北京市海淀区清华大学附属中学2020届高三上学期10月月考数学试题 Word版含解析
北京市海淀区一零一中学2020届高三上学期期中考试数学试题 Word版含解析

北京101中学2020届高三年级上学期10月月考数学试卷一、选择题共8小题。
在每小题列出的四个选项中,选出符合题目要求的一项1.设集合2{1,1,2},{1,2}A B a a =-=+-,若{1,2}A B ?-,则a 的值为( )A. ﹣2或﹣1B. 0或1C. ﹣2或1D. 0或﹣2【答案】C 【解析】∵集合{}{}{}21,1,2,1,2,1,2A B a a A B =-=+-⋂=- ,∴2211122221a a a a 或+=-+=⎧⎧⎨⎨-=-=-⎩⎩,解得a=−2或a=1. 本题选择C 选项.2.已知向量(1,2),b (m,4)a -=,且a ∥b,那么2a-b= () A. (4,0) B. (0,4)C. (4,-8)D. (-4,8) 【答案】C 【解析】因为向量()()1,2,,4m =-=a b ,且a ∥b ,∴14(2),2,2(2,44)(4,8)m m m a b ⨯=-⨯∴=-∴-=---=-. 本题选择C 选项. 3.已知3(,)22ππα∈,且tan 2α=,那么sin α=A. 3-B. 6C.6 D.3【答案】B 【解析】 【分析】直接利用同角三角函数基本关系求出结果. 【详解】因为3(,)22ππα∈,sin tan 2cos ααα=>0,故3(,)2παπ∈ 即sin 2αα=,又22sin cos 1αα+=, 解得:sin α=6故选 :B【点睛】本题考查的知识要点:同角三角函数基本关系,主要考查学生的运算能力和转换能力,属于基础题型.4.在数列{}n a 中,若11a =,()123n n a a n N *+=+∈,则101a =( )A. 10023-B. 10123-C. 10221-D.10223-【答案】D 【解析】 【分析】利用待定系数法可得知数列{}3n a +是等比数列,并确定该数列的首项和公比,可求出数列{}n a 的通项公式,即可得出101a 的值.【详解】123n n a a +=+Q ,()1323n n a a +∴+=+,1323n n a a ++∴=+,且134a +=,所以,数列{}3n a +是以4为首项,以2为公比的等比数列,113422n n n a -+∴+=⨯=,123n n a +∴=-,因此,10210123a =-.故选:D.【点睛】本题考查利用待定系数法求数列项的值,解题时要熟悉待定系数法对数列递推公式的要求,考查运算求解能力,属于中等题.5.若定义在R 上的函数()f x 满足:对任意1,x 2x R ∈有1212()()()1f x x f x f x +=++则下列说法一定正确的是 A. ()f x 为奇函数B. ()f x 为偶函数C. ()1f x +为奇函数D.()1f x +为偶函数【答案】C【详解】x 1=x 2=0,则()()()0001f f f =++,()01f ∴=-, 令x 1=x ,x 2=-x ,则()()()01f f x f x =+-+, 所以()()110f x f x ++-+=,即()()11f x f x ⎡⎤+=--+⎣⎦,()1f x +为奇函数,故选C. 6.在ABC ∆中,“cos cos A B <”是“sin sin A B >”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】由余弦函数的单调性找出cos cos A B <的等价条件为A B >,再利用大角对大边,结合正弦定理可判断出“cos cos A B <”是“sin sin A B >”的充分必要条件.【详解】Q 余弦函数cos y x =在区间()0,π上单调递减,且0A π<<,0B π<<, 由cos cos A B <,可得A B >,a b ∴>,由正弦定理可得sin sin A B >. 因此,“cos cos A B <”是“sin sin A B >”的充分必要条件. 故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.7.设1x 、2x 、3x 均为实数,()1211log 13x x ⎛⎫=+ ⎪⎝⎭,2321log 3x x ⎛⎫= ⎪⎝⎭,3231log 3xx ⎛⎫= ⎪⎝⎭,则( ) A. 132x x x << B. 321x x x << C. 312x x x << D. 213x x x <<【答案】A 【解析】在坐标系中作出函数13xy⎛⎫= ⎪⎝⎭,()2log1y x=+,3logy x=,2logy x=的图象,将1x、2x、3x分别视为函数13xy⎛⎫= ⎪⎝⎭与()2log1y x=+、3logy x=、2logy x=交点的横坐标,利用数形结合思想可得出这三个实数的大小关系.【详解】作函数13xy⎛⎫= ⎪⎝⎭,()2log1y x=+,3logy x=,2logy x=的大致图象,如图所示,由三个等式可知,三个交点的横坐标从左向右依次为1x、3x、2x,所以132x x x<<.故选A.【点睛】本题考查方程根的大小比较,利用数形结合思想转化为函数交点横坐标的大小关系是解题的关键,考查数形结合思想的应用,属于中等题.8.设函数()f x=sin(5xωπ+)(ω>0),已知()f x在[]0,2π有且仅有5个零点,下述四个结论:①()f x在(0,2π)有且仅有3个极大值点②()f x在(0,2π)有且仅有2个极小值点③()f x在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A. ①④B. ②③C. ①②③D. ①③④【答案】D【解析】【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得5265πππωπ≤+<,结合正弦函数的图像分析得出答案. 【详解】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵f (x )在[0,2]π有且仅有5个零点, ∴5265πππωπ≤+<,∴1229510ω≤<,故④正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确; 因此由选项可知只需判断③是否正确即可得到答案,当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦, 若f (x )在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ωππ+< ,即<3ϖ , ∵1229510ω≤<,故③正确. 故选D .【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题.二、填空题共6小题9.已知复数z 满足30z z+=,则||z =_____________.3 【解析】分析:设(,)z a bi a b R =+∈,代入23z =-,由复数相等的条件列式求得,a b 的值得答案.详解:由30z z+=,得23z =-, 设(,)z a bi a b R =+∈,由23z =-得222()23a bi a b abi +=-+=-,即22320a b ab ⎧-=-⎨=⎩,解得0,3a b ==,所以3z i =,则3z =.点睛:本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题,着重考查了考生的推理与运算能力. 10.已知函数()13cos cos 22f x x x x =+,若将其图象向右平移()0ϕϕ>个单位长度后所得的图象关于原点对称,则ϕ的最小值为_____. 【答案】12π【解析】 【分析】利用二倍角的正弦公式以及两角和的正弦公式将函数()y f x =的解析式化简为()sin 26f x x π⎛⎫+ ⎝=⎪⎭,并求出平移后的函数解析式,利用所得函数图象过原点,求出ϕ的表达式,即可得出正数ϕ的最小值. 【详解】()1313cos cos 22cos 2sin 2226f x x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭Q , 将其图象向右平移()0ϕϕ>个单位长度后所得的图象的函数解析式为()sin 226g x x πϕ⎛⎫=-+ ⎪⎝⎭,由于函数()y g x =的图象关于原点对称,则()0sin 206g πϕ⎛⎫=-= ⎪⎝⎭,()26k k Z πϕπ-=∈Q,()122k k Z ππϕ∴=-∈, 由于0ϕ>,当0k =时,ϕ取得最小值12π.故答案为:12π.【点睛】本题考查利用三角函数的对称性求参数的最值,同时也考查了三角函数的图象变换,解题的关键就是要结合对称性得出参数的表达式,考查推理能力与计算能力,属于中等题. 11.不等式()221nn n N*>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:__________. 【答案】331n n >- 【解析】 【分析】将不等式中的数字2变为3,得出331n n >-,然后利用导数证明出当3n ≥时,33n n ≥即可,即可得出不等式331n n >-对任意的n *∈N 恒成立.【详解】13311>-Q ,23321>-,33331>-,猜想,对任意的n *∈N ,331n n >-. 下面利用导数证明出当3n ≥时,33n n ≥,即证ln33ln n n ≥,即证ln ln 33n n ≤, 构造函数()ln x f x x =,则()21ln xf x x -'=,当3x ≥时,()0f x '<. 所以,函数()ln x f x x =在区间[)3,+∞上单调递减,当3n ≥时,ln ln 33n n ≤. 所以,当3n ≥且n *∈N 时,33n n ≥,所以,331n n >-. 故答案为:331n n >-.【点睛】本题考查数列不等式的证明,考查了归纳法,同时也考查了导数在证明数列不等式的应用,考查推理能力,属于中等题.12.纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以0A 、1A 、2A 、1B 、2B 、L 等标记来表示纸张的幅面规格.复印纸幅面规格只采用A 系列和B 系列,其中系列的幅面规格为:①0A 、1A 、2A 、L 、8A 所有规格的纸张的幅宽(以x 表示)和长度(以y 表示)的比例关系都为:2x y =;②将0A 纸张沿长度方向对开成两等分,便成为1A 规格,1A 纸张沿长度方向对开成两等分,便成为2A 规格,…,如此对开至8A 规格.现有0A 、1A 、2A 、L 、8A 纸各一张.若4A 纸的宽度为2dm ,则0A 纸的面积为________2dm ;这9张纸的面积之和等于________2dm . 【答案】 (1). 642 (2).5112【解析】 【分析】可设()0,1,2,3,,8i A i =L 的纸张的长度为1i a +,则数列{}n a 成以22为公比的等比数列,设i A 的纸张的面积1i S +,则数列{}n S 成以12为公比的等比数列,然后利用等比数列的通项公式求出数列{}n S 的首项,并利用等比数列的求和公式求出{}n S 的前9项之和. 【详解】可设()0,1,2,3,,8Ai i =L 的纸张的长度为1i a +,面积为1i S +,Ai 的宽度为122i a +,()1A i +的长度为2122i i a a ++=,所以,数列{}n a 是以22为公比的等比数列,由题意知4A 纸的宽度为5222a =,522a ∴=51222821242a a ∴===⎛⎫ ⎪⎝⎭所以,0A 纸的面积为(22211228264222S dm ==⨯=,又22n n S =,22211122212222n n n n n nS a S a a +++⎛⎫∴==== ⎪⎝⎭⎝⎭, 所以,数列{}n S 是以212为公比的等比数列, 因此,这9张纸的面积之和等于9216421511221412dm ⎛⎫- ⎪⎝⎭=-. 故答案为:6425112. 【点睛】本题考查数列应用题的解法,考查等比数列通项公式与求和公式的应用,考查运算求解能力,属于中等题.13.如图,A 、B 、P 是圆O 上的三点,OP 的延长线与线段BA 的延长线交于圆O 外一点Q,若OP aOA bOB=+u u u vu u u r u u u v,则+a b的取值范围是_________.【答案】()0,1【解析】【分析】设OP kOQ=u u u r u u u r,可得出()0,1OPkOQ=∈u u u ru u u r,并设OQ OA OBλμ=+u u u r u u u r u u u r,利用三点共线得出1λμ+=,从而可得出+a b的取值范围.【详解】设OP kOQ=u u u r u u u r,可得出()0,1OPkOQ=∈u u u ru u u r,设OQ OA OBλμ=+u u u r u u u r u u u r,由于A、B、Q三点共线,则1λμ+=,则()OP kOQ k OA OB k OA k OB aOA bOBλμλμ==+=+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,则a kλ=,b kμ=,()()0,1a b k k k kλμλμ∴+=+=+=∈.因此,+a b的取值范围是()0,1.故答案为:()0,1.【点睛】本题考查利用平面向量基底表示求参数和的取值范围,解题时要充分利用三点共线的结论来转化,考查分析问题和解决问题的能力,属于中等题.14.设(),()f xg x是定义在R上的两个周期函数,()f x的周期为4,()g x的周期为2,且()f x是奇函数.当2(]0,x∈时,2()1(1)f x x=--,(2),01()1,122k x xg xx+<≤⎧⎪=⎨-<≤⎪⎩,其中0k>.若在区间(0]9,上,关于x的方程()()f xg x=有8个不同的实数根,则k的取值范围是_____.【答案】12,34⎡⎫⎪⎢⎪⎣⎭.【解析】【分析】分别考查函数()f x和函数()g x图像的性质,考查临界条件确定k的取值范围即可. 【详解】当(]0,2x∈时,()2()11,f x x=--即()2211,0.x y y-+=≥又()f x为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x与()g x的图象,要使()()f xg x=在(]0,9上有8个实根,只需二者图象有8个交点即可.当1g()2x=-时,函数()f x与()g x的图象有2个交点;当g()(2)x k x=+时,()g x的图象为恒过点()2,0-的直线,只需函数()f x与()g x的图象有6个交点.当()f x与()g x图象相切时,圆心()1,0到直线20kx y k-+=的距离为1,即2211k kk+=+,得24k=,函数()f x与()g x的图象有3个交点;当g()(2)x k x=+过点1,1()时,函数()f x与()g x的图象有6个交点,此时13k=,得13k=.综上可知,满足()()f x g x =在(]0,9上有8个实根的k 的取值范围为1234⎡⎫⎪⎢⎪⎣⎭,. 【点睛】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围.三、解答题共6小题。
