根,即x 5=4,x 6=5,x 7=6,故f (x )的图象在区间[0,6]上与x 轴的交点个数为7.2.(2019·洛阳统考)若函数f (x )=ln(e x +1)+ax 为偶函数,则实数a =________. 解析:法一:(定义法)∵函数f (x )=ln(e x +1)+ax 为偶函数,∴f (-x )=f (x ), 即ln(e -x +1)-ax =ln(e x +1)+ax ,∴2ax =ln(e -x+1)-ln(e x+1)=ln e -x +1e x +1=ln 1e x =-x ,∴2a =-1,解得a =-12.法二:(特殊值法)由题意知函数f (x )的定义域为R ,由f (x )为偶函数得f (-1)=f (1), ∴ln(e -1+1)-a =ln(e 1+1)+a ,∴2a =ln(e -1+1)-ln(e 1+1)=ln e -1+1e +1=ln 1e =-1,∴a =-12.答案:-123.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].。
高一数学人必修一课件时函数奇偶性的定义与判定

06
函数奇偶性的深入理解
奇偶性与函数周期性的关系
奇偶性是函数周期性的一种特 殊表现
奇偶性函数必定有周期性,但 周期性函数不一定有奇偶性
奇偶性函数周期性的判断可以 通过观察函数的图像或解析式 来实现
奇偶性函数周期性的应用在解 决实际问题中具有重要意义, 如信号处理、控制系统设计等
奇偶性与函数单调性的关系
反函数法:通过反函数判断其奇偶 性
图像法:通过观察函数图像判断其 奇偶性
02
复合函数法:通过复合函数判断其 奇偶性
04
特殊值法:通过特殊值判断其奇偶 性
06
04
函数奇偶性的性质
奇偶性对函数图像的影响
奇函数:关于原点对称,图像关于y轴对称 偶函数:关于y轴对称,图像关于x轴对称 非奇非偶函数:既不关于原点对称,也不关于y轴对称 奇偶性对函数图像的影响:决定了函数图像的对称性和周期性
奇偶性对函数值的影响
奇函数:f(-x)=-f(x),函数值关于原点对称
偶函数:f(-x)=f(x),函数值关于y轴对称
非奇非偶函数:既不是奇函数也不是偶函数 奇偶性对函数图像的影响:奇函数的图像关于原点对称,偶函数的图像关 于y轴对称,非奇非偶函数的图像既不关于原点对称也不关于y轴对称。
奇偶性对函数运算的影响
函数奇偶性的定义 与判定
汇报人:
目录
01 单 击 添 加 目 录 项 标 题 02 函 数 奇 偶 性 的 定 义 03 函 数 奇 偶 性 的 判 定 方 法 04 函 数 奇 偶 性 的 性 质 05 函 数 奇 偶 性 的 应 用 06 函 数 奇 偶 性 的 深 入 理 解
01
添加章节标题
在解决实际问题中的应用
高一数学 函数奇偶性知识点归纳

函数奇偶性知识点归纳考点分析配经典案例分析函数的奇偶性定义:1.偶函数:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.2.奇函数:一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;3、可逆性:)()(x f x f =-⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;4、等价性:)()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=;)()(x f x f -=-⇔0)()(=+-x f x f ;5、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
7、判断或证明函数是否具有奇偶性的根据是定义。
8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
并且关于原点对称。
三、关于奇偶函数的图像特征 一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数; 即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y )偶函数的图像关于y 轴对称,反过来,如果一个函数的图像关于y 轴对称,那么这个函数是偶函数。
即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y )奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。
高一数学函数的奇偶性课件

