华师大九年级下数学教案章圆

合集下载

新华东师大版九年级数学下册《27章 圆 27.1 圆的认识 圆的对称性》教案_0

新华东师大版九年级数学下册《27章 圆  27.1 圆的认识  圆的对称性》教案_0

课题:§27.1.2 《圆的对称性》教学设计(第一课时)教材分析1、地位和作用本课是华师大版九年数学第二十七章第一节第二课时的内容。

本节课是在小学学过的圆的基础上进行进一步的探究和推理,圆的对称性是圆的一个重要性质,它是探索其他性质的基础前提。

圆心角、弦、弧之间的相等关系是证明圆中线段相等,角相等,弧相等的重要依据,同时也为下一节的垂径定理提供了方法和依据。

所以这节内容很重要。

2、学情分析学生在小学已经学习了圆的一些知识,并且初中已经了解了中心对称、三角形全等等相关知识,具有一定的逻辑推理能力;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具备了一定的合作与交流的能力。

教法、学法分析现代教学理论认为,在教学过程中,学生是学习的主体,教学的一切活动都以强调学生的主动性、积极性为出发点。

根据这一教学理念,结合本节课的内容特点,我采用启发式和讲练结合的教学方法.。

在学习本章之前,学生已经通过折纸对称、平移、旋转、推理、证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验,而学习本节充分体现了学生已有的经验的作用,同时在以前的学习中已经经历了很多合作学习的过程,所以我引导学生采用自主探究与合作探究相结合的学法。

教学目标:(一)知识与技能1.使学生知道圆是中心对称图形,并能运用其特有的性质推出在同圆或等圆中,圆心角、弧、弦之间的关系,2.能运用圆心角、弧、弦之间的关系解决问题,培养学生善于从实验中获取知识的能力,进一步体会和理解研究几何图形的各种方法。

(二)过程与方法1.通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力。

2.利用圆的旋转不变性,研究圆心角、弧、弦之间的关系定理。

(三)情感、态度与价值观激发学生探究、发现数学问题的兴趣和欲望,培养学生善于从实验中获取知识的科学的方法。

教学重点:在同圆或等圆中,圆心角、弧、弦三者之间的关系。

教学难点:探索在同一个圆中,圆心角、弧、弦三者之间的关系及应用。

2023九年级数学下册第27章圆27.1圆的认识2圆的对称性第1课时圆的对称性教案(新版)华东师大版

2023九年级数学下册第27章圆27.1圆的认识2圆的对称性第1课时圆的对称性教案(新版)华东师大版
2.题型二:圆的对称性质应用
问题:已知圆的半径为r,求证:圆内任意弦的中点到圆心的距离等于半径的一半。
解答:设圆内任意弦为AB,中点为M,连接OM。由于圆是轴对称图形,OM是弦AB的垂直平分线,因此AM=MB。又因为OA和OB都是半径,所以OA=OB=r。在直角三角形OAM中,根据勾股定理,得到OM的长度为√(OA² - AM²) = √(r² - (r/2)²) = r/√2。因此,OM = r/2,即圆内任意弦的中点到圆心的距离等于半径的一半。
教学反思与总结
在本次教学过程中,我采用了讲授法、讨论法和实验法等多种教学方法,旨在帮助学生更好地理解和掌握圆的对称性。从整个教学过程来看,我发现以下几方面的得失和经验教训:
1.在讲解圆的对称性质时,通过动态演示和实物模型,学生能更直观地理解轴对称的概念。这一点在今后的教学中值得继续保持。
2.组织学生进行小组讨论和剪纸实验,有助于提高学生的参与度和动手能力。但同时,我也发现部分学生在讨论过程中容易偏离主题,需要我在今后的教学中加强对学生的引导和监督。
核心素养目标
本节课通过探究圆的对称性,旨在培养学生的数学抽象、逻辑推理、几何直观等核心素养。学生能够理解并掌握圆的轴对称性质,形成对圆的几何特征的深刻认识;通过实际操作和问题解决,提高运用轴对称知识分析、解决问题的能力;同时,在学习过程中,发展学生的空间观念,激发对数学美的感悟,培养严谨、细致的数学学习态度。
(2)针对学生的解答,我会给予及时的反馈和指导,帮助他们巩固知识。
5.课堂小结
我会引导学生总结本节课所学的圆的对称性质,并强调这些性质在实际问题中的应用。
6.作业布置
(1)我会布置一些与圆的对称性质相关的练习题,巩固学生对知识点的掌握。
(2)鼓励学生思考圆的对称性质在其他学科领域的应用,如美术、建筑等。

2024-2025学年华师版初中数学九年级(下)教案第27章圆27.1.2圆的对称性(第2课时)

2024-2025学年华师版初中数学九年级(下)教案第27章圆27.1.2圆的对称性(第2课时)