北京市清华大学附属中学2019-2020学年高三年级第一学期10月考数学试卷

清华附中高三2019年10月月考试卷数学一、选择题1.已知集合{}2A x x =>,()(){}130B x x x =--<,则A B =( )A .{}1x x >B .{}23x x <<C .{}13x x <<D .{}21x x x ><或2.若角θ的终边过点()3,4P -,则()tan θπ+=( ) A .34B .34-C .43 D .43-3.已知函数a y x =,log b y x =的图象如图所示,则( )A .1b a >>B .1b a >>C .1a b >>D .1a b >>4.设函数()y f x =的定义域为R ,则“()00f =”是“函数()f x 为奇函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.已知3cos 4α=,,02πα⎛⎫∈- ⎪⎝⎭,则sin 2α的值为( )A .36 B .38- C D .6.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( ) A .4 B .5 C .6 D .78.已知定义在R 上的函数()()2,0ln ,0xa x f x x a x ⎧+≤⎪=⎨+>⎪⎩,若方程()12f x =有两个不相等的实数根,则a 的取值范围是( ) A .1122a -≤≤B .102a ≤<C .01a ≤<D .102a -<≤二、填空题9.已知函数()y f x =的导函数有且仅有两个零点,其图象如图所示,则函数()y f x =在x =___________处取得极值.10.32-,123,2log 5三个数中最大的数是_____________. 11.在ABC △中,13cos 14A =,73a b =,则B =____________. 12.去年某地的月平均气温y (℃)与月份x (月)近似地满足函数sin 6y a b x πϕ⎛⎫=++ ⎪⎝⎭(a 、b为常数,0πϕ<<),其中三个月份的月平均气温如表所示:则该地2月份的月平均气温约为_______℃,ϕ=__________.13.在等腰梯形ABCD 中,已知AB DC ∥,2AB =,1BC =,60ABC =︒∠,点E 和点F 分别在线段BC 和CD 上,且23BE BC =,16DF DC =,则AE AF ⋅的值为_____________.14.如图,线段8AB =,点C 在线段AB 上,且2AC =,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP x =,CPD △的面积为()f x ,则()f x 的定义域为_________,()'f x 的零点是__________.三、解答题15.已知函数()()cos f x A x ωϕ=+0,0,02A πωϕ⎛⎫>><< ⎪⎝⎭的图象过点10,2⎛⎫⎪⎝⎭,最小正周期为23π,且最小值为1-. (1)求函数()f x 的解析式;(2)若,6x m π⎡⎤∈⎢⎥⎣⎦,()f x 的值域是1,⎡-⎢⎣⎦,求m 的取值范围.16.数列{}n a 的前n 项和记为n S ,若数列n S n ⎧⎫⎨⎬⎩⎭是首项为9,公差为1-的等差数列.(1)求数列{}n a 的通项公式n a ;(2)若n n b a =,且数列{}n b 的前n 项和记为n T ,求415T T +的值.17.已知ABC △的内角,,A B C 所对的边分别为,,a b c ,()8sin 17A C +=,且角B 为锐角. (1)求cos B 的值;(2)若6a c +=,ABC △的面积为2,求边长b .18.已知函数()1xax f x e-=. (1)当1a =时,求函数()f x 的单调区间;(2)当0a <时,求函数()f x 在区间[]0,1上的最小值.19.已知函数()39f x x x =-,函数()23g x x a =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点处且有公共切线,求a 的值; (2)若存在实数b 使不等式()()f x g x <的解集为(),b -∞,求实数a 的取值范围.20.设满足以下两个条件的有穷数列12,,,n a a a …为()2,3,4,n n =…阶“期待数列”: ①1230n a a a a ++++=…; ②1231n a a a a ++++=…;(1) 分别写出一个单调递增的3阶和4阶“期待数列”;(2) 若某2013阶“期待数列”是等差数列,求该数列的通项公式; (3) 记n 阶“期待数列”的前k 项和为()1,2,3,,k S k n =…,试证:12k S ≤.。
2019_2020学年10月北京海淀区首都师范大学附属中学高三上学期月考数学试卷

2 )求函数
在
上的最小值.
3 )若
,求证:
是函数
在
递增的充分不必要条件.
时单调
20. 已知集合
,其中
,由 中的元素构成两个
相应的集合:
,
.其
中
是有序数对,集合 和 中的元素个数分别为 和 .若对于任意的
,总有
,则称集合 具有性质 .
1 )检验集合
与
是否具有性质 并对其中具有性质 的集合,写出相应
的集合 和 ;
”的充要条件是“
,
,
”;
②函数
的充要条件是 有最大值和最小值;
③若函数 , 的定义域相同,且
,
,则;④若函数(,)有最大值,则
.
其中的真命题有
.
三、解答题
(本大题共6题,共计80分)
15. 已知函数 1 )若 2 )若
,且 ,求函数
. ,求 的值. 的单调递增区间.
16. 某科研小组研究发现:一棵水蜜桃树的产量 (单位:千克)与肥料费用 (单位:百元)满足
12. 函数
是
.
在区间
上单调递减,则实数 的取值范围
13. 在直角坐标系
中,点 ;
和点
是单位圆
的最大值为
.
上两点,
,则
14. 以 表示值域为 的函数组成的集合, 表示具有如下性质的函数 组成的集合:对于函数
,存在一个正数 ,使得函数 的值域包含于区间
.例如,当
,
时,
,
.现有如下命题:
①设函数 的定义域为 ,则“
2 )对任何具有性质 的集合 ,证明:
;
3 )判断 和 的大小关系,并证明你的结论.
北京市清华大学附属中学2020-2021年九年级上学期十月数学月考试卷

十月学科能力测评数学(清华附中初19级)2021.10姓名准考证号考场号座位号考生须知1.本试卷共6页,共两部分,28道题.满分100分.考试时间120分钟.2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列交通标志中,是中心对称图形的是()A.禁止驶入B.靠左侧道路行驶C.向左和向右转弯D.环岛行驶2.抛物线y=(x+2)2-1的顶点坐标是()A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)3.将方程x2+2x-5=0配方后,原方程变形为()A.(x+2)2=9B.(x-2)2=9C.(x+1)2=6D.(x-1)2=64.在半径为1的⊙中,若弦AB 的长为1,则弦AB 所对的圆心角的度数为()A.90°B.60°C.30°D.15°5.如图,AB 是⊙O 的直径,C、D 是⊙O 上的两点,∠CDB=20°,则∠ABC 的度数为()A.20°B.40°C.70°D.90°6.将抛物线y=(x+1)2-2向上平移a 个单位后得到的抛物线恰好与x 轴有一个交点,则a 的值为()A.-1B.1C.-2D.27.⊙O 的半径为5,M 是圆外一点,MO=6,∠OMA=30°,则弦AB 的长为()A.4B.6C.36 D.88.在平面直角坐标系xOv 中,已知抛物线:y=ax 2-2ax+4(a>0).若A(m-1,y 1),B(m,y 2),C(m+2,y 3)为抛物线上三点,且总有y 1>y 3>y 2,结合图象,m 的取值范围是()A.m<1B.0<m<1C.0<m<21 D.m<0第二部分非选择题二、填空题(共16分,每题2分)9.已知⊙O 的半径为5,点P 在⊙O 内,写出一个OP 长的可能值.10.若一元二次方程x 2+ax+4=0有两个相等的实数根,则a 的值为.11.若a是方程3x2-5x+2=0的根,则6a2-10a=.12题13题12.如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD的度数为.13.将△ABC绕点C顺时针旋转得到△ABC,已知∠ACA’=90°,BC=5,连接BB’,则BB’的长为.14.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,如图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,则筒车工作时,盛水桶在水面以下的最大深度为m.15题15.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点是(3,0),则方程ax2+bx+c=0(a ≠0)的两根是.16.如图,CD为⊙O的直径,AB为⊙O中长度为定值的弦,AB<CD.作AE⊥CD于E,连接AC,BC,BE.下列四个结论中:①O到AB的距离为定值;②BE=BC;③当OE=AE时,∠ABC=67.5°或22.5°④∠BAE+2∠ACD为定值.正确的是.(填所有正确的序号)三、解答题(共68分,第17-22题,每题5分第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程17.解方程:x2-5x+1=0.18.已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x...-10123...y...03430...求这个二次函数的表达式19.如图,在⊙O中,AB=CD,求证:∠B=∠C.20.已知,关于x的一元二次方程x2+ax-a-1=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是负数,求a的取值范围21.已知:如图,△ABC 中,AB=AC,AB>BC求作:线段BD,使得点D 在线段AC 上,且∠CBD=21∠BAC.作法:①以点A 为圆心,AB 长为半径画圆;②以点C 为圆心,BC 长为半径画弧,交⊙A 于点P(不与点B 重合);③连接BP 交AC 于点D线段BD 就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC.∵AB=AC,∴点C 在⊙A 上.∵点P 在⊙A 上,∴∠CPB=21∠BAC.()(填推理的依据)∵BC=PC,∴∠CBD=.()(填推理的依据)∴∠CBD=21∠BAC.22.如图,AB 为⊙O 的直径,C、D 为圆上的两点,OC∥BD,OC 交AD 于点E.(1)求证:AC=CD;(2)若CE=2,AD=8,求⊙O 的半径.23.某中学课外活动小组准备围成一个矩形的活动区ABCD 其中一边靠墙,另外三边用总长为40米的栅栏围成,已知墙长为22米(如图),设矩形ABCD 边AB=x 米,面积为S 平方米.(1)求活动区面积S 与x 之间的关系式,并指出x 的取值范围;(2)当AB 为多少米时,活动区的面积最大?并求出最大面积.24.如图,以P 为顶点的抛物线y=21(x-m)2+k 交y 轴于点A,经过点P 的直线y=-2x+3交y 轴于点B.(1)用含m 的代数式表示k.(2)若点A 在B 的下方,且AB=2,求该抛物线的函数表达式.25.如图,已知直线PA 交⊙O 于A、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE,过C作CD⊥PA,垂足为D (1)求证:CD 为⊙O 的切线;(2)若DC+DA=6,⊙O 的直径为10,求AB 的长度.26.抛物线y=x 2-2mx-1+m 2与x 轴交于A,B 两点,点A 在点B 的左侧.(1)若点A 的坐标为(0,0)①求抛物线的对称轴;②当n≤x<2时,函数值y 的取值范围为-1≤y≤0,求n 的取值范围;(2)将抛物线在x 轴上方的部分沿x 轴翻折,其余部分不变,得到新的函数图象.当-23≤x≤-1时,新函数的函数值随x 的增大而减小,直接写出m 的取值范围.27.已知∠AOB=45°,P 为射线OB 上一定点,OP=22.M 为射线OA 上一动点,连接PM,满足∠OMP 为钝角.以点P 为中心,将线段PM 顺时针旋转135°,得到线段N,连接ON (1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)Q 为射线OA 上一动点,E 为MQ 中点,连接PQ.若对于任意的点M 总有ON=PQ,请问点E 的位置是否改变,若改变,说明理由,若不变,求出OE 的值.图1备用图28.在平面直角坐标系xOy 中,对于图形M 和点P,若图形M 上存在两个点E、F,使得EP+FP=2,则称点P为图形M 的“距2点”.设A(-4,0),B(4,0),⊙O 的半径为r (1)①点P 1(1,0),P 2(0,1),P 3(-1,-21)中,是线段AB 的“距2点”的是;②若P 4(3,4)是⊙O 的“距2点”,求r 的取值范围;(2)设⊙M 的半径为2,圆心M 是x 轴上的动点,C(-4,8).若折线段AC-CB 上存在点⊙M 的“距2点”,直接写出圆心M 横坐标的取值范围.。
北京市清华大学附属中学2022届高三上学期10月月考数学试题(解析版)

,令 ,
因为 ,所以 ,
则 在 上单调递减,所以 ,
,所以 在 上单调递减,
函数 在 上的最大值为 ;
【小问2详解】
对于任意的 ,总有 ,
等价于对于任意的 ,总有 ,
所以 对于任意的 恒成立,
令 , ,
①当 时, ,所以 在 上单调递减,
所以 ,所以成立;
②当 时,令 ,解得: ,
(i)当 ,所以 在 上单调递减,
【答案】
【解析】
【分析】 ,而 是定值,可利用基本不等式 变形: 进行求解.