如果对于函数f(x)的定义域内任意 一个x,都有f(-x)=- f(x),那么函数f(x) 就叫做奇函数(odd function) 。
判定函数奇偶性基本方法: ①定义法: 先看定义域是否关于原点对称, 再看f(-x)与f(x)的关系. ②图象法: 看图象是否关于原点或y轴对称.
六、应用:
例1 判断下列函数的奇偶性 1.y=-2x2+1,x∈R; 是偶函数 是奇函数 2.f(x)=-x|x|; 3.y=-3x+1; 不是奇函数也不是偶函数 4.f(x)=x2,x∈{-3,-2,-1,0,1,2}; 非奇非偶函数 5.y=0,x∈[-1,1]; 既是奇函数也是偶函数
数学必修1(A版)P33
教学目标
知识与技能方面:
1.使学生理解奇函数、偶函数的概念及其几何意义; 2.使学生掌握判断函数奇偶性的方法。
过程与方法方面:
1.培养学生判断、推理的能力; 2.通过教学,使学生明确奇(偶)函数概念的形成过程, 强化数形结合、等价转化思想训练。
情感态度价值观:
使学生在学习过程中,欣赏数学美,体验数学的科学价值 和应用价值,养成细心观察、认真分析、严谨论证的良好思维 习惯和勇于探索的科学态度。
(C) (D)
y
1 f ( x) x
3
2
1
M (x,f(x))
O 1 2 3 x
-3
M `
-2 -1
-1
(-x,-f(x)) -2
-3
因为点M`在函数图象上, 所以其坐标又为(-x,f(-x))
函数y=f(x)的图象 关于原点对称
1、对定义域中的每一 个x,-x是也在定义 域内; 2、都有f(-x)=-f(x)
高一函数奇偶性常考知识点

高一函数奇偶性常考知识点函数的奇偶性是高中数学中的一个重要概念,也是函数性质分析中经常出现的题型。
了解函数的奇偶性特点,可以帮助我们简化计算和解题过程。
本文将介绍高一函数奇偶性的常考知识点。
一、函数的奇偶性概念函数的奇偶性是指函数关于坐标原点的对称性。
具体而言,如果对于任意的x,函数f(x)满足f(-x) = f(x),则函数f(x)称为偶函数;如果对于任意的x,函数f(x)满足f(-x) = -f(x),则函数f(x)称为奇函数。
二、奇偶性的性质1. 偶函数的性质- 偶函数关于y轴对称,即图像关于y轴对称;- 偶函数的定义域可以是全体实数,也可以是一个区间;- 偶函数的图像在y轴上对称,即对于图像上的每一点(x, y),也存在相应的点(-x, y),在图像上对应的两点关于y轴对称。
2. 奇函数的性质- 奇函数关于原点对称,即图像关于原点对称;- 奇函数的定义域可以是全体实数,也可以是一个区间;- 奇函数的图像关于原点对称,即对于图像上的每一点(x, y),也存在相应的点(-x, -y),在图像上对应的两点关于原点对称。
三、计算函数的奇偶性1. 利用函数表达式判断奇偶性- 当函数表达式中只含有偶指数幂的项且系数非零时,函数为偶函数;- 当函数表达式中只含有奇指数幂的项且系数非零时,函数为奇函数;- 当函数表达式中含有奇数个奇指数幂的项且系数非零时,函数既不是偶函数也不是奇函数。
2. 利用函数的性质判断奇偶性- 若函数的图像关于原点对称,则函数为奇函数;- 若函数的图像关于y轴对称而不关于原点对称,则函数为偶函数;- 若函数既不关于y轴对称也不关于原点对称,则既不是奇函数也不是偶函数。
四、常见函数的奇偶性1. 偶函数的例子- 幂函数:y = x^n(n为正整数且为偶数)- 余弦函数:y = cos(x)- 绝对值函数:y = |x|- 常函数:y = k(k为常数)2. 奇函数的例子- 正弦函数:y = sin(x)- 正切函数:y = tan(x)- 反正比函数:y = cot(x)- 倒数函数:y = 1/x(x ≠ 0)五、应用函数的奇偶性在数学题目中有广泛的应用,常见的应用包括:1. 确定函数的对称中心:根据函数的奇偶性,可以确定函数图像的对称中心,帮助我们更好地绘制函数图像;2. 确定函数的性质:根据函数的奇偶性,可以快速判断函数的性质,如极值点、零点等;3. 简化计算过程:根据函数的奇偶性,可以简化函数的计算过程,并帮助我们更快地求解问题。
高一函数知识点总结奇偶性