27.1 圆的认识2 圆的对称性第2课时垂径定理教学目标1.进一步认识圆,了解圆是轴对称图形.2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.教学重难点重点:理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.难点:灵活运用垂径定理解决有关圆的问题.教学过程导入新课由问题引入新课:要同学们画两个等圆,并把其中一个圆剪下,让两个圆的圆心重合,使得其中一个圆绕着圆心旋转,可以发现,两个圆都是互相重合的.如果沿着任意一条直径所在的直线折叠,圆在这条直线两旁的部分会完全重合.探究新知合作探究1.垂径定理问题情境:如图,AB是⊙O的一条弦,直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?师生活动:学生独立思考并找出图中相等的线段和劣弧,教师巡视并指导.【解】相等线段: AE=BE.相等劣弧:AC=BC,AD=BD.理由:连结OA,OB,把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC与BC重合,AD与BD重合.教师追问:你能用语言来描述我们的发现吗?师生活动:学生小组交流讨论,师生归纳,教师最后整理并板书.【归纳总结】垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.教师追问:能不能用所学过的知识证明垂径定理?师生活动:(引发学生思考)要证明垂径定理,已知条件是什么?结论是什么?用什么方法证明?【解】已知:如图,在⊙O中,CD是⊙O的直径,AB是弦,AB⊥CD,垂足教学反思教学反思为E .求证:AE =BE ,AC⏜=BC ⏜,AD ⏜=BD ⏜. 证明:(方法1)如图,连结OA ,OB . ∵ OA =OB ,CD ⊥AB , ∴AE =BE.又∵ ⊙O 关于直径CD 所在直线对称,∴ A 点和B 点关于直径CD 所在直线对称,∴当圆沿着直径CD 所在直线对折时,点A 与点B 重合,AC⏜与BC ⏜重合, 因此AC⏜=BC ⏜. 同理得到AD⏜=BD ⏜.(方法2)连结OA ,OB ,CA ,CB ,则OA =OB . 即△AOB 是等腰三角形.∵AB ⊥CD ,∴AE =BE ,∠AOD =∠BOD . 从而∠AOC=∠BOC . ∴AD⏜=BD ⏜, AC ⏜=BC ⏜. 【归纳总结】根据图形写出已知和求证,再构造等腰三角形,利用等腰三角形“三线合一”的性质,从而证得结论成立.推导格式∵ CD 是⊙O 的直径,CD ⊥AB ,垂足为E ,∴ AE =BE ,AC⏜=BC ⏜,AD ⏜=BD ⏜. 定理辨析:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?① ② ③ ④ 师生活动:(引发学生思考)垂径定理具备的条件.【解】图①具备;图②不具备,因为没有垂直;图③具备;图④不具备,因为没过圆心.【归纳总结】(学生总结,老师点评)垂径定理具备的条件是过圆心且垂直,两个条件缺一不可.教学反思① ② ③ ④ 2.垂径定理的推论(1)平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧.推导格式,.CD AB CD AE BE AC BC AB AD BD ⊥⎧⎧⎪⎪⎪−−→⎨⎨⎪⎪⎩⎪⎩,是直径,=,=不是直径=(2)平分弧的直径垂直平分这条弧所对的弦. 推导格式.CD CD AB AC BC AE BE AD BD⎧⎪⊥⎧⎪⇒⎨⎨⎩⎪⎪⎩是直径,,=,==教师追问:“不是直径”这个条件能去掉吗?如果不能,请举出反例.师生活动:学生独立思考并举反例,师生共同归纳.【归纳总结】圆的两条直径是互相平分的,但是不一定相互垂直. 一条直线满足下面五个条件中的两个条件,即可推出其他三个.①过圆心;②垂直于弦;③平分弦(非直径); ④平分弦所对优弧;⑤平分弦所对劣弧.【新知应用】 例1 如图,⊙O 的弦AB =8 cm ,直径CE ⊥AB 于点D ,DC =2 cm ,求半径OC 的长.师生活动:学生尝试解决,教师引导.求OC ,即求半径,可在Rt △AOD 中利用勾股定理求得.【解】如图,连结OA . ∵ CE ⊥AB 于点D ,∴14cm 2AD AB ==.设OC =x cm ,则OD =(x -2)cm.教学反思根据勾股定理,得222OA AD OD +=.222)2(4-+=x x ,解得x =5. 即半径OC 的长为5 cm.【归纳总结】在圆中解决有关弦长、半径等问题,常常需要作垂直于弦的直径或半径,连结弦的端点与圆心作半径,这样就可以把垂径定理与勾股定理结合起来,得到圆的半径r 、弦心距d 、弦长a 的一半之间的关系式:2222a r d ⎛⎫=+ ⎪⎝⎭.【拓展延伸】例2 已知⊙O 的半径为13,弦AB =24,弦CD =10,AB ∥CD ,求这两条平行弦AB ,CD 之间的距离.师生活动:(引发学生思考)要求两条平行弦AB ,CD 之间的距离,想到垂直,又在圆中已知弦长,则可以想到垂径定理和勾股定理,由此根据这些怎么作图呢?根据题中数据怎样求解呢?【解】分两种情况讨论:(1)当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD 于点F ,交AB 于点E ,连结OC ,OA .由题意可知,OA =OC =13.∵ AB ∥CD ,OF ⊥CD ,∴OE ⊥AB . 又∵ AB =24,CD =10,∴ AE =12 AB =12,CF =12CD =5,∴ OE =22OA AE -=5,OF =22OC CF -=12, ∴ EF =OF -OE =7.(2)当弦AB 和CD 在圆心异侧时,如图②,过点O 作OF ⊥CD 于点F ,反向延长OF 交AB 于点E ,连结OC ,OA .同(1)可得,OE =5,OF =12,∴EF =OF+OE =17. 综上,两条平行弦AB 与CD 之间的距离为7或17.① ②【归纳总结】(学生总结,老师点评)解此类题时,要考虑两弦在圆心的同侧还是异侧,再结合实际作出半径和弦心距(圆心到弦的距离),利用勾股定理和垂径定理求解即可.练一练已知⊙O 的直径是50 cm ,⊙O 的两条平行弦AB=40 cm ,CD=48cm ,求弦AB 与CD 之间的距离.师生活动:(学生尝试画图,教师引导)当弦的位置不能确定时,要进行分类讨论.