【详解】由基本不等式, ,当且仅当 取到等号,即 时, 的最大值是 .
故答案为:
12.函数 的定义域为____.
【答案】
【解析】
【分析】根据函数有意义得到不等式组,解得即可;
【详解】解:因为 ,所以 ,解得 且 ,所以函数的定义域为
所以 ,所以成立;
(ii)当 ,所以 在 上单调递增,
又因为 ,所以 ,所以不成立;
(iii)当 ,令 ,解得: ,
令 ,解得: ,
所以 在 上单调递减,在 上单调递增,
又因为 ,所以只需 ,解得: ,
所以 ;
综上:a的取值范围为 .
同理:所以 对于任意的 恒成立,
令 , ,
①当 时, ,所以 在 上单调递减,
【答案】(1)
(2)
【解析】
【分析】(1)根据条件,运用正弦定理即可;
(2)根据条件,运用余弦定理先求出BC,再根据面积求出BD,最后再运用余弦定理求出CD.
【小问1详解】
由条件可得 ,由正弦定理得 ,
由题意, ;
【小问2详解】
在 中,由余弦定理得: ,
2020-2021学年北京市清华附中高一(上)段考数学试卷(10月份)

2020-2021学年北京市清华附中高一(上)段考数学试卷(10月份)试题数:21.满分:1501.(单选题.4分)命题p:∀x∈N.x3≥1.则¬p为()A.∀x∈N.x3<1B.∀x∉N.x3≥1C.∃x∉N.x3≥1D.∃x∈N.x3<12.(单选题.4分)已知全集U={1.2.3.4.5}.集合A={1.2.3}.B={2.4.5}.则B∩(∁U A)=()A.{2.4}B.{1.3}C.{4.5}D.{2}3.(单选题.4分)若实数x.y满足2x+y=1.则x•y的最大值为()A.1B. 14C. 18D. 1164.(单选题.4分)“x=1”是“x2=1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(单选题.4分)若b<0<a.d<c<0.则()A.ac>bdB. ac >bdC.a+c>b+dD.a-c>b-d6.(单选题.4分)若a.b∈R.且ab>0.则下列不等式中.恒成立的是()A.a2+b2>2abB. a+b≥2√abC. ba +ab≥2D. 1a +1b≥2√ab7.(单选题.4分)若关于x的不等式ax+b<0的解集为(2.+∞).则bx+a<0的解集是()A. (−∞,12)B. (12,+∞)C. (−∞,−12)D. (−12,+∞)8.(单选题.4分)加工爆米花时.爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下.可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a.b.c是常数).如图记录了三次实验的数据.根据上述函数模型和实验数据.可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟9.(单选题.4分)若关于x的不等式kx2-kx<1的解集为R则实数k的取值范围是()A.(-4.0)B.(-4.0]C.[-4.0]D.(-∞.-4]∪[0.+∞)10.(单选题.4分)已知非空集合A.B满足以下两个条件(i)A∪B={1.2.3.4.5.6}.A∩B=∅;(ii)若x∈A.则x+1∈B.则有序集合对(A.B)的个数为()A.12B.13C.14D.1511.(填空题.5分)集合{0.1}的子集的个数为___ .12.(填空题.5分)已知集合A={x|y= √m−x }.B=(2-m.+∞).若A∪B=R.且A∩B=∅.则m=___ .13.(填空题.5分)若集合{x∈N*|x2+mx<0}恰有3个元素.则实数m的取值范围是___ .14.(填空题.5分)已知集合A={x|x2-2x+a≥0}.B={x|x2-2x+a+1<0}.若A∪B=R.则实数a的取值范围为___ .15.(填空题.5分)已知a>0.b>0.a+b>2.有下列4个结论:① ab>1. ② a2+b2>2. ③ 1a和1 b 中至少有一个数小于1. ④ 1+ab和1+ba中至少有一个小于2.其中.全部正确结论的序号为___ .16.(问答题.14分)求下列关于x的不等式的解集:(1)x2-3x-4≥0;(2)-x2+x-1<0;(3)x2≤a.17.(问答题.14分)已知集合A={x|x2-(a+1)x-a>0}.(1)若1∈A.求实数a的取值范围;(2)若集合B={2.3}.且A∩B中恰好只有1个元素.求实数a的取值范围.18.(问答题.14分)已知x+y=1.x.y∈R+.(1)求x2+y2+xy的最小值;(2)求√x+√y的最大值;(3)求x(1-3y)的最小值.19.(问答题.14分)在平面直角坐标系xOy中.函数y=x2+mx+n的图象经过点(1.0).且对于任意的x∈R.总有y≥0.(1)求m.n的值;(2)若直线y=kx+2与函数y=x2+mx+n的图象交于不同的两点A(x1.y1).B(x2.y2).且x13+x23=14.求实数k的值.20.(问答题.14分)已知集合A.B为非空数集.定义A-B={x∈A且x∉B}.(1)已知集合A=(-1.1).B=(0.2).求A-B.B-A;(直接写出结果即可)(2)已知集合P={x|x2-ax-2a2≥0}.Q=[1.2].若Q-P=∅.求实数a的取值范围.21.(问答题.15分)已知x.y∈(-1.1).定义x*y= x+y1+xy.(1)求0* 13及12* 13的值;(2)求证:∀x.y∈(-1.1).x*y∈(-1.1);(3)若{x1.x2.x3.x4.x5.x6}= {−57,−16,−14,12,13,14} .求x1*x2*x3*x4*x5*x6的所有可能值构成的集合.2020-2021学年北京市清华附中高一(上)段考数学试卷(10月份)参考答案与试题解析试题数:21.满分:1501.(单选题.4分)命题p:∀x∈N.x3≥1.则¬p为()A.∀x∈N.x3<1B.∀x∉N.x3≥1C.∃x∉N.x3≥1D.∃x∈N.x3<1【正确答案】:D【解析】:根据全称命题的否定方法.根据已知中的原命题.写出其否定形式.可得答案.【解答】:解:∵命题p:∀x∈N.x3≥1.∴¬p:∃x∈N.x3<1.故选:D.【点评】:本题考查的知识点是全称命题.命题的否定.熟练掌握全(特)称命题的否定方法是解答的关键.2.(单选题.4分)已知全集U={1.2.3.4.5}.集合A={1.2.3}.B={2.4.5}.则B∩(∁U A)=()A.{2.4}B.{1.3}C.{4.5}D.{2}【正确答案】:C【解析】:由全集U及A.求出A的补集.找出B与A补集的交集即可.【解答】:解:∵全集U={1.2.3.4.5}.集合A={1.2.3}.B={2.4.5}.∴∁U A={4.5}.则B∩(∁U A)={4.5}.故选:C.【点评】:此题考查了交、并、补集的混合运算.熟练掌握各自的定义是解本题的关键.3.(单选题.4分)若实数x.y满足2x+y=1.则x•y的最大值为()A.1B. 14C. 18D. 116【正确答案】:C【解析】:根据xy=x(1-2x)=-2(x- 14)2+ 18≤ 18.即可求出最大值.【解答】:解:∵实数x.y满足2x+y=1. ∴y=1-2x.∴xy=x(1-2x)=-2x2+x=-2(x- 14)2+ 18≤ 18.当x= 14 .y= 12时取等号.故选:C.【点评】:本题考查了二次函数的性质.考查了运算和转化能力.属于基础题.4.(单选题.4分)“x=1”是“x2=1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【正确答案】:A【解析】:先判断由x=1能否推出“x2=1”.再判断由“x2=1”成立能否推出“x=1“成立.利用充要条件的定义判断出结论.【解答】:解:当x=1成立则“x2=1”一定成立反之.当“x2=1”成立则x=±1即x=1不一定成立∴“x=1”是“x2=1”的充分不必要条件故选:A.【点评】:判断一个条件是另一个条件的什么条件.首先弄清哪一个是条件;再判断前者是否推出后者.后者成立是否推出前者成立.利用充要条件的定义加以判断.5.(单选题.4分)若b<0<a.d<c<0.则()A.ac>bdB. ac >bdC.a+c>b+dD.a-c>b-d【正确答案】:C【解析】:根据不等式的性质依次验证每个选项是否正确.即可判断【解答】:解:A:由b<0<a.d<c<0可知.bd>0.ac<0.则bd>ac.故A不正确B:由d<c<0可知1c <1d<0 .又b<0<a∴ a c <0,bd>0∴ a c <bd.故B不正确C:∵b<a.d<c∴a+c>b+d.故C正确D∵d<c∴-d>-c.又a>b∴a-d>b-c.故D不正确故选:C.【点评】:本题考查不等式的性质.要求熟练掌握不等式的性质.属于基础试题6.(单选题.4分)若a.b∈R.且ab>0.则下列不等式中.恒成立的是()A.a2+b2>2abB. a+b≥2√abC. ba +ab≥2D. 1a +1b≥√ab【正确答案】:C【解析】:利用基本不等式的使用法则“一正二定三相等”即可判断出结论.【解答】:解:A.∵(a-b)2≥0.∴a2+b2≥2ab.当且仅当a=b时等号成立.因此不正确.B.取a.b<0时.a+b≥2 √ab不成立.C.∵ab>0.∴ ab . ba>0.∴ ba+ab≥2 √ba•ab=2.当且仅当a=b时取等号.正确.D.取a.b<0时. 1a + 1b≥√ab故选:C.【点评】:本题考查了基本不等式的使用法则“一正二定三相等”.考查了推理能力与计算能力.属于基础题.7.(单选题.4分)若关于x的不等式ax+b<0的解集为(2.+∞).则bx+a<0的解集是()A. (−∞,12)B. (12,+∞)C. (−∞,−12)D. (−12,+∞)【正确答案】:A【解析】:由题意知.x=2是方程ax+b=0的根.且a<0.推出b=-2a.再代入bx+a<0.解之即可.【解答】:解:由题意知.x=2是方程ax+b=0的根.且a<0.所以b=-2a.所以不等式bx+a<0可化为-2ax+a<0.解得x<12.故选:A.【点评】:本题考查一元一次不等式的解法.灵活运用不等式的逆向思维是解题的关键.考查学生的逻辑推理能力和运算能力.属于基础题.8.(单选题.4分)加工爆米花时.爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下.可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a.b.c是常数).如图记录了三次实验的数据.根据上述函数模型和实验数据.可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【正确答案】:B 【解析】:由提供的数据.求出函数的解析式.由二次函数的图象与性质可得结论.【解答】:解:将(3.0.7).(4.0.8).(5.0.5)分别代入p=at 2+bt+c.可得{0.7=9a +3b +c 0.8=16a +4b +c 0.5=25a +5b +c.解得a=-0.2.b=1.5.c=-2.∴p=-0.2t 2+1.5t-2.对称轴为t=- 1.52×(−0.2) =3.75.故选:B .【点评】:本题考查了二次函数模型的应用.考查利用二次函数的图象与性质求函数的最值问题.确定函数模型是关键.9.(单选题.4分)若关于x 的不等式kx 2-kx <1的解集为R 则实数k 的取值范围是( )A.(-4.0)B.(-4.0]C.[-4.0]D.(-∞.-4]∪[0.+∞)【正确答案】:B【解析】:对系数k 分类讨论.利用判别式即可求出结论.【解答】:解:当k=0时.不等式化为0<1.对任意实数x 恒成立.所以k=0时满足条件;当k≠0时.不等式为kx 2-kx-1<0的解集是R.所以 {k <0△=k 2+4k <0.解得-4<k <0; 综上知.实数k 的取值范围是(-4.0].