油气层损害的机理

油气层损害的机理
油气层损害的机理

一、油气层损害的基本概念

油气层损害:任何阻碍流体从井眼周围流入井底的现象。

油气层损害的主要表现形式:油气层渗透率的降低,包括油藏岩石绝对渗透率和油气相对渗透率的降低。

发生油气层损害的主要作业环节:在钻井、完并、修井、实施增产措施和油气开采等发生油气层损害的机理:工作流体与储层之间物理的、化学的或生物的相互作用。

二、保护油气层的重要性

①在油气勘探过程中,直接关系到能否及时发现油气层和对储量的正确估算。

②保护油气层有利于提高油气井产量和油气田开发经济效益。可以大大减少试油、酸化、压裂和修井等井下作业的工作量,降低生产成本。

③有利于油气井的增产和稳产。

三、保护油气层涉及的技术范围

八方面内容:

①岩心分析、油气水分析和测试技术;

②油气层敏感性和工作液损害室内评价技术;

③油气层损害机理研究和保护油气层技术系统方案设计;

④钻井过程中的油气层损害因素分析和保护油气层技术;

⑤完井过程中的油气层损害因素分析和保护油气层技术;

⑥开发生产中的油气层损害因素分析和保护油气层技术;

⑦油气层损害现场诊断和矿场评价技术;

⑧保护油气层总体效果评价和经济效益综合分折技术。

四、油气层损害机理

1油气目的潜在损害因素

1)油气层储渗空间

孔喉类型和孔隙结构参数与油气层损害关系很大

2)油气层的敏感性矿物

速敏、水敏、盐敏、酸敏、碱敏

3)油藏岩石的润湿性

4)油气层流体性质

2固体颗粒堵塞造成的损害

1)流体中固体颗粒堵塞油气层造成的损害

2)地层中微粒运移造成的损害

3工作液与油气层岩石不配伍造成的损害

1)水敏性损害

2)碱敏性损害

3)酸敏性损害

4)油气层岩石润湿反转造成的损害

4工作液与油气层流体不配伍造成的损害

1)无机垢堵塞

2)有机垢堵塞

3)乳化堵塞

4)细菌堵塞

5油气层岩石毛细管阻力造成的损害

评价油气层损害的实验方法

评价实验是指在研究油层损害问题时,在实验室内进行的定性或定量分析测定的实验。该评价实验由一系列综合性的岩心分析实验组成。

一、评价实验的目的:保护油气层。

(1)弄清储层潜在因素;

(2)弄清外因对储层的影响;

(3)在内因外因的作用下,弄清储层损害类型及程度

(4)筛选合理的防治措施。

二、评价程序

三、岩心分析

油气层的敏感性评价、损害机理的研究、对油气层损害的综合诊断和保护油气层技术方案的制定等都必须建立在岩心分析的基础之上。

主要目的:全面认识油藏岩石的物理性质及岩石中敏感性矿物的类型、产状、含量及分布特点,确定油气层潜在损害的类型、程度及原因,从而为各项作业中保护油气层工程方案的设计提供依据和建议。

1)X-射线衍射(XRD)分析

根据:晶体对X-射线的衍射特性来鉴别物质的方法。

没有任何两种结晶物质在晶胞大小、质点种类以及质点在晶胞中的排列方式方面是完全一致的。因此,当X-射线通过某一晶体时,必然会显示出该晶体特有的衍射特征值——反射面网间的距离(d)和反射线的相对强度(I/I0)。

用于:测定岩样中粒径小于4mm的粘土矿物和粒径大于4mm的非粘土矿物,尤其适于确定岩样中各种粘土矿物的类型和含量。测定时不需整块岩心。

不足之处:是不能确定各种敏感性矿物在孔隙中的产状及分布,因此必须与薄片、扫描电镜技术配套使用,才能全面揭示敏感性矿物的特征。

2)薄片分析

方法:将岩心制成薄片,置于光学显微镜下进行观测。

用于:测定油藏岩石中骨架颗粒、基质和胶结构的组成和分布,描述孔隙的类型、性质及成因,了解敏感性矿物的分布及其对油气层可能引起的损害。

薄片样品制备:将岩石顺一定方向切割成薄板,将一面磨平后用树胶将其粘在载玻片上;然后磨另一面、直至矿片厚约为0.03mm,并能透过可见光时为止,最后将盖破片粘在矿片表面即制成。