答案:8cm 或22cm例3 一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB 为0.6米,求此时的水深(即阴影部分弓形的高).教学反思师生活动:学生先审题,可以小组讨论,教师引导学生思考,要求此时的水深,即阴影部分弓形的高,结合垂径定理,考虑怎样作辅助线才能得到水深?【解】如图,过点O 作OD ⊥AB 于点C ,交⊙O 于点D ,连结OB .根据垂径定理,得点C 是AB 的中点,点D 是AB ︵ 的中点,则BC =12AB =0.3米.由题意,知OD =OB =0.5米,在Rt △OBC 中,由勾股定理,得OC=0.4米, 所以CD =OD -OC =0.1米, 即此时的水深为0.1米.【归纳总结】(学生总结,老师点评)在圆中求半径、弦等线段的长时,常常借助垂径定理构造直角三角形,再在直角三角形中运用勾股定理来解决.例4 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB =60 m ,水面到拱顶距离CD =18 m ,当洪水泛滥时,水面到拱顶距离为3.5 m 时需要采取紧急措施,当水面宽MN =32 m 时是否需要采取紧急措施?请说明理由.师生活动:(引发学生思考)求当水面宽MN =32 m 时是否需要采取紧急措施,即求此时水面到拱顶的距离为多少.怎样求出这个距离?【解】不需要采取紧急措施.理由如下:如图,设圆心为O ,连结OM ,OA ,OD ,OD 与MN ,AB 分别交于点E ,C .设OA =R m.由题意知,在Rt △AOC 中,AC =12AB =30 m ,CD =18 m ,由勾股定理,得222OA AC OC +=,R 2=302+(R -18)2,解得R =34.在Rt △MOE 中,ME =12MN =16 m ,∴ OE30(m ), ∴ DE =OD -OE =4 m.∵ 4>3.5,∴ 不需要采取紧急措施.【归纳总结】(学生总结,老师点评)解此类题时,要注意根据垂径定理,利用半径、半弦长、弦心距构造直角三角形,结合勾股定理求解.【拓展归纳】(1)涉及垂径定理时辅助线的添加方法在圆中有关弦长a ,半径r , 弦心距d (圆心到弦的距离),弓形高h 的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.教学反思(2)弓形中重要数量关系:弦长a ,弦心距d ,弓形高h ,半径r 之间有以下关系:222,2a d h r r d ⎛⎫+==+ ⎪⎝⎭.课堂练习1.判断下列说法的正误.(1)垂直于弦的直径平分这条弦 . ( ) (2)平分弦的直线必垂直于弦 . ( ) (3)弦的垂直平分线是圆的直径 . ( ) (4)垂直于弦的直线平分这条弦,并且平分弦所对的两条弧. ( ) (5)弦的垂直平分线一定平分这条弦所对的弧. ( ) 2.下列说法中正确的是( )A.在同一个圆中最长的弦只有一条B.垂直于弦的直径必平分弦C.平分弦的直径必垂直于弦D.圆是轴对称图形,每条直径都是它的对称轴3.⊙O 的弦AB 垂直于半径OC ,垂足为D ,则下列结论中错误的是( )A.∠AOD =∠BODB.AD =BDC.OD =DCD.AC BC =4.半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最长弦的长是10,最短弦的长是 .5.已知⊙O 中,弦AB =8 cm ,圆心到AB 的距离为3 cm ,则此圆的半径为 .6.⊙O 的直径AB =20 cm, ∠BAC =30°,则弦AC = .7.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,则弦AB 的长是多少?第7题图8.一条排水管的截面如图所示.已知排水管的半径OB =10 cm ,水面宽AB = 16 cm.求截面圆心O 到水面的距离.教学反思第8题图 9.如图,一条公路的转弯处是一段圆弧(即图中CD ,点O 是CD 的圆心,其中CD =600 m ,E 为CD 上一点,且OE ⊥CD ,垂足为点F ,EF =90 m ,求这段弯路的半径.第9题图 参考答案1.(1)√(2)×(3)×(4)×(5)√2.B3.C4.65.5 cm6.7.解:如图,连结OA .由题意可知,OA =OC =5,则OD =OC -CD =5-1=4.∵ OC ⊥AB ,∴ ∠ODA =90°,∴ AD =OA 2-OD 2=3.又∵ AB 为⊙O 的弦,∴AB =2AD =6.第7题答图8.解:如图,过点O 作OC ⊥AB 于点C .∵ OC ⊥AB ,AB =16 cm ,∴ ∠OCB =90°,BC =12AB =8 cm.又∵ OB =10 cm ,∴ OC 6 cm ,即截面圆心O 到水面的距离为6 cm.第8题答图9.解:如图,连结OC .设弯路的半径为R m ,则OF =(R -90) m. ∵ OE ⊥CD ,CD =600 m ,∴ ∠OFC =90°,CF =12CD =300 m. 在Rt △OFC 中, 根据勾股定理,得OC 2=CF 2+OF 2,即R 2=3002+(R -90)2,解得R =545.即这段弯路的半径为545 m.教学反思第9题答图课堂小结1. 垂径定理垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧. 2. 垂径定理的推论平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧; 平分弧的直径垂直平分这条弧所对的弦. 布置作业教材第40页练习第1,2题. 第45页习题27.1第3题板书设计27.1 圆的认识 2 圆的对称性(第2课时 垂径定理)1.垂径定理垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧. 推导格式∵ CD 是直径,CD ⊥AB ,垂足为E ,∴ AE =BE ,,AC BC AD BD ==. 2.垂径定理的推论平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧;推导格式,.CD AB CD AE BE AC BC AB AD BD ⊥⎧⎧⎪⎪⎪−−→⎨⎨⎪⎪⎩⎪⎩,是直径,=,=不是直径=平分弧的直径垂直平分这条弧所对的弦. 推导格式.CD CD AB AC BC AE BE AD BD ⎧⎪⊥⎧⎪⇒⎨⎨⎩⎪⎪⎩是直径,,=,== 3.方法:将垂径定理与勾股定理有机结合,化圆中问题为三角形问题,经常需要添加辅助线——半径、过圆心作弦的垂线.。