故选:B .【点评】:本题考查了一元二次不等式的解法与应用问题.也考查了分类讨论思想.是基础题.10.(单选题.4分)已知非空集合A.B 满足以下两个条件(i )A∪B={1.2.3.4.5.6}.A∩B=∅;(ii )若x∈A .则x+1∈B .则有序集合对(A.B )的个数为( )A.12B.13C.14D.15【正确答案】:A【解析】:对集合A 的元素个数分类讨论.利用条件即可得出.【解答】:解:由题意分类讨论可得:若A={1}.则B={2.3.4.5.6};若A={2}.则B={1.3.4.5.6};若A={3}.则B={1.2.4.5.6};若A={4}.则B={1.2.3.5.6};若A={5}.则B={2.3.4.1.6};若A={6}.则B={2.3.4.5.1}.舍去.若A={1.3}.则B={2.4.5.6};若A={1.4}.则B={2.3.5.6};若A={1.5}.则B={2.3.4.6};若A={2.4}.则B={1.3.5.6};若A={2.5}.则B={1.3.4.6};若A={3.5}.则B={1.2.4.6};若A={1.3.5}.则B={2.4.6}.综上可得:有序集合对(A.B )的个数为12.故选:A .【点评】:本题考查了元素与集合之间的关系、集合运算、分类讨论方法.考查了推理能力与计算能力.属于中档题.11.(填空题.5分)集合{0.1}的子集的个数为___ .【正确答案】:[1]4【解析】:集合{0.1}的子集是指属于集合的部分或所有元素组成的集合.包括空集.【解答】:解:集合{0.1}的子集有:∅.{0}.{1}.{0.1}共4个.故答案为:4.【点评】:本题考查集合的子集个数问题.对于集合M的子集问题一般来说.若M中有n个元素.则集合M的子集共有2n个.此题是基础题.12.(填空题.5分)已知集合A={x|y= √m−x }.B=(2-m.+∞).若A∪B=R.且A∩B=∅.则m=___ .【正确答案】:[1]1【解析】:先求出A.根据条件得到B=C R A即可求解结论.【解答】:解:∵集合A={x|y= √m−x }=(-∞.m].B=(2-m.+∞).又∵A∪B=R.且A∩B=∅.∴B=C R A=(m.+∞).∴m=2-m⇒m=1.故答案为:1.【点评】:本题考查了交集及其运算.是基础题.13.(填空题.5分)若集合{x∈N*|x2+mx<0}恰有3个元素.则实数m的取值范围是___ .【正确答案】:[1]{m|-4≤m<-3}【解析】:分情况解二次不等式.结合已知条件即可求解结论.【解答】:解:当m>0时.x2+mx<0⇒-m<x<0.∵{x∈N*|x2+mx<0}恰有三个元素.此时没有正根.故舍去.当m<0时.x2+mx<0⇒0<x<-m.∵{x∈N*|x2+mx<0}恰有三个元素.∴3<-m≤4⇒-4≤m<-3. 当m=0时.x2+mx<0⇒x不存在.综上可得:实数m的取值范围为:{m|-4≤m<-3}.【点评】:本题主要考查不等式的求解以及分类讨论思想的应用.属于中档题目.14.(填空题.5分)已知集合A={x|x2-2x+a≥0}.B={x|x2-2x+a+1<0}.若A∪B=R.则实数a的取值范围为___ .【正确答案】:[1][1.+∞)【解析】:求出集合A.B.由A∪B=R.能求出实数a的取值范围.【解答】:解:∵当a<1时.集合A={x|x2-2x+a≥0}={x|x≤1- √1−a或x≥1+ √1−a }.当a≥1时.集合A的解集为R.当△=4-4(a+1)≤0时.即a≥0时.集合B的解集为∅.当a<0时.集合B={x|x2-2x+a+1<0}={x|1- √−a<x<1+ √−a }.若A∪B=R.则有1- √1−a≥1- √−a .且 1+ √−a≥1+ √1−a .解得不存在使不等式成立的实数a.故实数a的取值范围是[1.+∞).故答案为[1.+∞).【点评】:本题主要考查集合关系中参数的取值范围问题.两个集合的并集的定义.属于基础题.15.(填空题.5分)已知a>0.b>0.a+b>2.有下列4个结论:① ab>1. ② a2+b2>2. ③ 1a和1 b 中至少有一个数小于1. ④ 1+ab和1+ba中至少有一个小于2.其中.全部正确结论的序号为___ .【正确答案】:[1] ② ③ ④【解析】:取特殊值法可判断① ;利用基本不等式可判断② ;利用反证法.推出a+b≤2.与已知a+b>2矛盾.从而可判断③ ④ ;.【解答】:解:已知a>0.b>0.a+b>2.取a=2.b= 18 .则ab= 14<1.故① 错误;a2+b2=(a+b)2-2ab≥(a+b)2-2 (a+b2)2= (a+b)22>2.故② 正确;假设1a 和1b都不小于1.则1a≥1. 1b≥1.所以0<a≤1.0<b≤1.所以0<a+b≤2.与a+b>2矛盾.所以假设不成立.所以1a 和1b中至少有一个数小于1.故③ 正确;假设1+ab . 1+ba都不小于2.则1+ab≥2. 1+ba≥2.∵a>0.b>0.∴1+a≥2b.1+b≥2a.两式相加得:2+a+b≥2(a+b).解得a+b≤2.这与已知a+b>2矛盾.故假设不成立.∴ 1+ab . 1+ba中至少有一个小于2.故④ 正确.故正确结论的序号为② ③ ④ .故答案为:② ③ ④ .【点评】:本题主要考查基本不等式的应用.反证法的应用.考查逻辑推理能力以及计算能力.16.(问答题.14分)求下列关于x的不等式的解集:(1)x2-3x-4≥0;(2)-x2+x-1<0;(3)x2≤a.【正确答案】:【解析】:(1)不等式化为(x+1)(x-4)≥0.求出解集即可;(2)不等式化为x2-x+1>0.利用判别式求出不等式的解集;(3)讨论a的取值.从而求出不等式x2≤a的解集.【解答】:解:(1)不等式x2-3x-4≥0可化为(x+1)(x-4)≥0.解得x≤-1或x≥4.所以不等式的解集为{x|x≤-1或x≥4};(2)不等式-x2+x-1<0可化为x2-x+1>0.△=(-1)2-4×1×1=-3<0.所以不等式的解集为R;(3)当a≥0时.解不等式x2≤a.得- √a≤x≤ √a;当a<0时.不等式x2≤a无解;所以.a≥0时.不等式x2≤a的解集为-x|- √a≤x≤ √a };a<0时.不等式x2≤a的解集为∅.【点评】:本题考查了一元二次不等式的解法与应用问题.也考查了运算求解能力.是基础题.17.(问答题.14分)已知集合A={x|x2-(a+1)x-a>0}.(1)若1∈A.求实数a的取值范围;(2)若集合B={2.3}.且A∩B中恰好只有1个元素.求实数a的取值范围.【正确答案】:【解析】:(1)将1代入x2-(a+1)x-a>0.解得即可.(2)集合B={2.3}.且A∩B中恰好只有1个元素.当x=2满足.x=3不满足时.或当x=2不满足.x=3满足时.解不等式组可得.【解答】:解:(1)1∈A .将1代入x 2-(a+1)x-a >0得1-(a+1)-a >0.解得a <0. 即a 的范围为(-∞.0)(2)集合B={2.3}.且A∩B 中恰好只有1个元素. 则说明x 2-(a+1)x-a >0有1个元素是2或3. 则当x=2满足.x=3不满足时.∴ {22−2(a +1)−a >032−3(a +1)−a ≤0 .即 {a ≥32a <23.此时解集为∅. 则当x=2不满足.x=3满足时.∴ {22−2(a +1)−a ≤032−3(a +1)−a >0 .解得 23 ≤a < 32 . 综上所述a 的取值范围为[ 23 . 32 ).【点评】:本题考查了元素和集合的关系.属于基础题. 18.(问答题.14分)已知x+y=1.x.y∈R +. (1)求x 2+y 2+xy 的最小值; (2)求 √x +√y 的最大值; (3)求x (1-3y )的最小值.【正确答案】:【解析】:(1)x 2+y 2+xy=(x+y )2-xy=1-xy.然后利用基本不等式即可求解; (2)( √x + √y )2=x+y+2 √xy =1+2 √xy .然后利用基本不等式即可求解; (3)由x (1-3y )=(1-y )(1-3y )=3y 2-4y+1.然后结合二次函数的性质可求解.【解答】:解:(1)x 2+y 2+xy=(x+y )2-xy=1-xy≥1-( x+y 2 )2= 34.当且仅当x=y= 12 时.取得最小值 34 ;(2)因为x+y=1.x.y∈R +.所以( √x + √y )2=x+y+2 √xy =1+2 √xy ≤1+x+y=2.当且仅当x=y 时取等号.此时取得最大值2;(3)∵x.y∈R+.x+y=1.∴x(1-3y)=(1-y)(1-3y)=3y2-4y+1.结合二次函数的性质可知.当y= 23时取得最小值- 13.【点评】:本题主要考查了基本不等式及二次函数的性质在求解最值中的应用.属于基础题.19.(问答题.14分)在平面直角坐标系xOy中.函数y=x2+mx+n的图象经过点(1.0).且对于任意的x∈R.总有y≥0.(1)求m.n的值;(2)若直线y=kx+2与函数y=x2+mx+n的图象交于不同的两点A(x1.y1).B(x2.y2).且x13+x23=14.求实数k的值.【正确答案】:【解析】:(1)由已知函数过定点可得一个关于m.n的等式.再利用二次函数恒成立问题可再建立一个关于m.n的关系式.两式结合即可求解.(2)联立直线方程和二次函数方程可得一个关于x的二次方程.而x1.x2为该方程的根.则可由根与系数的关系得x1.x2的和与积.再利用立方和公式展开x 13+x23 .进而可以求解.【解答】:解:(1)由已知函数过点(1.0)可得:m+n+1=0… ① .又对任意x∈R.总有y≥0.则△=m2-4n≤0… ② .由① 得n=-1-m.代入② 得:m2+4m+4≤0.即(m+2)2≤0.所以m+2=0.则m=-2.n=1.故m.n的值分别为-2.1;(2)由(1)可得y=x2-2x+1.与y=kx+2联立方程可得:x2-(k+2)x-1=0.则方程的根为x1.x2.由根与系数的关系可得:{x1+x2=k+2 x1x2=−1 .所以x 13+x23 =(x1+x2)(x 12 -x1x2+x 22)=(k+2)[(x1+x2)2-3x1x2] =(k+2)[(k+2)2+3]=14.令k+2=t.则t3+3t-14=0.即t3-8+3t-6=(t-2)(t2+2t+4)+3(t-2)=(t-2)(t2+2t+7)=0.显然t-2=0.即t=2.所以k+2=2.即k=0.故实数k的值为0.【点评】:本题考查了二次函数的性质.涉及到恒成立问题以及立方和公式和高次方程求解等问题.考查了学生的运算转化能力.属于中档题.20.(问答题.14分)已知集合A.B为非空数集.定义A-B={x∈A且x∉B}.(1)已知集合A=(-1.1).B=(0.2).求A-B.B-A;(直接写出结果即可)(2)已知集合P={x|x2-ax-2a2≥0}.Q=[1.2].若Q-P=∅.求实数a的取值范围.【正确答案】:【解析】:(1)根据定义A-B={x∈A且x∉B}.即可求解A-B.B-A;(2)由Q-P=∅.结合定义A-B={x∈A且x∉B}.即可求解实数a的取值范围.【解答】:解:(1)由定义A-B={x∈A且x∉B}.集合A=(-1.1).B=(0.2).∴A-B=(-1.0].B-A=[1.2).(2)已知集合P={x|x2-ax-2a2≥0}={x|(x-2a)(x+a)≥0}.Q=[1.2].由Q-P=∅.可得Q⊆P.当a=0时.P=R.满足Q⊆P;当a<0时.P={x|x≤2a或x≥-a}.由Q⊆P.可得{a<0−a≤1.解得-1≤a<0.当a>0时.P={x|x≤-a或x≥2a}.由Q⊆P.可得{a>02a≤1.解得0<a≤ 12.综上可得.实数a的取值范围[-1. 12].【点评】:本题考查对新定义的理解和应用.是基础题.解题时要认真审题.21.(问答题.15分)已知x.y∈(-1.1).定义x*y= x+y1+xy.