特点:直观、费用低,常在X-射线衍射和扫描电镜前进行。

注意:只有选择有代表性的岩心制成薄片,分析结果才有实际价值。

3)扫描电镜(SEM)分析

用于:提供孔隙内充填物的矿物类型、产状和含量的直观资料。对油气层中的粘土矿物和其他敏感性矿物进行观测;获取油气层中孔喉的形态、尺寸、弯曲度以及与孔隙的连通性等资料;估算出粒径小于37mm的地层微粒的类型、含量和分布;对含铁的酸敏性矿物进行检测等。

组成:扫描电镜由电子系统、扫描系统、信息检测系统、真空系统和电源系统等部分构成。

原理:利用细聚焦的电子束在岩样上逐点扫描,激发产生能够反映样品特征的信息并调制成像。分析前应将岩样用抽提的方法洗净,然后加工出新鲜断面作为观测面。

样品直径一般不超过1cm。

特点:制样简单、分析快速。

4)其他岩心分析方法

用压汞法测定岩石的毛管压力曲线

用Amott和USBM法测定岩石的润湿性。

用红外光谱法测定岩石矿物的组成及所含元素。

用图像分析法观测孔喉的尺寸与分布等也都是岩心分析中的常用方法。

用CT扫描和核磁共振(NMR)为代表的现代影像技术已经越来越多地应用于中。

四、油气层敏感性评价

1)速敏评价实验

速敏性:油气层的速敏性是指在钻井、完井、试油、注水、开采和实施增产措施等作业或生产过程中,流体的流动引起油气层中的微粒发生运移,致使一部分孔喉被堵塞面导致油气层渗透率下降的现象。

目的:一是确定导致微粒运移开始发生的临界流速;二是为后面将要进行的水敏、盐敏、碱敏和酸敏实验以及其他各种损害评价实验提供合理的实验流速。

一般情况下,要先进行速敏评价实验,所有后面评价实验的流速应低于临界流速,应控制在临界流速的0.8倍。

实验装置:速敏和其它敏感性评价的均为岩心流动试验仪。详细实验步骤可参见

SY/T5358—2002《储层敏感性流动实验评价方法》。

实验液体:对于采油井,速敏评价实验应选用煤油作为实验流体;对于注水井,则应使用地层水或模拟地层水作为实验流体。

方法:通过测定不同注入速度下岩心的渗透率,判断储层岩心对流速的敏感性。

临界流速的判定标准为:若流量Qi-1对应的渗透率Ki-1与流量Qi对应的渗透率Ki之间满足下式

[(Ki-1—Ki)/Ki-1]×100%≥5%发生流速敏感

流量Qi-1即为临界流量临界流速(vc)。

2)水敏评价实验

水敏性:指矿化度较低的钻井液等外来流体进入地层后引起粘土水化膨胀、分散和运移,进而导致渗透率下降的现象。

目的:就是对油藏岩石水敏性的强弱作出评价,并测定最终使储层渗透率降低的程度。

测定方法:首先用地层水或模拟地层水测得岩心的渗透率Kf,然后用次地层水测得岩心的渗透率Ksf,最后用蒸馏水测出岩心的渗透率Kw。

Kw/Kf≤0.3 0.3~0.7≥0.7

水敏程度强中等弱

3)盐敏评价实验

目的:测定当注入流体的矿化度逐渐降低时岩石渗透率的变化,从而确定导致渗透率明显下降时的临界矿化度(Cc)。

意义:在进行钻井液、完井液等工作流体设计时,应将其矿化度保持在临界矿化度以上,才能避免因粘土矿物水化膨胀、分散而对油气层造成损害。

实验程序:首先用模拟地层水测定岩样的盐水渗透率,然后依次降低地层水的矿化度,再分别测定盐水渗透率,直至找出Cc值时为止。

临界矿化度确定:

[(Ki-l—Ki)/Ki-1]×l00%≥±5%Ci—l

4)碱敏评价实验

碱敏性:当高pH值的工作流体进入储层后,将促进储层中粘土矿物的水化膨胀与分散,并使硅质胶结物结构破坏,促进微粒的释放,从而造成堵塞损害。

目的:确定临界pH值以及由碱敏引起油气层损害的程度。意义:在设计各类工作液时,其pH值应控制在临界pH值以下。

方法:测定时,以地层水的实际pH值为基础,通过适量添加NaOH溶液配制不同pH 值的盐水,最后一级盐水的pH值等于12,测定渗透率。

临界pH值确定:

[(Ki-l—Ki)/Ki-1]×l00%≥±5%(pH)i-1

5)酸敏评价实验

酸敏性:若酸化用酸与油气层不配伍,则会与油气层中的某些矿物、流体反应生成沉淀或释放出微粒,对孔喉造成堵塞。

目的:通过模拟酸液进入地层的过程,用不同酸液测定酸化前后渗透率的变化,从而判断油气层是否存在酸敏性并确定酸敏的程度。

评价实验的步骤:先用地层水测出基础渗透率,再用煤油正向测出注酸前的渗透率

K1;反向注入0.5~1.0倍孔隙体积的酸液,反应1~3h;最后用煤油正向测定注酸后的渗透率率K2。根据两渗透率之比(K2/K1)评价。

五、工作液对油气目的损害评价

评价实验的目的:通过测定工作液侵入油藏岩石前后渗透率的变化,来评价工作液对油气层的损害程度,判断它与油气层之间的配伍性,从而为优选工作液的配方和施工工艺参数提供实验依据。

方法:模拟地层的温度和压力条件;用地层水饱和岩样,用中性煤油进行驱替,建立束缚水饱和度,并测出污染前岩样的油相渗透率Ko;在一定压力下反向注入工作液,历时2h,若2h内不见滤液流出,可延长时间或增大驱替压力;将岩样取出并刮除滤饼,再次

用煤油正向驱替,测定污染后岩样的油相渗透率Kop

渗透率的损害率:Rs=[1—(Kop/Ko)]×100%

油气层损害的矿场评价

目的:对油气层损害进行矿场评价的范围要比室内评价大得多,可反映井筒附近几十米甚至几百米内油气层的受损程度,同时还可评估保护油气层技术在现场实施后所取得的实际效果。

方法:包括对油气层进行试井评价、产量递减分析和测井评价。

不稳定试井法:即在油气井完成之后,通过测定压降曲线或压力恢复曲线时所获得的不稳定试井数据,对油气层的损害程度作出分析和评价。

1)表皮系数法

表皮系数:是描述由于近井壁地带的油气层损害而导致流体渗流阻力增加的一个常数。

数学表达式:S=[(Ko/Kop)-1]1n(rd/rw)

S是一个无因次量。其数值越大、表示损害程度越大;若S=0,表明油气层无损害,这样的油气井可称为完善井,若S<0,则认为并底处于超完善条件下,这样的油气井可称为超完善井。

均质油气层损害程度的评价标准

损害程度轻微损害中等损害严重损害

S0~2 2~10 >10

2)条件比与产能比法

条件比(CR):是指油气井供给半径re以内的平均有效渗透率与远离并底、末受损害油气层的有效渗透率之比值产能比(PR):是指在相同的生产压差条件下,油气层受到损害时的原油产量与未受损害时的原油产量之比值CR和PR值越接近于1,则损害程度越小。对于同一油气层,CR和PR相等。