新华东师大版九年级数学下册《27章 圆 27.1 圆的认识 圆的基本元素》教案_4

新华东师大版九年级数学下册《27章 圆  27.1 圆的认识  圆的基本元素》教案_4

∠AOB、∠BOC等就是我们知道的圆心角.
能够重合(或半径相等)的两个圆是等圆。
如图线段 AB是⊙O中任意一条弦,过点O作线段
AB的垂线段OC,则OC叫做弦心距(即圆心到弦的距离),
并且弦心距OC平分弦AB,即AC=BC= 1 AB .
2
三、 例题讲解
例1. 如图23.1.10,写出符合条件
弦:
圆心角:
“⊙O”.
线段AB、BC、AC都是圆O中的弦,
弦 AC经过圆心O,则弦AC叫做直径弦。
弦AB、BC不经过圆心O,则弦AB、BC叫做非直径弦。


曲线BC、BAC都是圆O中的弧,分别记为BC、Bห้องสมุดไป่ตู้C,其中像弧
BC这样小于半圆周的圆弧叫做劣弧,像弧BAC这样的大于半圆
周的圆弧叫做优弧. 两条能够完全重合的弧叫做等弧。
O
A
C
B
劣弧:
优弧:
例2 如图在⊙O中,弦AB的长为8 cm,圆心
O到AB的距离为3 cm,求⊙O的半径。
解:过点O作 OC AB,垂足为C
则OC就是圆心O到AB的距离,
即OC=
cm
OC平分弦AB,
AC= 1
=
2
在 Rt AOC 中,OA 2 =
OA=
cm +
四、课时小结
五、课后作业
作业 练习题 P37 1,2 题
集体备课教案
学科 备课时间
课题
教学目标 重点、难 点及突破
教学流程 (包括课 题引入, 教学进程 等方面)
年级组
九年级
年月日
地点
阅览室
圆的基本元素
主备课人
教学设计

新华东师大版九年级数学下册《27章 圆 27.1 圆的认识 圆的基本元素》教案_20

新华东师大版九年级数学下册《27章 圆  27.1 圆的认识  圆的基本元素》教案_20

圆的认识———圆的基本元素教学目标1.认识圆,理解圆的本质属性.(重点)2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,3 .掌握同圆中半径相等的性质并能运用教学难点:1.了解它们之间的区别和联系.2..掌握同圆中半径相等的性质并能运用.教学重点:认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等有关的概念,了解它们之间的区别和联系. 教学过程一、引入问题观察生活中的图片,找一找你所熟悉的图形.————圆二、圆的基本元素问题观察画圆的过程,你能说出圆是如何画出来的吗?1.圆的旋转定义在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.以点O为圆心的圆,记作“☉O”,读作“圆”.2.与圆有关的概念(1)半径,圆心:固定的端点O叫做圆心,线段OA叫做半径,一般用r表示.想一想:1.以1cm为半径能画几个圆,以点O为圆心能画几个圆?确定一个圆的要素一是圆心,圆心确定其位置;二是半径,半径确定其大小.(2)同心圆圆心相同,半径不同(3)等圆半径相同,圆心不同(4)弦: 连接圆上任意两点的线段(如图中的AC)叫做弦.经过圆心的弦(如图中的AB)叫做直径.注意: 1.弦和直径都是线段.2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.(5)弧: 圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.劣弧与优弧小于半圆的弧叫做劣弧.如图中的AC ; 大于半圆的弧叫做优弧.如图中的ABC.(6)等圆: 能够重合的两个圆叫做等圆.(7)等弧: 在同圆或等圆中,能够互相重合的弧叫做等弧.想一想:长度相等的弧就是等弧?对吗?(8)圆心角: 顶点在圆心,并且两边都和圆周相交的角叫做圆心角.三、例题教学如图.(1)请写出以点A为端点的优弧及劣弧; (2)请写出以点A为端点的弦及直径.(3)请任选一条弦,写出这条弦所对的弧.四、合作探究问题车轮为什么做成圆形?要点归纳(1)圆上各点到定点(圆心O)的距离都等于.(2)到定点的距离等于定长的点都在.圆的集合定义:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.五、学生练习:1. 判断下列说法的正误,并说明理由或举反例.(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;(7)长度相等的弧是等弧.2. 一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?七、课堂总结八、布置作业。