(1)求0* 13及12* 13的值;(2)求证:∀x.y∈(-1.1).x*y∈(-1.1);(3)若{x1.x2.x3.x4.x5.x6}= {−57,−16,−14,12,13,14} .求x1*x2*x3*x4*x5*x6的所有可能值构成的集合.【正确答案】:【解析】:(1)直接由新定义可求解;(2)等价转化为-1<x+y1+xy<1求证;(3)先判断x*y满足交换律和结合律.得到所要求解的式子结果唯一.再利用定义求解.【解答】:解:(1)0* 13 = 0+131+0•13=13. 12∗13=12+131+12•13=57;(2)证明:∵-1<x<1.-1<y<1.∴-1<xy<1.x-1<0.y-1<0.∴1+xy>0.(x-1)(y-1)>0.∴xy-(x+y)+1>0.∴1+xy>x+y.∴ x+y1+xy<1.同理:(x+1)(y+1)>0.即xy+(x+y)+1>0.∴(x+y)>-(1+xy).∴ x+y1+xy>−1 .∴ −1<x+y1+xy<1 .∵ x∗y=x+y1+xy.∴∀x.y∈(-1.1).都有x*y∈(-1.1)成立.(3)由已知可得x*y=y*x.满足交换律.∵(x*y)*z= x+y1+xy ∗z =x+y1+xy+z1+x+y1+xy×z=x+y+z+xyz1+xy+xz+yz.x*(y*z)=x* y+z1+yz =x+y+z1+yz1+x×y+z1+yz=x+y+z+xyz1+xy+xz+yz.∴(x*y)*z=x*(y*z).满足结合律.∴x1*x2*x3*x4*x5*x6有唯一值.∴x1*x2*x3*x4*x5*x6= (−57)∗(−16)∗(−14)∗12∗13∗14=(−57)+(−16)1+(−57)×(−16)* (−14)+121+(−14)×12*13+141+13×14= (−3747)∗27∗713=(−3747)+271+(−3747)×27∗713=(−1117)∗713=−(1117)+7131+(−1117)×713=−16 .∴x 1*x 2*x 3*x 4*x 5*x 6的所有可能值构成的集合为{ −16}.【点评】:本题考查对新定义的理解.属于中档题.。
北京市海淀区清华大学附属中学2020届高三数学上学期10月月考试题(含解析)

温约为______________ C, ______________
.
【答案】 (1). 5 【解析】
π
(2).
6
由 题 意 , 得 当 x 5 11 8 时 , sin( π 8 ) 1 , 又 因 为 0 π , 所 以
2
6
2
π 4π 11π , 即 4π 3π , π , 即 y a b sin( π x π ) , 则
下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯
A. 1 盏
B. 3 盏
C. 5 盏
D. 9 盏
【答案】B
【解析】
【详解】设塔顶的 a1 盏灯, 由题意{an}是公比为 2 的等比数列,
3
精品文档,欢迎下载!
∴S7= a1 1 27 =381,
1 2
解得 a1=3.
故选:B.
7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其
求出结果。
3.已知函数 y xa , y logb x 的图像如图所示,则
1
精品文档,欢迎下载!
A. b 1 a
B. b a 1
C. a 1 b
D.
a b 1
【答案】A
【解析】
由图象,得 y logb x 在 (0, ) 上单调递增,即 b 1, y xa 在 [0, ) 上单调递增,且 增加得越来越慢,即 0 a 1,则 b 1 a .故选 A.
5 分,此时成立.综上 C 正确.
对于 D,由于 7 大于 6,故人数不是最少.所以 D 不正确.
故选 C.
点睛:本题考查推理问题,考查学生的分析问题和应用所学知识解决问题的能力.解题时要
北京市海淀区清华大学附属中学2021届高三数学上学期10月月考试题(含解析).doc

北京市海淀区清华大学附属中学2021届高三数学上学期10月月考试题(含解析)一、选择题 1.已知集合,B ={|(1)(3)0}x x x --<,则A∩B=( )A. {|1}x x >B. {|23}x x <<C. {|13}x x <<D. {|2x x >或1}x <【答案】B 【解析】试题分析:{|(1)(3)0}{|13}B x x x x x x =--<=<< 又{}2A x x =所以{|23}A B x x ⋂=<< 故答案选B考点:集合间的运算.2.若角θ的终边过点()3,4P -,则()tan θπ+=( ) A.34B. 34-C.43D. 43-【答案】D 【解析】分析:利用任意角三角函数的定义,诱导公式,求得要求的式子的值 详解:角θ的终边过点()34P -,, 则()4tan 3y tan x θπθ+===- 故选D点睛:本题主要考查了任意角的三角函数的定义,属于基础题,结合诱导公式运用定义即可求出结果。
3.已知函数,log ab y x y x ==的图像如图所示,则A. 1b a >>B. 1b a >>C. 1a b >>D.1a b >>【答案】A 【解析】由图象,得log b y x =在(0,)+∞上单调递增,即1b >,ay x =在[0,)+∞上单调递增,且增加得越来越慢,即01a <<,则1b a >>.故选A.【点睛】本题考查对数函数、幂函数的图象和性质.解决本题的难点是利用幂函数的图象判定幂指数a 与1的大小,若0a >时,幂函数a y x =在[0,)+∞上单调递增,要与常见函数2yx 、y x =、12y x =的图象对照确定.4.已知函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】试题分析:()2f x x =满足()00f =,但不是奇函数,因此充分性不成立;若()f x 是奇函数,又定义域为R ,因此()()()0000f f f =-⇒=,必要性成立,因此选B. 考点:充要关系【方法点睛】判断充分条件和必要条件的方法 (1)命题判断法:设“若p ,则q”为原命题,那么:①原命题为真,逆命题为假时,p 是q 的充分不必要条件; ②原命题为假,逆命题为真时,p 是q 的必要不充分条件;③原命题与逆命题都为真时,p 是q 的充要条件;④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件. (2)集合判断法:从集合的观点看,建立命题p ,q 相应的集合:p :A ={x|p(x)成立},q :B ={x|q(x)成立},那么:①若A ⊆B ,则p 是q 的充分条件;若A ≠⊂B 时,则p 是q 的充分不必要条件; ②若B ⊆A ,则p 是q 的必要条件;若B ≠⊂A 时,则p 是q 的必要不充分条件; ③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件. (3)等价转化法:p 是q 的什么条件等价于綈q 是綈p 的什么条件. 5.已知3cos ,(,0)42παα=∈-,则sin 2α的值为( )A. 38B. 38-D. 【答案】D 【解析】试题分析:由题意sin α===,所以sin 22sin cos ααα=32(4=⨯⨯=D . 考点:同角间的三角函数关系,二倍角公式.6.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A. 1盏 B. 3盏 C. 5盏 D. 9盏【答案】B 【解析】【详解】设塔顶的a 1盏灯, 由题意{a n }是公比为2的等比数列,∴S 7=()711212a --=381,解得a 1=3. 故选:B .7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为 A. 4 B. 5 C. 6D. 7【答案】C 【解析】分析:对于四个选项中给出的参赛人数分别进行分析,看是否满足条件,然后可得结论. 详解:对于A ,若参赛人数最少为4人,则当冠军3次平局时,得3分,其他人至少1胜1平局时,最低得3分,所以A 不正确.对于B ,若参赛人数最少为5人,当冠军1负3平局时,得3分,其他人至少1胜1平局,最低得3分,所以B 不正确.对于C ,若若参赛人数最少为6人,当冠军2负3平局时,得3分,其他人至少1胜1平局,最低得3分,此时不成立;当冠军1胜4平局时,得6分,其他人至少2胜1平局,最低得5分,此时成立.综上C 正确.对于D ,由于7大于6,故人数不是最少.所以D 不正确. 故选C .点睛:本题考查推理问题,考查学生的分析问题和应用所学知识解决问题的能力.解题时要根据所给出的条件进行判断、分析,看是否得到不合题意的结果.8.已知定义在R 上的的数()()20xa x f x ln x a x ⎧+≤⎪=⎨+>⎪⎩,,若方程()1=2f x 有两个不相等的实数根,则a 的取值范围是( ) A. 1122a -≤≤ B. 102a ≤<C. 01a ≤<D.102a -<≤ 【答案】A 【解析】【详解】当12 a=-时,11222xx≤⎧⎪⎨-=⎪⎩或11ln()22xx>⎧⎪⎨-=⎪⎩解得1210,2x e=+,即有两个不相等的实数根,所以去掉B,C,D,选A.二、填空题9.已知函数()y f x=的导函数有且仅有两个零点,其图像如图所示,则函数()y f x=在x=_____处取得极值.【答案】-1【解析】【分析】利用导函数的图象,通过导函数的零点,以及函数返回判断函数的极值点即可.【详解】由图象,得当1x<-时,()0f x'<,当1x>-且2x≠时,()0f x'>,()20f'=,即函数()f x在(),1-∞-上单调递减,在()1,-+∞上单调递增,即函数()f x 在1x=-处取得极小值.【点睛】本题考查函数的导数以及导函数的图象的应用,函数的极值的判断,是基础题.10.32-,123,2log5三个数中最大数的是.【答案】2log5【解析】【详解】31218-=<,12331=>,22log5log423>>>,所以2log5最大.11.在ABC△中,13cos,7314A a b==,则B=______________.【答案】π3或2π3【解析】因为13cos14A=,所以π6A<<且33sin A=,又因为73a b=,所以7sin3sinA B=,即3373sin B⨯=,解得3sin B=,因为0πB<<,所以π3B=或2π3B=.12.去年某地的月平均气温()y C︒与月份x(月)近似地满足函数πsin()6y a b xϕ=++.(,a b为常数,π2ϕ<<).其中三个月份的月平均气温如表所示,则该地2月份的月平均气温约为______________,Cϕ︒=______________.【答案】 (1). 5- (2).π6【解析】由题意,得当51182x+==时,πsin(8)16ϕ⨯+=±,又因为π2ϕ<<,所以π4π11π236ϕ<+<,即4π3π32ϕ+=,π6ϕ=,即ππsin()66y a b x=++,则5ππsin()13668ππsin()3166a ba b⎧++=⎪⎪⎨⎪++=⎪⎩,即1331aa b=⎧⎨-=⎩,即1315ab=⎧⎨=-⎩,当2x=时,2ππ1318sin()566y=-+=-.13.在等腰梯形ABCD中,已知AB DC,2,1,60,AB BC ABC==∠=点E和点F分别在线段BC和CD上,且21,,36BE BC DF DC==则AE AF⋅的值为.【答案】2918【解析】在等腰梯形ABCD中,由AB DC,2,1,60,AB BC ABC==∠=得12AD BC ⋅=,1AB AD ⋅=,12DC AB =,所以()()AE AF AB BE AD DF ⋅=+⋅+ 22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭.考点:平面向量的数量积. 