数学表达式:CR=PR=lg(re/rw)/[lgre/rw)十0.4342S]

3)流动效率法

流动效率表示在获得相同原油产量的条件下.油气层受到损害后的采油指数(PI)与未受损害时的理想采油指数(PI)0之比值。

计算式:Ef=(p – pf – 0.8684m0S)/(p – pf)

式中:Ef表示流动效率,p表示地层压力,pf表示井底流动压力,m0表示压力恢复曲线直线段的斜率,S表示表皮系数。由上式可知,若S值越大,则Ef值越小。当S=0时,Ef=1

4)污染系数法

污染系数等于1与产能比的差值,即DF=1 –PR显然,当油气层末受损害时,DF=0;受到损害时DF>0

5)井底污染半径法

井底污染半径(rd)反映钻井液等外来流体侵入油气层的深度,是表示损害程度的一项重要指标。

以上方法所确定的指标分别从不同角度反映油气层损害的程度,其中表皮系数是最基本的参数。采用中途测试的方法.也可测得表皮系数。

保护油气层的钻井液技术

一、对钻井液的要求

1)必须与油气层岩石相配伍

2)必须与油气层流体相配伍

3)尽量降低固相含量

4)密度可调,以满足不同压力油气层近平衡压力钻井的需要

二、保护油气层的水基钻井液

1)无固相清洁盐水钻井液

无机盐:NaCl、CaCl2、KCl、NaBr、KRr、CaBr2和ZnBr2等

(1)NaCl盐水体系

密度可达1.18g/cm3 ,添加剂为HEC(羟乙基纤维素)和XC生物聚合物。

(2)KCl盐水体系

密度范围为1.00~1.17g/cm3,KCl常与NaCl、CaCl2复配,组成混合盐水体系。只要KCl质量分数保持在3%~7%,其抑制作用就足以得到充分的发挥。

(3)CaCl2盐水体系

密度可达1.39g/cm3,CaCl2也可与NaCl配合使用

(4)CaCl2-CaBr2混合盐水体系

密度在1.4~1.8g/cm3范围,只需加入较少量的聚合物。

(5)CaBr2-ZnBr2与CaCl2-CaBr2-ZnBr2混合体系

密度均可高达2.30 g/cm3。

优点:可避免因固相颗粒堵塞而造成的油气层损害;可在一定程度上增强钻井液对粘土矿物水化作用的抑制性,减轻水敏性损害;机械钻速可显著提高。

缺点:成本高,工艺较复杂,固控要求严格,对钻具、套管腐蚀较严重和易发生漏失等问题,因此在使用上受到较大的限制。目前,国内外主要将无固相清洁盐水液用做射孔液和压井液。

有室内试验表明,高矿化度盐水钻井完井液对气层的渗透率产生严重损害,损害率在90%以上;无固相的高矿化度盐水压井液对气层渗透率的损害率达80%左右。其损害机理主要原因是高矿化度盐水钻井液完井液中的盐组分在干气返排过程中的结晶堵塞问题。

(6)甲酸盐钻井液

甲酸钠、甲酸钾和甲酸铯等配制而成。

特点:低腐,高密度2.20g/cm3,150 ℃性能稳定;易于泵送,环空压耗低;易生物降解,有利于环境保护。

2)水包油钻井液

油(通常选用柴油)分散在淡水或不同矿化度的盐水中,形成的一种以水为连续相、油为分散相的无固相水包油乳状液。以及增粘剂、降滤失剂和乳化剂等。最低密度可达0.89g/cm3 。