新华东师大版九年级数学下册《27章 圆 27.1 圆的认识 圆周角》教案_4

新华东师大版九年级数学下册《27章 圆  27.1 圆的认识  圆周角》教案_4

学习目标:(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.学习重点:圆周角的概念和圆周角定理学习难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想. 学习方法:指导探索法.学习过程:一、举例:1、已知⊙O 中的弦AB 长等于半径,求弦AB 所对的圆周角和圆心角的度数.2、如图,OA 、OB 、OC 都是圆O 的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC3、如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB 的度数?4、一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?5、已知AB 为⊙O 的直径,AC 和AD 为弦,AB=2,AC=,AD=1,求∠CAD 的度数.6、如图,A 、B 、C 、D 、E 是⊙O 上的五个点,则图中共有个圆周角,分别是.7、如图,已知△ABC 是等边三角形,以BC 为直径的⊙O 交AB 、AC 于D 、E .(1)求证:△DOE 是等边三角形;(2)如图3-3-14,若∠A=60°,AB ≠AC ,则①中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由?28、已知等圆⊙O 1和⊙O 2相交于A 、B 两点,⊙O 1经过O 2,点C 是上任一点(不与A 、O 2、B 重合),连接BC 并延长交⊙O 2于D ,连接AC 、AD .求证: .(1)操作测量:图a )供操作测量用,测量时可使用刻度尺或圆规将图(a )补充完整,并观察和度量AC 、CD 、AD 三条线段的长短,通过观察或度量说出三条线段之间存在怎样的关系?(2)猜想结论(求证部分),并证明你的猜想;(在补充完整的图(a )中进行证明)(3)如图b ),若C 点是的中点,AC 与O 1O 2相交于E 点,连接O 1C ,O 2C .求证:CE 2=O 1O 2·EO 2.教学反思:⌒B AO 2⌒2BO。

新华东师大版九年级数学下册《27章 圆 27.1 圆的认识 圆的对称性》教案_28

新华东师大版九年级数学下册《27章 圆  27.1 圆的认识  圆的对称性》教案_28

圆的对称性教学目的:根据九年级学生已具备的几何基础和教材要求,本节课的知识技能目标为:1、理解圆的相关概念(圆的定义、圆心、半径、弦、直径、弧),会画圆,会表示圆;2、探索并证明垂径定理,能灵活运用解决实际问题。

情感态度目标为通过对垂径定理的探索证明,体验数学的严谨性,感受猜想的数学思想,积累探究的数学活动经验,通过圆的历史和古代数学题让学生了解数学史,激发学生学习数学的动机,培养学生对数学的兴趣,从而培养学生热爱祖国和生活的情感。

教学设计思路:华东师大版九年级下册数学第27章1《圆的认识》主要内容为圆的基本元素和圆的对称性两部分,其中圆的基本元素内容相对较少,如果安排一节课内容,相对比较轻松,而圆的对称性这部分内容里“垂径定理”是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位,是今后研究圆与其他图形位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用,由于垂径定理及其推论反映了圆的重要性质,是证明线段相等、角相等、垂直关系的重要依据,因此,它是整节书的重点,教材对这块内容要求也比较高,不但要认识圆是轴对称图形,掌握好垂径定理和垂径定理的推论,还要求掌握好垂径定理及推论的应用。

根据以往的经验,一节课掌握好垂径定理和推论及应用是比较难的,经过深思熟虑,我大胆进行了尝试,我把此两部分的内容作了一些处理,共分为三节课来安排的:第一节内容是圆的定义、弦、直径、半径、弧等概念和圆的对称性(轴对称图形)、垂径定理初步探究及应用;第二节内容是垂径定理推论的探究、垂径定理及推论的应用;第三节内容是圆心角的定义、圆的对称性(中心对称图形)、圆心角定理及应用。

我设计的这节课《圆的对称性》就是本节内容的第一节课内容,所以本节课的重点是圆的有关概念、垂径定理的初步探究及应用,本节课难点是垂径定理的探究及应用。

本节课设计与数学史融合之处说明:第一处是圆的新课引入部分我来读一读环节,展示了四张幻灯片,介绍的是圆的历史;第二处是垂径定理的应用中冒险岛环节,利用垂径定理解决古代《九章数学》中的“圆材埋壁”问题。

华师大九年级下数学教案章圆

华师大九年级下数学教案章圆

教学目标 1.使学生理解圆、等圆、等弧、圆心角等概念,2.让学生深刻认识圆中的基本概念。

教学重点圆中的基本概念的认识。

教学难点对等弧概念的理解。

教学过程(一)情境导入:圆是如何形成的?请同学们画一个圆,并从画圆的过程中阐述圆是如何形成的。

如右图,线段OA绕着它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形。

同学们想一想,如何在操场上画出一个很大的圆?说说你的方法。

由以上的画圆和解答问题的过程中,让同学们思考圆的位置是由什么决定的?而大小又是由谁决定的?(圆的位置由圆心决定,圆的大小由半径长度决定)(二)问题:据统计,某个学校的同学上学方式是,有50%的同学步行上学,有20%的同学坐公共汽车上学,其他方式上学的同学有30%,请你用扇形统计图反映这个学校学生的上学方式。