高一函数知识点总结奇偶性函数是高中数学中的重要知识点之一,而函数的奇偶性则是函数理论中的一个重要概念。
在高一阶段,学生需要学习和掌握函数的奇偶性相关的知识,本文将对高一函数的奇偶性进行总结。
1. 函数的奇偶性概念函数的奇偶性是指函数在定义域内的奇偶性质。
如果对于在定义域内的任意x值,f(-x) = f(x),那么这个函数就是偶函数;如果对于在定义域内的任意x值,f(-x) = -f(x),那么这个函数就是奇函数;如果一个函数既不满足偶性质也不满足奇性质,那么这个函数就是既非偶函数也非奇函数。
2. 奇函数的性质奇函数的特点是关于原点对称,即图象关于原点对称。
此外,奇函数在坐标系的第一象限和第三象限的函数值相等,即f(x) = -f(-x)。
3. 偶函数的性质偶函数的特点是关于y轴对称,即图象关于y轴对称。
此外,偶函数在坐标系的第一象限和第二象限的函数值相等,即f(x) = f(-x)。
4. 奇偶函数的判定方法要判定一个函数是奇函数还是偶函数,可以通过以下方法:- 方法1:利用函数的定义,对于任意给定的x,计算f(-x)和f(x)的值是否相等或相反。
- 方法2:观察函数图象关于x轴的对称性。
如果函数的图象关于x 轴对称,则函数是偶函数;如果函数的图象关于原点对称,则函数是奇函数。
- 方法3:利用导函数的性质。
若函数的导函数是奇函数,则原函数是偶函数;若函数的导函数是偶函数,则原函数是奇函数。
5. 奇偶函数的性质应用奇偶函数在数学和物理中具有重要的应用。
在数学中,奇偶函数在积分计算时可以简化计算过程,同时在函数图象的对称性证明中也起到重要作用。
在物理中,奇函数和偶函数可用于描述对称和非对称的现象,如电荷分布的对称性、波函数的对称性等。
6. 奇偶函数的例子以下是一些常见的奇偶函数例子:- 正弦函数:sin(x)是奇函数,它在区间[-π, π]内关于原点对称。
- 余弦函数:cos(x)是偶函数,它在区间[-π, π]内关于y轴对称。
高一函数的奇偶性知识点

高一函数的奇偶性知识点函数是数学中一个非常重要的概念,它描述了数值之间的关系。
在高中数学中,函数受到了广泛的研究和运用。
其中,函数的奇偶性是一个很重要的概念。
本文将介绍高一函数的奇偶性知识点,并探讨其应用。
一、奇函数和偶函数的定义函数f(x)是定义在一个对称区间上的函数。
如果对任意的x∈该区间,都有f(-x)=-f(x)成立,那么函数f(x)就被称为奇函数;如果对任意的x∈该区间,都有f(-x)=f(x)成立,那么函数f(x)就被称为偶函数。
二、奇函数和偶函数的性质1. 奇函数的图像关于原点对称,即在平面直角坐标系中,关于原点对称。
2. 奇函数的定义域包括原点,而奇函数在原点处取零值。
3. 偶函数的图像关于y轴对称,即在平面直角坐标系中,关于y轴对称。
4. 偶函数的定义域包括y轴,而偶函数在y轴上的任意点处取相等的函数值。
三、奇偶性的判断方法对于一个给定的函数,我们如何确定它是奇函数还是偶函数呢?有以下几种判断方法:1. 利用定义进行判断:根据奇函数和偶函数的定义进行判断。
2. 利用恒等式进行判断:对于一些特定的函数形式,我们可以通过代入x和-x,利用恒等式判断函数的奇偶性。
例如,对于幂函数y=x^n,如果n为偶数,则函数为偶函数;如果n为奇数,则函数为奇函数。
3. 利用图像进行判断:通过观察图像,我们可以发现奇函数的图像具有对称性,而偶函数的图像则具有轴对称性。
四、奇函数和偶函数的应用奇偶性在函数的研究和应用中扮演着重要的角色。
以下是一些常见的应用:1. 函数图像的绘制:通过了解函数的奇偶性,我们可以在绘制函数的图像时,仅仅绘制出对称区间上的一部分,然后通过对称性得到整个图像。
2. 函数性质的研究:通过奇偶性的判断,我们可以推论出一些重要的函数性质。
例如,奇函数与奇函数的和仍然是奇函数;奇函数与偶函数的积是一个偶函数。
3. 函数的积分计算:对于定义在对称区间上的奇函数,其在该区间上的积分等于零。
高一数学函数的奇偶性