特别适用于技术套管下至油气层顶部的低压、裂缝发育、易发生漏失的油气层。同时,也是欠平衡钻井中的一种常用钻井液体系。

3)无膨润土暂堵型聚合物钻井液

组成:水相+聚合物+暂堵剂固相颗粒,密度通过加入NaCl、CaCl2等活性盐进行调节。

聚合物添加剂有高粘CMC、HEC、HPAM和XC生物聚合物等。

原理:在一定的正压差作用下,所加入的暂堵剂在近井壁地带形成内泥饼和外泥饼,可阻止钻井液中的固相和滤液继续侵入。

(1)酸溶性暂堵剂

常用的酸溶性暂堵剂为不同粒径范围的细目CaCO3。选用时应注意其粒径必须与油气层孔径相匹配,使其能通过架桥作用在井壁形成内、外泥饼,从而能有效地阻止钻井液中的固相或滤液继续侵入。

如果已知储层的平均孔径,可按照“三分之一架桥规则”选择暂堵剂颗粒的大小。

不能在酸敏储层使用。

(2)水溶性暂堵剂

通常称为悬浮盐粒钻井液体系。它主要由饱和盐水、聚合物、固体盐粒和缓蚀剂等组成,密度范因为1.04~2.30g/cm3。由于盐粒不再溶于饱和盐水,因而悬浮在钻井液中,常用的水溶性暂堵剂有细目氯化钠和复合硼酸盐等。这类暂堵剂可在油井投产时,用低矿化度水溶解盐粒而解堵。

不宜在强水敏性的储层中使用。

(3)油溶性暂堵剂

油溶性树脂。一类是脆性油溶性树脂,在钻井液中主要用于架桥颗粒,如油溶性的聚苯乙烯、改性酚醛树脂和二聚松香酸等;另一类是可塑性油溶性树脂,其微粒在一定压差作用下可以变形,主要作为充填颗粒。

油溶性暂堵剂可被产出的原油或凝析油自行溶解而清除,也可通过注入柴油或亲油的表而活性剂将其溶解而解堵。

4)低膨润土暂堵型聚合物钻井液

低膨润土暂堵型聚合物钻井液的特点是,在组成上尽可能减少膨润土的含量,使之既能使钻井液获得安全钻进所必须的性能,又不对油气层造成较大的损害。

其流变性和滤失性可通过选用各种与油气层相配伍的聚合物和暂堵剂来控制。除了含适量膨润土外,其配制原理和方法与无膨润土暂堵型聚合物钻井液相类似。

5)改性钻井液

裸眼钻开油气层的井,为了减轻油气层损害,在钻开油气层之前,对钻井液进行改性,以满足保护油气层对钻井液的要求。

(1)废弃一部分钻井液后用水稀释,以降低膨润土和无用固相含量。

(2)根据需要调整钻井液配方,尽可能提高钻井液与油气层岩石和流体的配伍性。

(3)选用适合的暂堵剂,并确定其加量。

(4)降低钻井液的API和HTHP滤失量,改善其流变性和泥饼质量。

6)屏蔽暂堵钻井液

原理:

利用正压差,短时间内,使钻井液中起暂堵作用固体颗粒在井壁附近形成渗透率接近于零的屏蔽暂堵带(或称为屏蔽环),从而可以阻止钻井液以及水泥浆中的固相和滤液继续侵入油气层。

由于屏蔽暂堵带的厚度(一般不应超过3cm。)远远小于油气井的射孔深度,因此在完井投产时,可通过射孔解堵。

其技术要点:

(1)测出油气层孔喉分布曲线及孔喉的平均直径。

(2)按平均孔喉直径的1/2~2/3选择架桥颗粒(通常用细目CaCO3)的粒径,并使这类颗粒在钻井液中的含量大于3%。

(3)选择粒径更小的颗粒(大约为平均孔喉直径的1/4)作为充填颗粒,其加量应大于1.5%。

(4)再加入1%~2%可变形的颗粒,其粒径应与充填颗粒相当,其软化点应与油气层温度相适应。这类颗粒通常从磺化沥青、氧化沥青、石蜡、树脂等物质中进行选择。

效果:

通过实施屏蔽暂堵保护油气层钻井液技术(简称屏蔽暂堵技术),可以较好地解决裸眼井段多套压力层系储层的保护问题。

吐哈油田在陵10-18井使用屏蔽暂堵钻井液钻开油层,并通过取心进行检测。检测结果表明,屏蔽环的渗透率均小于l×10-3mm2,暂堵深度在0.58~2.09cm之间。当切除岩心的屏蔽环后,渗透率基本上可完全恢复。