如图28.1.2,线段OA、OB、OC都是圆的半径,线段AB为直径,.这个以点O为圆心的圆叫作“圆O”,记为“⊙O”。

线段AB 、BC 、AC 都是圆O 中的弦,曲线BC 、BAC 都是圆中的弧,分别记为BC ︵、BAC ︵,其中像弧BC ︵这样小于半圆周的圆弧叫做劣弧, 像弧BAC ︵.这样的大于半圆周的圆弧叫做优弧。

∠AOB 、∠AOC 、∠BOC 就是圆心角。

结合上面的扇形统计图,进一步阐述圆心角、优弧、劣弧等圆中的基本元素。

三、课堂练习1、直径是弦吗?弦是直径吗?2、半圆是弧吗?弧是半圆吗?3、半径相等的两个圆是等圆,而两段弧相等需要什么条件呢?4、比较右图中的三条弧,先估计它们所在圆的半径的大小关系,再用圆规验证你的结论是否正确。

5、说出上右图中的圆心角、优弧、劣弧。

6、直径是圆中最长的弦吗?为什么?(四)课后小结小结本节课我们认识了圆中的一些元素,同学应能从具体的图形中对这些元素加以识别。

课后作业:课后小记:教学目标:1.使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,2.能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法。

华师大版数学九年级下册27.1《圆的认识》教学设计

华师大版数学九年级下册27.1《圆的认识》教学设计

华师大版数学九年级下册27.1《圆的认识》教学设计一. 教材分析《圆的认识》是华师大版数学九年级下册第27.1节的内容。

本节主要让学生掌握圆的定义、圆的性质、以及圆的周长与面积的计算方法。

教材通过生活中的实例,引导学生探究圆的特征,培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。

但圆的概念较为抽象,学生对其性质和计算方法的理解可能存在一定的困难。

因此,在教学过程中,要注重引导学生通过实际操作和探究来理解圆的特征。

三. 教学目标1.理解圆的定义和性质;2.掌握圆的周长和面积的计算方法;3.培养学生的空间想象能力和抽象思维能力;4.提高学生的合作交流和问题解决能力。

四. 教学重难点1.圆的定义和性质;2.圆的周长和面积的计算方法;3.圆在实际生活中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究圆的特征;2.利用实物模型和多媒体辅助教学,帮助学生直观理解圆的概念;3.采用小组合作的学习方式,培养学生的团队协作能力;4.结合实际生活中的实例,让学生感受圆的应用。

六. 教学准备1.准备相关的实物模型和图片,如硬币、圆规等;2.准备多媒体教学课件,包括圆的定义、性质、周长和面积的计算方法等;3.准备练习题和课后作业,以便进行巩固和拓展。

七. 教学过程1.导入(5分钟)利用实物模型和图片,引导学生观察和思考圆的特征。

例如,展示硬币和圆规,让学生说出它们的共同特点。

2.呈现(10分钟)介绍圆的定义和性质。

通过多媒体课件,展示圆的定义,即到一个固定点距离相等的所有点的集合。

然后,引导学生探究圆的性质,如圆的直径、半径、圆心等。

3.操练(10分钟)让学生进行实际操作,加深对圆的认识。

例如,用圆规画圆,测量圆的直径和半径,计算圆的周长和面积等。

4.巩固(10分钟)解答学生的疑问,并通过练习题进行巩固。

可以选择一些有关圆的计算题和应用题,让学生独立完成,然后进行讲解和分析。

华师大版数学九下《第28章圆》word教案

华师大版数学九下《第28章圆》word教案

第二十八章圆单元教学计划教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L 和⊙O 相交⇔d<r ;直线L 和圆相切⇔d=r ;直线L 和⊙O 相离⇔d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│.11.正多边形和圆中的半径R 、边心距r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S 扇形=2360n R π及其运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算.教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R 、边心距r 、中心角θ的关系的应用.11.n 的圆心角所对的弧长L=180n R π及S 扇形=2360n R π的公式的应用. 12.圆锥侧面展开图的理解.教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、•性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,•发展学生有条理的思考能力及语言表达能力.单元课时划分本单元教学时间约需13课时,具体分配如下:28.1 圆的认识 3课时28.2 与圆有关的位置关系 7课时28.3 圆中的计算问题 3课时教学活动、习题课、小结 3课时28.1.1圆的基本元素教学目标:使学生理解圆、等圆、等弧、圆心角等概念,让学生深刻认识圆中的基本概念。