高一数学函数的奇偶性学习目标1、理解函数奇偶性及其几何意义.2、学会运用函数图象理解和研究函数的奇偶性3、学会判断函数的奇偶性4、周期函数f(x T) f(x)知识框架1、偶函数一般地,对于函数f(x)的定义域内的任意一个X,都有f(—x)=f(x),那么f(x)就叫做偶函数.2、奇函数一般地,对于函数f(x)的定义域内的任意一个X,都有f( —x)= —f(x),那么f(x)就叫做奇函数.f(0) 03、具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.禾U用定义判断函数奇偶性的步骤:a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,贝S是非奇非偶的函数;若对称,贝S进行下面判断;b、确定f( —x)与f(x)的关系;c、作出相应结论:若f( —x) = f(x) 或f( —x) —f(x) = 0 ,则f(x)是偶函数若f( —x) = —f(x) 或f( —x) + f(x) = 0 ,贝S f(x)是奇函数.禾U用奇偶函数的四则运算在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除仍为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数。
4、函数的周期性随堂练习1、判断下列函数的奇偶性2、已知f(x)在R 上是奇函数,且满足f(x 4) f (x),当x (0,2)时,f(x) 2x 2,贝S f(2011) _________ .3、 函数f (x) (m 1)x 2 2mx 3为偶函数,则f (x)在区间(5, 3)上()A 、先减后增B 、先增后减C 、单调递减D 、单调递增4、 已知函数y f (x)为奇函数,若f(3)f(2) 1,则f( 2) f ( 3) _____________ . 5、 设函数f(x) (x 1)(x a)为奇函数,则a __________________ .x 6、 函数f(x)在R 上为奇函数,且f(x) ■ x 1,(x 0),则当x 0时,f(x) __________ . 7、 设f(x)为定义在R 上的奇函数,当x 0时,f(x) 2x 2x b (b 为常数),贝S f( 1) ___________ .8、 若f(x)是R 上周期为5的奇函数且满足f(1) 1, f(2) 2,则f(3) f(4) _______ .9、 函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x 1)是奇函数, 若 f(0.5) 9,贝S f(8.5) __________ .10、 设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f (x 2) f (x).当 x [0,2]时,f (x) 2x x 2.(1) 求证:f(x)是周期函数;(2) 当x [2,4]时,求f (x)的解析式;(1) f(x)(3) f (x) (5) f(x)(2) f(x) x 2 x 3; x 2 1 1 x 2; x 2 2(x 0) 0(x 0) . x 2 2(x 0)(4) y 、2x 1 .1 2x;(3)计算f(0) f (1) f (2) f(2011)的值.。
高一数学奇偶性

1、函数是奇函数或是偶函数称为函数的奇偶性, 函数的奇偶性是函数的整体性质;
2、由函数的奇偶性定义可知,函数具有奇偶性的 一个必要条件是,对于定义域内的任意一个x,则 -x也一定是定义域内的一个自变量(即定义域关 于原点对称).
3、奇、偶函数定义的逆命题也成立,即 若f(x)为奇函数,则f(-x)=-f(x)有成立. 若f(x)为偶函数,则f(-x)=f(x)有成立.
点对称,那么就称这个函数为奇函数.
2、偶函数的图象关于y轴对称. 反过来,如果一个函数的图象关于y轴对称,
那么就称这个函数为偶函数.
说明:奇偶函数图象的性质可用于: a、简化函数图象的画法. B、判断函数的奇偶性
例3、已知函数y=f(x)是偶函数,它在y轴右边的图 象如下图,画出在y轴左边的图象.
f(-3)=-3=-f(3) f(-2)=-2=-f(2) f(-1)=-1=-f(1)
f(-3)=-1/3=-f(3) f(-2)=-1/2=-f(2) f(-1)=-1=-f(1)
实际上,对于R内任意的一个x,都有f(-x)=-x=-f(x),这时 我们称函数y=x为奇函数.
2.奇函数
一般地,对于函数f(x)的定义域内的任意一个x, 都有f(-x)=f(x),那么f(x)就叫做偶函数.
1.3.2函数的奇偶性
1.偶函数
一般地,对于函数f(x)的定义域内的任意一个x, 都有f(-x)=f(x),那么f(x)就叫做偶函数. 例它如们,的函图数象分f (别x)如 下x2 图1(,1f)(、x)(2)x所22示1.你能发 现两个函数图象有什么共同特征吗?
4、如果一个函数f(x)是奇函数或偶函数,那么我 们就说函数f(x)具有奇偶性.
例5、判断下列函数的奇偶性:
高一数学 函数奇偶性知识点归纳