【此处有视频,请去附件查看】14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x ,CPD 的面积为()f x .则()f x 的定义域为 ;()f x '的零点是 .【答案】(2,4)(2分),3(3分) 【解析】 试题分析: 由题意知,,,的三边关系如图,三角形的周长是一个定值,故其面积可用海伦公式表示出来 即令故答案为;考点:函数的实际应用. 三、解答题15.已知函数()cos()(0,0,0)2f x A x A πωϕωϕ=+>><<的图象过点(0,12),最小正周期为23π,且最小值为-1. (1)求函数()f x 的解析式.(2)若[,]6x m π∈,()f x 的值域是[1,-,求m 的取值范围. 【答案】(1)()cos(3)3f x x π=+;(2)25[,]918m ππ∈ 【解析】试题分析:(1)根据余弦函数的性质求出最大值A ,再利用周期公式求出参数ω,最后根据三角函数值求出ϕ的值即可.(2)由题意求出33x π+的取值范围,然后再根据余弦函数的性质求解即可.试题解析:(1)由函数的最小值为-1,可得A=1,因为最小正周期为23π,所以ω=3.可得()cos(3)f x x ϕ=+,又因为函数的图象过点(0,12),所以1cos 2ϕ=,而02πϕ<<,所以3πϕ=,故()cos(3)3f x x π=+.(2)由[,]6x m π∈,可知533633x m πππ≤+≤+,因为5()cos 66f ππ==,且cos π=-1,7cos6π=,由余弦曲线的性质的,7336m πππ≤+≤,得25918m ππ≤≤,即25[,]918m ππ∈. 考点:(1)余弦函数的性质和图象;(2)余弦函数性质的应用. 16.数列{}n a 的前n 项和记为n S ,若数列n S n ⎧⎫⎨⎬⎩⎭是首项为9,公差为1-的等差数列. (1)求数列{}n a 的通项公式n a ;(2)若n n b a =,且数列{}n b 的前n 项和记为n T ,求415T T +的值.【答案】(1)211n a n =-+;(2)149. 【解析】 【分析】(1)运用等差数列的通项公式可得n S ,再由数列的递推式,可得所求通项公式; (2)求得|||112|n n b a n ==-,讨论当15n 时,6n 时结合等差数列的求和公式,可得所求和.【详解】解:(1)数列n S n ⎧⎫⎨⎬⎩⎭是首项为9,公差为1-的等差数列, ∴9(1)(1)10nS n n n=+-⨯-=-,即210n S n n =-+,① 2n ∴时,21(1)10(1)n S n n -=--+-,②①-②可得1211n n n a S S n -=-=-+, 又当1n =时,119a S ==,满足上式, 211n a n ∴=-+;(2)由题意,|||112|n n b a n ==-,∴当15n 时,212(9112)102n n n nT a a a n n +-=++⋯+==-+;6n 时,2(5)(1211)2510502n n n T n n -+-=+=-+.41524125149T T ∴+=+=.【点睛】本题考查等差数列的通项公式和求和公式的运用,考查分类讨论思想和转化思想,考查运算能力,属于基础题.17.已知ABC △的内角,,A B C 所对的边分别为,,a b c ,()8sin 17A C +=,且角B 为锐角. (1)求cos B 的值;(2)若6a c +=,ABC △的面积为2,求边长b . 【答案】(1)1517;(2)2. 【解析】 【分析】(1)由三角函数的诱导公式进行转化,结合同角三角函数的基本关系式进行转化求解即可. (2)结合三角形的面积公式求出ac 的值,利用余弦定理进行转化求解即可. 【详解】解:(1)8sin()17A C +=, ()()8sin sin sin 17B AC A C π∴=-+=+=⎡⎤⎣⎦, 角B 为锐角,cos 0B ∴>,即15cos 17B =.(2)ABC ∆的面积为2,118sin 22217S ac B ac ∴==⨯=,则172ac =, 6a c +=,2222cos b a c ac B ∴=+-215171715()2236223617154172217a c ac ac=+--=-⨯-⨯⨯=--=, 则2b =.【点睛】本题主要考查解三角形的应用,结合同角关系式,三角形的面积公式以及余弦定理是解决本题的关键. 18.已知函数1()xax f x e-=. (Ⅰ)当1a =时,求函数()f x 的单调区间;(Ⅱ)当0a <时,求函数()f x 在区间[0,1]上的最小值.【答案】(Ⅰ)(,2)-∞递增,在(2,)+∞递减;(Ⅱ)10a -≤<时,min ()1,1f x a =-<-时,min 11()aa f x e+=.【解析】试题分析:(Ⅰ)代值,求导,利用导函数的符号变化确定函数的单调性即可;(Ⅱ)求导,通过讨论a 的范围研究导函数的符号和函数的单调性,进而确定函数的最值.试题解析:(Ⅰ)当1a =时,()()12,,,x xx x f x x R f x e e '--+=∈∴= 令()0,f x '>解得:2,x < 令()0,f x '<解得:2,x >()f x ∴在(),2-∞递增,在()2,+∞递减;(Ⅱ)由()1xax f x e -=得: ()[]1,0,1xax a f x x e-+-∈'=, 令()0,0,f x a ='<解得111,x a=+< ①110a+≤时,即10a -≤<时,()0f x '≥对[]0,1x ∈恒成立, ()f x ∴[]0,1递增,()()min 01f x f ==-;②当1011<+<时,即1a <-时,()(),,x f x f x '在[]0,1上的情况如下:()1min 111;aa f x f a e +⎛⎫∴=+= ⎪⎝⎭综上,10a -≤<时,()min1,1f x a =-<-时,()1min 1aa f x e+=.【点睛】本题考查利用导数研究函数的单调性与最值.解决本题的难点是第二步,利用分类讨论求函数的最值,分类讨论思想的高中数学重要数学思想之一,学生对“分类讨论的标准、为什么讨论”搞不清,如本题中要讨论导函数的零点和所给区间的关系.19.已知函数()39f x x x =-,函数()23g x x a =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点处有公共切线,求a 的值; (2)若存在实数b 使不等式()()f x g x <的解集为(),b -∞,求实数a 的取值范围. 【答案】(1) 5或﹣27;(2)(](),275,-∞-+∞.【解析】 【分析】(1)设出切点坐标,利用切点处导函数值等于切线斜率且切点为两个函数交点,列出方程组,解出切点坐标和a 的值.(2)构造函数()h x ,把不等式()()f x g x <转化为()y h x =的图象在直线y a =的下方的部分对应点的横坐标(,)x b ∈-∞,利用导数分析出函数()h x 的单调区间和极值,画出函数图象,数形结合得到符合题意的a 的取值范围. 【详解】解:(1)2()39f x x '=-,()6g x x '=,设()f x 与()g x 的交点坐标为0(x ,0)y ,则3200020093396x x x a x x ⎧-=+⎨-=⎩,解得:015x a =-⎧⎨=⎩或0327x a =⎧⎨=-⎩,a ∴的值为5或27-;(2)令32()39h x x x x =--,则()y h x =的图象在直线y a =的下方的部分对应点的横坐标(,)x b ∈-∞,2()3693(1)(3)h x x x x x '=--=+-,∴令()0h x '=,得:1x =-或3, 列表:()h x +-+()h x '增 极大值 减极小值 增()h x ∴的极大值为(1)5h -=,极小值为h (3)27=-,又当x →+∞时,()h x →+∞,当x →-∞时,()h x →-∞,如图所示:∴当5a >或27a -时,满足题意, ∴实数a 的取值范围为: (](),275,-∞-+∞.【点睛】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数画出函数的大致图象,做题时注意数形结合,是中档题.20.设满足以下两个条件的有穷数列12,,,n a a a …为()2,3,4,n n =…阶“期待数列”:①1230n a a a a ++++=…;②1231n a a a a ++++=…. (1)分别写出一个单调递增的3阶和4阶“期待数列”;(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式; (3)记n 阶“期待数列”的前k 项和为()1,2,3,,k S k n =…,试证:12k S ≤. 【答案】(1)数列12-,0,12为三阶期待数列,数列38-,18-,18,38为四阶期待数列;(2)()1007,201310061007n n a n N n *-+=∈≤⨯;(3)证明见解析.【解析】 【分析】(1)数列12-,0,12为三阶期待数列,数列38-,18-,18,38为四阶期待数列.(2)设该2013阶“期待数列”的公差为d ,由于1220130a a a ++⋯+=,可得10070a =,1008a d =,对d 分类讨论,利用等差数列的通项公式即可得出.(3)当k n =时,显然1||02n S =成立;当k n <时,根据条件①得:1212()k k k k n S a a a a a a ++=++⋯+=-++⋯+,即1212||||||k k k k n S a a a a a a ++=++⋯+=++⋯+,再利用绝对值不等式的性质即可得出. 【详解】解:(1)数列12-,0,12为三阶期待数列, 数列38-,18-,18,38为四阶期待数列. (2)设该2013阶“期待数列”的公差为d , 1220130a a a ++⋯+=,∴120132013()02a a +=,120130a a ∴+=,即10070a =, 1008a d ∴=,当0d =时,与期待数列的条件①②矛盾,当0d >时,据期待数列的条件①②可得10081009201312a a a ++⋯+=, 100610051100622d d ⨯∴+=,即110061007d =⨯, *10071007(1007)(10061007n n a a n d n N -∴=+-=∈⨯,2013)n ,当0d <时,同理可得100710061007n n a -+=⨯,*(n N ∈,2013)n .(3)当k n =时,显然1||02n S =成立; 当k n <时,根据条件①得:1212()k k k k n S a a a a a a ++=++⋯+=-++⋯+, 即1212||||||k k k k n S a a a a a a ++=++⋯+=++⋯+, 12121212||||||||||||||||1k k k k n k k n S a a a a a a a a a a a +++∴=++⋯++++⋯+++⋯+++⋯+=,1||(12k S k ∴=,2,⋯,)n .【点睛】本题考查了等差数列的通项公式及其性质、绝对值不等式的性质、新定义“期待数列”,推理能力与计算能力,属于中档题.。
2019-2020学年北京市清华附中高三(上)10月月考数学试卷试题及答案