27.1.1 圆的基本认识 华师大版数学九年级下册教案

27.1.1 圆的基本认识 华师大版数学九年级下册教案

27.1.1 圆的基本认识我们是先用圆规画出一个圆,再将圆划分成一个个 扇形来制作扇形统计图的.(1)圆的定义及表示法图27.1.2 中,线段OA ,OB ,OC 都是圆的半径,通过圆心O 的线段AC 为直径.这个以点 O 为圆心的圆叫 做圆“O ”,记作”O ”.注意:1.确定一个圆需要两个要素:⑴圆心确定圆的位置; ⑵半径确定圆的大小. 2.圆是指“圆周”,而非“圆面”.圆的位置由圆心确定,圆的大小由半径的长度 确定,半径相等的两个圆称为等圆.(2)劣弧,优弧的区别与表示方法线段AB ,BC ,AC 都是O 的弦.曲线BC ,BAC 都是O 的弧,分别记为,其中像弧BC 这样小于半圆周的圆弧叫做劣弧,像弧BAC 这样大于半圆周的圆弧叫做优弧.劣弧用符号“”和弧两端的字母表示如前面的读作“弧BC ”;优弧用符号“”和三个字母表示,如前面的读作弧 “BAC ”在同圆或等圆中,能够互相重合的弧叫做等弧.(3)圆心角∠AOB ,∠BOC 就是我们已知道的圆心角,圆心O 是这些圆心角的顶点.小组讨论,最后在学生充分讨论的基础上,老师用多媒体课件,给出正确的答案让学生以小组单位进行交流探讨,说出圆的性质,让学生体会了知识产生的过程,提高学生的动手、动脑、独立思考、合作交流的能力.在探索中发现,这样才能理解其中的规律并通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.巩固练习能加以总结.课堂结圆的基本元素1.圆的定义及表示法2.劣弧,优弧的区别与表示方法弧:圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示.圆的直径把圆分成相等的两部分,每一部分叫做半圆;小于半圆的弧叫做劣弧;大于半圆的弧叫做优弧.3.圆心角可启发学生说出自己的心得体会及疑问.小结本节课的知识要点及数学方法,使知识系统化.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标 1.使学生理解圆、等圆、等弧、圆心角等概念,2.让学生深刻认识圆中的基本概念。

教学重点圆中的基本概念的认识。

(上学,其他方式上学的同学有30%,请你用扇形统计图反映这个学校学生的上学方式。

如图28.1.2,线段OA、OB、OC都是圆的半径,线段AB为直径,.这个以点O为圆心的圆叫作“圆O”,记为“⊙O”。

线段AB 、BC 、AC 都是圆O 中的弦,曲线BC 、BAC 都是圆中的弧,分别记为BC ︵、BAC ︵,其中像弧BC ︵这样小于半圆周的圆弧叫做劣弧, 像弧BAC ︵.这样的大于半圆周的圆弧叫做优弧。

6、直径是圆中最长的弦吗?为什么?(四)课后小结小结本节课我们认识了圆中的一些元素,同学应能从具体的图形中对这些元素加以识别。

课后作业:课后小记:教学目标:1.使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,称圆形,而且还是轴对称图形,过圆心的每一条直线都是圆的对称轴。

(二)实践与探索1(1)、同一个圆中,相等的圆心角所对的弧相等、所对的弦相等。

=。

AOB AOB∠=∠,AB AB=,AB AB实质上,AOB∠确定了扇形AOB的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等。

问题:在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦是否相等呢?在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧是否相等呢?的度所对的弦相等。

(2)在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦相等。

(3)在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧相等。

课后作业:课后小记:28.1.2圆的对称性(2)教学目标1.知道圆是轴对称图形,并会用它推导出垂径定理。

2.能运用垂径定理解决问题,培养学生善于从实验中获取知识的科学的方法。

教学重点: 知道圆是轴对称图形,并会用它推导出垂径定理教学难点: 能运用垂径定理解决问题 教学过程(一)实验情境导入2等分、4等分、8等分.试一试如图如果在图形纸片上任意画一条垂直于直径CD 的弦AB ,垂足为P ,再将纸片沿着直径CD 对折,比较AP 与PB 、AC ︵与CB ︵,你能发现什么结论? 你的结论是:_________________________________________________________________________________________这就是我们这节课要研究的问题。

(二)应用与拓展例1、 如图,AB 是⊙O 的直径,弦CD ⊥AB 于M1、BC ︵=1 cm ,AD ︵=4 cm ,那么BD ︵=______cm ,AC ︵=_________cm ,⊙O 的周长为___________cm . 2、若CD=8,AB=10,则OM=3、若BM=1,CD=8,则OC= 例2、如图已知以点O 为公共圆心的两个同心圆,大圆的弦AB交小圆于点C 、D (1)试说明线段AC 与BD 的大小关系。

(2)若AB=8,CD=4,求圆环的面积。

例3、在直径为10的圆柱形油桶内装入一些油后,截面如图示,如果油面宽AB=8,那么油的最大深度是(三)课后小结课后作业:课后小记:教学目标:1.知道什么样的角是圆周角2.了解圆周角和圆心角的关系,直径所对的圆周角的特征3.能应用圆心角和圆周角的关系、直径所对的圆周角的特征解决相关问题4.通过对圆心角和圆周角关系的探索,培养学生运用已有知识,进行实验、猜想、论证,从而得到新知。

进一步体会分类讨论的思想。

教学重点:1、了解圆周角和圆心角的关系,直径所对的圆周角的特征(究竟什么样的角是圆周角呢?像图(3)中的解就叫做圆周角,而图(2)、(4)、(5)中的角都不是圆周角。

同学们可以通过讨论归纳如何判断一个角是不是圆周角。

(顶点在圆上,两边与圆相交的角叫做圆周角)练习:试找出图中所有相等的圆周角。

(三)实践与探索2:圆周角的度数(一)探究半圆或直径所对的圆周角等于多少度?而90︒的圆周角所对的弦是否是直径 如图28.1.9,线段AB 是⊙O 的直径,点C 是⊙O 上任意一点(除点A 、B ), 那 么,∠ACB 就是直径AB 所对的圆周角.想想看,∠ACB 会是怎么样的角?为什么呢?,OCA ,+°, 再变动点CAB 所对的圆周角和圆心角的度数,比较一下,你发现什么? 我们可以发现,圆周角的度数没有变化. 并且圆周角的度数恰好为同弧所对的圆心角的度数的一半。