函数奇偶性知识点归纳考点分析配经典案例分析函数的奇偶性定义:1.偶函数:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.2.奇函数:一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;3、可逆性:)()(x f x f =-⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 奇函数;4、等价性:)()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=;)()(x f x f -=-⇔0)()(=+-x f x f ;5、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
7、判断或证明函数是否具有奇偶性的根据是定义。
8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
并且关于原点对称。
三、关于奇偶函数的图像特征 一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数; 即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y )偶函数的图像关于y 轴对称,反过来,如果一个函数的图像关于y 轴对称,那么这个函数是偶函数。
即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y )奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。
3.2.2函数的奇偶性(课件)高一数学(湘教版2019必修第一册)

. ( , + ∞)
2
答案:.
1
. (−∞, )
2
).
1
. ( ,2)
2
1
. [−2, )
2
课堂小结&作业
小结:
1.偶函数、奇函数的定义及其几何意义;
2.判断奇偶函数的思路;
3.各题型的注意事项.
作业:
1.课本P83的1、2、3题;
2.课本P84的习题3.2的4、5、6、7、11、12、13题.
2
3
. (2) < (− ) < (−1)
2
3
. (2) < (−1) < (− )
2
3
. (−1) < (− ) < (2)
2
解:据题意得: () 为偶函数,且在区间 ( − ∞, − 1] 上是增函数.
∴(2) = (−2) .
3
又∵−2 < − < −1
2
∴(−2) <
∵()为上的偶函数
∴当 > 0时,() = (−) = ( + 1).
练习
方法技巧:
利用函数奇偶性求分段函数的解析式
(1)定义域:根据已知定义域(正或负)的解析式,写出另一边的解析式.
(2)写成分段函数的形式,通常不会出现 = 0,如果出现也需要特殊说明.
练习
变3.已知函数()是上的奇函数,且当 ∈ (0, + ∞)时,() =
同理可证:奇函数就是满足条件(−) = −()的函数.
上面的讨论概括如下:
(1)如果对一切使 () 有定义的 , (−) 也有定义,并且 (−) = ()成立,
则称()为偶函数;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学函数的奇偶性
学习目标
1、理解函数奇偶性及其几何意义.
2、学会运用函数图象理解和研究函数的奇偶性
3、学会判断函数的奇偶性
4、周期函数)
T
x
f=
+
f
(
)
(x
知识框架
1、偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
2、奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.0
f
)0(=
3、具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
a、首先确定函数的定义域,并判断其是否关于原点对称;若是不
对称,则是非奇非偶的函数;若对称,则进行下面判断;
b、确定f(-x)与f(x)的关系;
c、作出相应结论:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.利用奇偶函数的四则运算
在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除仍为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数。
4、函数的周期性
随堂练习
1、判断下列函数的奇偶性
(1);1)(3x
x x f -= (2);)(32x x x f -=
(3);11)(22x x x f -+-= (4);2112x x y -+-=
(5).)0(2)0(0)0(2)(22⎪⎩⎪⎨⎧<--=>+=x x x x x x f 2、已知)(x f 在R 上是奇函数,且满足),()4(x f x f =+当)2,0(∈x 时,22)(x x f =,则.__________)2011(=f
3、函数32)1()(2++-=mx x m x f 为偶函数,则)(x f 在区间)3,5(--上( )
A 、先减后增
B 、先增后减
C 、单调递减
D 、单调递增
4、已知函数)(x f y =为奇函数,若,1)2()3(=-f f 则._____)3()2(=---f f
5、设函数x
a x x x f ))(1()(++=为奇函数,则.______=a 6、函数)(x f 在R 上为奇函数,且),0(,1)(>+=x x x f 则当0<x 时,.________)(=x f
7、设)(x f 为定义在R 上的奇函数,当0≥x 时,b x x f x ++=22)((b 为常数),则.__________)1(=-f
8、若)(x f 是R 上周期为5的奇函数且满足,2)2(,1)1(==f f 则.________)4()3(=-f f
9、函数)(x f 的定义域为R ,且满足:)(x f 是偶函数,)1(-x f 是奇函数,若,9)5.0(=f 则=)5.8(f ________.
10、设)(x f 是定义在R 上的奇函数,且对任意实数x ,恒有).()2(x f x f -=+当∈x [0,2]时,22)(x x x f -=.
(1)求证:)(x f 是周期函数;
(2)当∈x [2,4]时,求)(x f 的解析式;
(3)计算)2011()2()1()0(f f f f +⋅⋅⋅+++的值.。