常见算法的优缺点比较
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见算法的优缺点比较
机器学习算法数不胜数,要想找到一个合适的算法并不是一件简单的事情。通常在对精度要求较高的情况下,最好的方法便是通过交叉验证来对各个算法一一尝试,进行比较后再调整参数以确保每个算法都能达到最优解,并从优中择优。但是每次都进行这一操作不免过于繁琐,下面小编来分析下各个算法的优缺点,以助大家有针对性地进行选择,解决问题。
1.朴素贝叶斯
朴素贝叶斯的思想十分简单,对于给出的待分类项,求出在此项出现的条件下各个类别出现的概率,以概率大小确定分类项属于哪个类别。
优点:
1)朴素贝叶斯模型发源于古典数学理论,因此有着坚实的数学基础,以及稳定的分类效率;