由上述操作可以猜想:在一个圆中,一条弧所对的任意一个圆周角的大小都等于该弧图28.1.10所对的圆心角的一半。

O和圆周角的顶点C,这时可能出现三种情况:(1)折痕是圆周角的一条边,(2)折痕在圆周角的内部,(3)折痕在圆周角的外部。

(三)应用与拓展123简图28.1.121(四)课后小结本节课我们一同探究了同圆或等圆中,一条弧所对的圆周角等于这条弧所对的圆心角的一半;由这个结论进一步得到:同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等;半圆或直径所对的圆周角都相等,都等于90°(直角)。

90°(直角)的圆周角所对的弦是圆的直径等结论,希望同学们通过复习,记住这些知识,并能做到灵活应用他们解决相关问题。

课后作业:课本43页习题6、7课后小记:教学目标:成们算一算。

(击中最里面的圆的成绩为10环,依次为9、8、…、1环)这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?这就是本节课研究的课题。

(二)实践与探索1:点与圆的位置关系我们知道圆上的所有点到圆心的距离都等于半径,若点在圆上,那么这个点到圆心的距离等于半径,若点在圆外,那么这个点到圆心的距离大于半径,若点在圆内,那么这个OB图28.2.11、Q、R2、Rt ABC中,90为半径的AC=,对C点为圆心,60C∠=︒,CD ABAB=,5⊥,1313圆与点A、B、D的位置关系是怎样的?(三)实践与探索2:不在一条直线上的三点确定一个圆问题与思考:平面上有一点A,经过A点的圆有几个?圆心在哪里?平面上有两点A、B,经过A、B点的圆有几个?圆心在哪里?平面上有三点A、B、C,经过A、B、C三点的圆有几个?圆心在哪里?。

从以上的图形可以看到,经过平面上一点的圆有无数个,这些圆的圆心分布在整个为圆做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。

思考:随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请举例说明。

(四)应用与拓展例1、如图,已知Rt ABC 中,90C ∠=︒,若5AC cm =,12BC cm =,求ΔABC 的外接圆半径。

解:略,求ABC 外接圆的半径。

本节课我们学习了用数量关系判断点和圆的位置关系和不在同一直线上的三点确定一个圆,求解了特殊三角形直角三角形、等边三角形、等腰三角形的外接圆教学目标1、使学生掌握直线与圆的位置关系,能用数量来判断直线与圆的位置关系。

2、进一步体会分类讨论思想。

教学重点用数量关系(圆心到直线的距离)判断直线与圆的位置关系 教学难点用数量关系(圆心到直线的距离)判断直线与圆的位置关系例1CBA教学过程(一)情境导入:用移动的观点认识直线与圆的位置关系1、同学们也许看过海上日出,如右图中,如果我们把太阳看作一个圆,那么太阳在升(如上图,设⊙O的半径为r,圆心O到直线l的距离为d,从图中可以看出:若d直线l与⊙O相离;若d直线l与⊙O相切;若d r<直线l与⊙O相交;所以,若要判断圆与直线的位置关系,必须对圆心到直线的距离与圆的半径进行比较大小,由比较的结果得出结论。

(三)应用与拓展(四)课后小结本节课我们学习了直线与圆的位置关系,当我们判断直线与圆的位置关系时,应该用数量关系(圆心到直线的距离)来体现,即上面讲解的圆心到直线的距离与圆的半径进行比较大小,从而断定是哪种关系。

若d r>直线l与⊙O相离;若d r=直线l与⊙O相切;若d r<直线l与⊙O相交;习题5、6、72提出问题:如何界定直线与圆是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切线的其它方法.(板书课题)(二)实践与探索1:圆的切线的判断方法 1、由上面的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1——定义法:与圆只有一个公共点的直线是圆的切线.2、当然,我们还可以由上节课所学的用圆心到直线的距离d与半径r之间的关系来判断直时,直线与圆的位置关系是相切.以此作为识别切线的方法线与圆是否相切,即:当d r2——数量关系法:圆心到直线的距离等于半径的直线是圆的切线.Array A;上来径的图(1)中直线l经过半径外端,但不与半径垂直;图(2)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.最后引导学生分析,方法3实际上是从前一节所讲的“圆心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式.(四)应用与拓展:例1、如图,已知直线AB经过⊙O上的点A,并且AB=OA,?OBA=45?,直线AB是⊙O.BD的外(1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的切线,说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过 这一点的半径,证明直线垂直于半径即可(如例2). 课后作业: 课后小记:)你能说明以下这个问题?如右图所示,PA 是BAC 的平分线,AB 是⊙O 的切线,切点E ,那么AC 是⊙O 的切线吗?为什么?(二)实践与探索 问题1、从圆外一点可以作圆的几条切线?请同学们画一画。

2、请问:这一点与切点的两条线段的长度相等吗?为什么?3、切线长的定义是什么? 通过以上几个问题的解决,使同学们得出以下的结论: 从圆外一点可以引圆的两条切线,切线长相等。

这一点与圆心的连线(所以PEF 的周长、PB 、所以PA ⊥ 所以180110AOB P ∠=︒-∠=︒, 1552EOF AOB ∠=∠=︒(四)课后小结 课后作业:图23.2.11课后小记:教学目标使学生了解圆与圆位置关系的定义,掌握用数量关系来识别圆与圆的位置关系。

教学重点用数量关系识别圆与圆的位置关系外离,(2)、(3)又叫做内含。

相关文档
最新文档