2019-2020学年北京市清华附中高三(上)10月月考数学试卷一、选择题1.已知集合{|2}A x x =>,{|(1)(3)0}B x x x =--<,则(A B = )A .{|1}x x >B .{|23}x x <<C .{|13}x x <<D .{|2x x >或1}x <2.若角θ的终边过点(3,4)P -,则tan()(θπ+= ) A .34B .34-C .43 D .43-3.已知函数a y x =,log b y x =的图象如图所示,则( )A .1b a >>B .1b a >>C .1a b >>D .1a b >>4.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知3cos 4α=,(2πα∈-,0),则sin 2α的值为( )A .38B .38-C D .6.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏B .3盏C .5盏D .9盏7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( ) A .4B .5C .6D .78.已知定义在R 上的函数2,0()(),0x a x f x ln x a x ⎧+=⎨+>⎩…,若方程1()2f x =有两个不相等的实数根,则a 的取值范围是( ) A .1122a -<…B .102a <… C .01a <…D .102a -<…二、填空题9.已知函数()y f x =的导函数有且仅有两个零点,其图象如图所示,则函数()y f x =在 x = 处取得极值.10.32-,123,2log 5三个数中最大数的是 . 11.在ABC ∆中,13cos 14A =,73a b =,则B = . 12.去年某地的月平均气温(C)y ︒与月份x (月)近似地满足函数sin()(6y a b x a πϕ=++,b为常数,0)2πϕ<<.其中三个月份的月平均气温如表所示:则该地2月份的月平均气温约为 C ︒,ϕ= .13.在等腰梯形ABCD 中,已知//AB DC ,2AB =,1BC =,60ABC ∠=︒,点E 和F 分别在线段BC 和DC 上,且23BE BC =,16DF DC =,则AE AF 的值为 . 14.如图,线段8AB =,点C 在线段AB 上,且2AC =,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP x =,CPD ∆的面积为()f x .则()f x 的定义域为 ;()0f x '=的解是 .三、解答题15.已知函数()cos()(0f x A x A ωϕ=+>,0ω>,0)2πϕ<< 的图象过点1(0,)2,最小正周期为23π,且最小值为1-. (1)求函数()f x 的解析式.(2)若[6x π∈,]m ,()f x 的值域是[1-,,求m 的取值范围.16.数列{}n a 的前项n 和记为n S ,若数列{}nS n是首项为9,公差为1-的等差数列. (1)求数列{}n a 通项公式n a .(2)若||n n b a =,且数列{}n b 的前项n 和记为n T ,求415T T +的值.17.已知ABC ∆的内角A 、B 、C 所对应的边分别为a ,b ,c ,8sin()17A C +=,且角B 为锐角.(1)求cos B 的值;(2)若6a c +=,ABC ∆的面积为2,求边长b .18.已知函数1()xax f x e -=. (Ⅰ)当1a =时,求函数()f x 的单调区间;(Ⅱ)当0a <时,求函数()f x 在区间[0,1]上的最小值.19.已知函数3()9f x x x =-,函数2()3g x x a =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点处且有公共切线,求a 的值; (2)若存在实数b 使不等式()()f x g x <的解集为(,)b -∞,求实数a 的取值范围.20.设满足以下两个条件的有穷数列1a ,2a ,⋯,n a 为(2n n =,3,4,⋯,)阶“期待数列”:①1230n a a a a +++⋯+=; ②123||||||||1n a a a a +++⋯+=.(1)分别写出一个单调递增的3阶和4阶“期待数列”;(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式;(3)记n 阶“期待数列”的前k 项和为(1k S k =,2,3,⋯,)n ,试证:1||2k S ….2019-2020学年北京市清华附中高三(上)10月月考数学试卷参考答案与试题解析一、选择题1.已知集合{|2}A x x =>,{|(1)(3)0}B x x x =--<,则(A B = )A .{|1}x x >B .{|23}x x <<C .{|13}x x <<D .{|2x x >或1}x <【解答】解:集合{|2}A x x =>, {|(1)(3)0}{|13}B x x x x x =--<=<<,则{|23}A B x x =<<.故选:B .2.若角θ的终边过点(3,4)P -,则tan()(θπ+= ) A .34B .34-C .43 D .43-【解答】解:角θ的终边过点(3,4)P -,则44tan()tan 33y x θπθ-+=-=-=-=, 故选:D .3.已知函数a y x =,log b y x =的图象如图所示,则( )A .1b a >>B .1b a >>C .1a b >>D .1a b >>【解答】解:由图象可知,01a <<,1b >, 故选:A .4.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:函数()y f x =的定义域为R ,若函数()f x 为奇函数,则(0)0f =,反之不成立,例如2()f x x =.∴ “(0)0f =”是“函数()f x 为奇函数”的必要不充分条件.故选:B . 5.已知3cos 4α=,(2πα∈-,0),则sin 2α的值为( )A .38B .38-C D .【解答】解:3cos 4α=,(2πα∈-,0),sin α∴===,3sin 22sin cos 2(4ααα∴==⨯⨯= 故选:D .6.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏B .3盏C .5盏D .9盏【解答】解:设塔的顶层共有1a 盏灯, 则数列{}n a 公比为2的等比数列, 717(12)38112a S -∴==-,解得13a =. 故选:B .7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( ) A .4B .5C .6D .7【解答】解:由题意可得,冠军得分比其他参赛人员高,且获胜场次比其他人都少,所以冠军与其他匹配场次中,平均至少为3场,A 选项:若最少4人,当冠军3次平局时,得3分,其他人至少1胜1平局,最低得3分,故A 不成立,B 选项:若最少5人,当冠军1负3平局时,得3分,其他人至少1胜1平,最低得3分,不成立,当冠军1胜3平局时,得5分,其他人至少2胜1平,最低得5分,不成立,故B 不成立, C 选项:若最少6人,当冠军2负3平局时,得3分,其他人至少1胜1平,最低得3分,不成立,当冠军1胜4平局时,得6分,其他人至少2胜1平,最低得5分,成立,故C 成立, D 选项:76>,故不为最少人数,故不成立,故选:C .8.已知定义在R 上的函数2,0()(),0x a x f x ln x a x ⎧+=⎨+>⎩…,若方程1()2f x =有两个不相等的实数根,则a 的取值范围是( ) A .1122a -<…B .102a <… C .01a <…D .102a -<…【解答】解:由题意知当0x >时,()()f x ln x a =+,则0a …, 当0x …时,()1a f x a <+…,若0a …,当0x >时,()()f x ln x a lna =+…,若方程1()2f x =有两个不相等的实数根, 则11212a a lna ⎧<+⎪⎪⎨⎪<⎪⎩…,即1212a a a ⎧<⎪⎪⎪-⎨⎪⎪<⎪⎩…,得1122a -<…,0a …,102a ∴<…, 故选:B .二、填空题9.已知函数()y f x =的导函数有且仅有两个零点,其图象如图所示,则函数()y f x =在x = 1- 处取得极值.【解答】解:函数()y f x =的导函数有且仅有两个零点,其图象如图所示, 1x <-时,()0f x '<,1x >-时,()0f x '…, 所以函数只有在1x =-时取得极值. 故答案为:1-.10.32-,123,2log 5三个数中最大数的是 2log 5 . 【解答】解:由于3021-<<,12132<<,22log 5log 42>=,则三个数中最大的数为2log 5. 故答案为:2log 5. 11.在ABC ∆中,13cos 14A =,73a b =,则B 3或3. 【解答】解:在ABC ∆中,13cos 14A =,sin A ∴== 73a b =,sin 7sin 3b A B a ∴===(0,)B π∈, 3B π∴=或23π. 故答案为:3π或23π. 12.去年某地的月平均气温(C)y ︒与月份x (月)近似地满足函数sin()(6y a b x a πϕ=++,b为常数,0)2πϕ<<.其中三个月份的月平均气温如表所示:则该地2月份的月平均气温约为 5- C ︒,ϕ= .【解答】解:函数sin()(6y a b x a πϕ=++,b 为常数),∴当51182x +==时,sin()6x πϕ+取得最大或最小值, ∴862k ππϕπ⨯+=+,k Z ∈,解得56k πϕπ=-,k Z ∈, 又02πϕ<<,6πϕ∴=;31a b ∴-=,且sin 13a b π+=,解得13a =,18b =-;1318sin()66y x ππ∴=-+,当2x =时,1318sin(2)5()66y C ππ=-⨯+=-︒.故答案为:5-,6π.13.在等腰梯形ABCD 中,已知//AB DC ,2AB =,1BC =,60ABC ∠=︒,点E 和F 分别在线段BC 和DC 上,且23BE BC =,16DF DC =,则AE AF 的值为18. 【解答】解:2AB =,1BC =,60ABC ∠=︒,1122BG BC ∴==,211CD =-=,120BCD ∠=︒, 23BE BC =,16DF DC =, ∴21()()()()36AE AF AB BE AD DF AB BC AD DC =++=++ 12216336AB AD AB DC BC AD BC DC =+++ 122121cos6021cos011cos6011cos1206336=⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯⨯︒111291331818=++-=, 故答案为:291814.如图,线段8AB =,点C 在线段AB 上,且2AC =,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP x =,CPD ∆的面积为()f x .则()f x 的定义域为 (2,4) ;()0f x '=的解是 .【解答】解:由题意,2DC =,CP x =,6DP x =- CPD ∆,∴262662x xx x x x +>-⎧⎪+->⎨⎪+->⎩,解得(2,4)x ∈如图,三角形的周长是一个定值8,故其面积可用海伦公式表示出来即()f x==()f x∴'=,令()0f x'=,解得3x=,故答案为:(2,4),3.三、解答题15.已知函数()cos()(0f x A x Aωϕ=+>,0ω>,0)2πϕ<<的图象过点1(0,)2,最小正周期为23π,且最小值为1-.(1)求函数()f x的解析式.(2)若[6xπ∈,]m,()f x的值域是[1-,,求m的取值范围.【解答】解:(1)由函数的最小值为1-,0A>,得1A=,最小正周期为23π,2323πωπ∴==,()cos(3)f x xϕ∴=+,又函数的图象过点1(0,)2,1cos2ϕ∴=,而02πϕ<<,3πϕ∴=,()cos(3)3f x xπ∴=+,(2)由[6xπ∈,]m,可知533633x mπππ++剟,5()cos66fππ==cos1π=-,7cos6π=,由余弦定理的性质得:7336mπππ+剟,∴25918mππ剟,即2[9mπ∈,5]18π.16.数列{}n a 的前项n 和记为n S ,若数列{}nS n是首项为9,公差为1-的等差数列. (1)求数列{}n a 通项公式n a .(2)若||n n b a =,且数列{}n b 的前项n 和记为n T ,求415T T +的值. 【解答】解:(1)数列{}nS n是首项为9,公差为1-的等差数列, ∴9(1)(1)10nS n n n=+-⨯-=-,即210n S n n =-+,① 2n ∴…时,21(1)10(1)n S n n -=--+-,②①-②可得1211n n n a S S n -=-=-+, 又当1n =时,119a S ==,满足上式, 211n a n ∴=-+;(2)由题意,|||112|n n b a n ==-,∴当15n 剟时,212(9112)102n n n nT a a a n n +-=++⋯+===-+;6n …时,2(5)(1211)2510502n n n T n n -+-=+=-+.41524125149T T ∴+=+=.17.已知ABC ∆的内角A 、B 、C 所对应的边分别为a ,b ,c ,8sin()17A C +=,且角B 为锐角.(1)求cos B 的值;(2)若6a c +=,ABC ∆的面积为2,求边长b . 【解答】解:(1)8sin()17A C +=, 8sin sin[()sin()17B AC A C π∴=-+=+=, 角B 为锐角, cos 0B ∴>,即15cos 17B ===.(2)ABC ∆的面积为2,118sin 22217S ac B ac ∴==⨯=, 则172ac =, 6a c +=,2222151717152cos ()2236223617154172217b ac ac B a c ac ac∴=+-=+--=-⨯-⨯⨯=--=, 则2b =.18.已知函数1()xax f x e -=. (Ⅰ)当1a =时,求函数()f x 的单调区间;(Ⅱ)当0a <时,求函数()f x 在区间[0,1]上的最小值. 【解答】解:(Ⅰ)1a =时,1()xx f x e -=,x R ∈, 2()xx f x e -+∴'=, 令()0f x '>,解得:2x <, 令()0f x '<,解得:2x >,()f x ∴在(,2)-∞递增,在(2,)+∞递减;(Ⅱ)由1()xax f x e -=得: 1()xax a f x e -++'=,[0x ∈,1], 令()0f x '=,0a <,解得:111x a=+<, ①110a+…时,即10a -<…时,()0f x '…对[0x ∈,1]恒成立,()f x ∴在[0,1]递增,()(0)1min f x f ==-;②当1011a<+<时,即1a <-时, x ,()f x ',()f x 在[0,1]上的情况如下:111()(1)aaf x min f ae +∴=+=;综上,10a -<…时,()1min f x =-,1a <-时,11()min aa f x e+=.19.已知函数3()9f x x x =-,函数2()3g x x a =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点处且有公共切线,求a 的值; (2)若存在实数b 使不等式()()f x g x <的解集为(,)b -∞,求实数a 的取值范围. 【解答】解:(1)2()39f x x '=-,()6g x x '=,设()f x 与()g x 的交点坐标为0(x ,0)y ,则3200020093396x x x a x x ⎧-=+⎪⎨-=⎪⎩,解得:015x a =-⎧⎨=⎩或0327x a =⎧⎨=-⎩,a ∴的值为5或27-;(2)令32()39h x x x x =--,则()y h x =的图象在直线y a =的下方的部分对应点的横坐标(,)x b ∈-∞,2()3693(1)(3)h x x x x x '=--=+-,∴令()0h x '=,得:1x =-或3,列表:()h x ∴的极大值为(1)5h -=,极小值为h (3)27=-,又当x →+∞时,()h x →+∞,当x →-∞时,()h x →-∞, 如图所示:∴当5a >或27a -…时,满足题意,∴实数a 的取值范围为:(-∞,27](5,)-+∞.20.设满足以下两个条件的有穷数列1a ,2a ,⋯,n a 为(2n n =,3,4,⋯,)阶“期待数列”:①1230n a a a a +++⋯+=; ②123||||||||1n a a a a +++⋯+=.(1)分别写出一个单调递增的3阶和4阶“期待数列”;(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式;(3)记n 阶“期待数列”的前k 项和为(1k S k =,2,3,⋯,)n ,试证:1||2k S …. 【解答】解:(1)数列12-,0,12为三阶期待数列,数列38-,18-,18,38为四阶期待数列.(Ⅱ)设该2013阶“期待数列”的公差为d , 1220130a a a ++⋯+=,∴120132013()02a a +=,120130a a ∴+=,即10070a =, 1008a d ∴=,当0d =时,与期待数列的条件①②矛盾,当0d >时,据期待数列的条件①②可得10081009201312a a a ++⋯+=, 100610051100622d d ⨯∴+=,即110061007d =⨯, *10071007(1007)(10061007n n a a n d n N -∴=+-=∈⨯,2013)n …,当0d <时,同理可得100710061007n n a -+=⨯,*(n N ∈,2013)n ….(Ⅲ)当k n =时,显然1||02n S =…成立; 当k n <时,根据条件①得:1212()k k k k n S a a a a a a ++=++⋯+=-++⋯+, 即1212||||||k k k k n S a a a a a a ++=++⋯+=++⋯+,12121212||||||||||||||||1k k k k n k k n S a a a a a a a a a a a +++∴=++⋯++++⋯+++⋯+++⋯+=…,1||(12k S k ∴=…,2,⋯,)n .。
2019_2020学年10月北京海淀区清华大学附属中学高三上学期月考数学试卷

A. 充分而不必要条件
C. 充分必要条件
”是“函数 为奇函数”的( ). B. 必要而不充分条件 D. 既不充分也不必要条件
5. 已知
,
,则
的值为( ).
A.
B.
C.
D.
6. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百
八十一,请问尖头几盏灯?”意思是:一座 层塔共挂了 盏灯,且相邻两层中的下一层灯数
的解集为
,求实数 的取值范围.
20. 设满足以下两个条件的有穷数列
为
阶“期待数列”:
①
;
②
.
1 )分别写出一个单调递增的 阶和 阶“期待数列”;
2 )若某 阶“期待数列”是等差数列,求该数列的通项公式;
3 )记 阶“期待数列”的前 项和为
,试证:
.
A.
B.
C.
D.
8. 已知定义在 上的函数
则 的取值范围是( ).
A.
B.
,若方程 C.
有两个不相等的实数根, D.
二、填空题
(本大题共6小题,每小题5分,共30分。)
9. 已知函数
的导函数有且仅有两个零点,其图象如图所示,则函数
在
处取得极值.
10.
,,
三个数中最大的数字是
.
11. 在
中,
,
,则
.
12. 去年某地的月平均气温 ( )与月份 (月)近似地满足函数
17. 已知
的内角 , , 所对的边分别为 , , ,
1 )求
的值.
2 )若
,
的面积为 ,求边长 .
,且角 为锐角.
18. 已知函数 1 )当 2 )当
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清华附中高三2019年10月月考试卷数学
一、选择题
1.已知集合
,B ={|(1)(3)0}x x x --<,则A∩B=( ) A. {|1}x x >
B. {|23}x x <<
C. {|13}x x <<
D. {|2x x >或1}x < 【答案】B
试题分析:{|(1)(3)0}{|13}B x x x x x x =--<=<< 又{}2A x x =
所以{|23}A B x x ⋂=<<
故答案选B
考点:集合间的运算.
2.若角θ的终边过点()3,4P -,则()tan θπ+=( ) A. 34 B. 34- C. 43 D. 43
- 【答案】D
分析:利用任意角的三角函数的定义,诱导公式,求得要求的式子的值 详解:角θ的终边过点()34P -,
, 则()4tan 3
y tan x θπθ+==
=- 故选D
点睛:本题主要考查了任意角的三角函数的定义,属于基础题,结合诱导公式运用定义即可求出结果。
3.已知函数,log a b y x y x ==的图像如图所示,则
A. 1b a >>
B. 1b a >>
C. 1a b >>
D. 1a b >>
【答案】A
【解析】由图象,得log b y x =在(0,)+∞上单调递增,即1b >,a y x =在[0,)+∞上单调递增,且增加得越来越慢,即01a <<,则1b a >>.故选A.
【点睛】本题考查对数函数、幂函数的图象和性质.解决本题的难点是利用幂函数的图象判定幂指数a 与1的大小,若0a >时,幂函数a y x =在[0,)+∞上单调递增,要与常见函数2y x =、y x =、1
2y x =的图象对照确定. 4.已知函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
【答案】B
试题分析:()2f x x =满足()00f =,但不是奇函数,因此充分性不成立;若()f x 是奇函数,又定义域为R ,因此()()()0000f f f =-⇒=,必要性成立,因此选B. 考点:充要关系
【方法点睛】判断充分条件和必要条件的方法
(1)命题判断法:
设“若p ,则q”为原命题,那么:
①原命题为真,逆命题为假时,p 是q 的充分不必要条件;
②原命题为假,逆命题为真时,p 是q 的必要不充分条件;
③原命题与逆命题都为真时,p 是q 的充要条件;
④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件.
(2)集合判断法:
从集合的观点看,建立命题p ,q 相应的集合:p :A ={x|p(x)成立},q :B ={x|q(x)成立},那么:
①若A ⊆B ,则p 是q 的充分条件;若A ≠
⊂B 时,则p 是q 的充分不必要条件; ②若B ⊆A ,则p 是q 的必要条件;若B ≠
⊂A 时,则p 是q 的必要不充分条件; ③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件.
(3)等价转化法:
p 是q 的什么条件等价于綈q 是綈p 的什么条件.
5.已知3cos ,(,0)42παα=
∈-,则sin 2α的值为( )
A. 38
B. 3
8- C. D. 【答案】D
试题分析:由题意sin α===,所以sin 22sin cos ααα=
32(448
=⨯-⨯=-,故选D . 考点:同角间的三角函数关系,二倍角公式.
6.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯
A. 1盏
B. 3盏
C. 5盏
D. 9盏 【答案】B
【详解】设塔顶的a 1盏灯,
由题意{a n }是公比为2的等比数列,
∴S 7=()7
11212a --=381,
解得a 1=3.
故选:B .。