三、保护油气层的油基钻井液

原理:

主要是油包水乳化钻井液,由于这类钻井液以油为连续相,其滤液是油,因此能有效地避免对油气层的水敏损害。与一般水基钻井液相比,油基钻井液的损害程度较低。

但是,使用油基钻井液钻开油气层时应特别注意防止因润湿反转和乳化堵塞引起的损害,同时还应防止钻井液中过多的固相颗粒侵入储层。

一般来讲,对于砂岩储层,应尽量避免使用亲油性较强的阳离子型表面活性剂,最好是在非离子型和阴离子型表面活性剂中进行筛选。

四、保护油气层的气体类钻井流体

原理:对于低压裂缝性油气层、稠油层、低压强水敏或易发生严重井漏的油气层,由于其压力系数低(往往低于0.8),要减轻正压差造成的损害,需要选择密度低于

l.0g/cm3的钻井流体来实现近平衡或欠平衡压力钻井。

分类:空气、雾、充气钻井液和泡沫。

特点:密度小,钻速快,通常在负压条件下钻进,因而能有效地钻穿易漏失地层,减轻由于正压差过大而造成的油气层损害。

1)空气

组成:空气(有时亦使用天然气)、缓蚀剂和干燥剂等。

适用:常用于钻开已下过技术套管的下部易漏失地层、强水敏性油气层和低压油气

层。

特点:此种流体密度最低,负压钻进,本身又不含固相和液相,因而可最大限度地减轻对油气层的损害。使用空气钻井时机械钻速可增大3~4倍,具有钻速快、钻时短、钻井成本较低等特点。

限制:受到井壁不稳定和地层出水等问题的限制。并且需在井场配备大排量的空气压缩机等专用设备。

2)雾

组成:空气、发泡剂、防腐剂和少量水混合组成。

适用:适用于钻开低压、易漏失和强水敏性的油气层。

特点:使用这种流体钻井是空气钻井和泡沫钻井之间的一种过渡。当钻遇地层液体(如盐水层)而不宜再继续使用于空气作为循环介质时,则可转化为此种钻井流体。

其保护油气层的原理与空气钻井流体类似。

3)泡沫

组成:其液相(分散介质)是发泡剂和水,气相是空气。

特点:

(1)密度范围一般为0.03~0.09g/cm3,钻井时呈负压状态,再加上泡沫中液体含量少,因此可大大减少滤液和固相进入储层的机会。

(2)由于钻进时其环空流速高达30~100 m/min,又由于泡沫自身具有较高的粘度,其携屑能力是水的10倍,是常规钻井液的4~5倍。这样可保证井内的岩屑颗粒能及时地携出井口,从而减少了固相颗粒进入储层的机会。

(3)与储层有较好的配伍性,能有效地对付地层水,并且抗污染能力强。

(4)泡沫作为循环流体只能使用一次,因此所携出的岩屑颗粒不可能重新进入地层。

(5)机械钻速高,泡沫与储层的接触时间短。

以上特点使稳定泡沫成为比较理想的保护油气层的钻井流体,特别适于钻低压油气层,也是目前欠平衡钻井中常使用的一种钻井流体。

不足:配制成本较高,对气液比要求严格,废泡沫的排放问题。需配置一整套专用设备。

4)充气钻井液

组成:将空气注入钻井液所形成的钻井液体系。

改变充气量,可调整钻井液的密度以平衡地层压力,从而为实现平衡压力钻井创造更为有利的条件。充气钻井液的最低密度一般可达0.7g/cm3,钻井液与空气的混合比一般为10:1。

适用:钻开压力系数为0.7~l的储层,并经常在欠平衡压力钻静是使用。

密度计算:rm=(102.4pm)/H+rDm

技术关键在于:

(1)基液应具有较好的质量,粘度、切力切勿过高,以利于充气和脱气;能够抗水泥、钻屑污染,并具有较强的抑制泥页岩水化膨胀与分散的能力。

(2)装备准备充分,如配齐混气器、携砂液混气器(先期防砂并使用)、计量仪表和除气器等。

(3)充气后气泡应均匀稳定,气液不分层,以确保其基液的反复泵送、满足钻井工艺的要求。

(4)应具有良好的流变性能,特别是流性指数n值的范围要适当,以确保携屑能力。应注意充气钻井液属于塑性流体,其塑性粘度和动切力均随气液比增加而有所增加。

保护油气层的钻井液还必须与保护油气层的钻井工艺技术紧密结合起来。应尽可能通过建立孔隙压力、坍塌压力、破裂压力和地应力等四个压力剖面,进行合理井身结构和钻井液密度设计,在此基础上实现近平衡压力钻井。

此外,还应通过减少钻井液浸泡时间,优选环空返速,防止井漏、井喷等措施来减轻对油气层的损害。

《油气层保护技术》复习题

《油层保护技术》复习题 (2009.4石工二学位) 一、填空题 1.油气层损害类型中,()损害不仅存在于各个作业环节,而且其损害程度较大;其次是()和(),再其次是润湿反转和结垢损害。 2.油气层损害存在于钻井、完井和采油等各个作业环节,油气层损害的实质包括()和()。 3.当扫描电镜配有()时,能对矿物提供半定量的元素分析,常用于检测铁元素。 4.()、()和()是保护油气层岩相学分析的三大常规技术。 5.砂岩的四种基本孔隙类型是()、()、()及裂隙,储层中常以前三种为主,裂隙可与其它任何孔隙共生。而碳酸盐岩的孔隙主要有()、()和()三种类型。 6.砂岩的四种常见孔隙喉道类型是()、()、()及()。 7.孔隙连通程度通常以最小未饱和孔隙体积百分数S min,退汞效率W e和孔喉配位数来表示,一般情况下,S min越(),W e越(),孔喉配位数越(),孔隙连通程度越差。 8.敏感性矿物的产状有四种类型,即()、()、()和(),不同产状对油气层损害的影响不同。 9.孔喉弯曲程度常用结构系数F来表示,F越大,弯曲程度越(),喉道越易受到伤害。 10.岩石的表面积越大,产生油气层损害的可能性就越()。 11.油田中常见的细菌为()、()和()。 12.按运移方式,微粒运移可分为()和()两种情况。 13.若某储层岩心的Dv=0.2,Dw=0.8,则该储层为()速敏、()水敏储层。 14.细菌主要以()、()和()三种方式损害油气层。 15.针对不同的分析内容,可选用相应的岩心分析方法。一般情况下,()适用于定性鉴定或定量测定各物相组成及其含量,特别是粘土矿物的成分和含量;而

储层损害与保护技术

储层伤害评价及保护技术的研究是油气田勘探开发过程中重要的技术,也是提高油气勘探和开发质量的重要环节。在勘探中,有利于对油气储层的发现,和对储层的正确评价;在生产过程中,有利于提高油气产量及油气田开发的经济效益,和储层的稳产和增产及最大限度的利用油气资源,也关系到油气田勘探开发的成效。近些年来,随着油气勘探开发的进步,油气储层的保护技术越来越受到石油公司的重视,并已形成了从储层特征和潜在伤害分析、预测技术,储集层敏感性分析评价技术,储集层伤害指标建立和分级,钻井、完井、投产到压裂酸化及井下作业过程中保护油气层等配套实用技术,通过实际应用,取得了巨大的成效和经济效益。在油(气)井钻井、完井、生产、增产、提高采收率等全过程中的任一作业环节,储层与外来液体以及所携带的固体微粒接触,由于这些液体与地层流体不匹配而产生沉淀,或造成储层中粘土矿物的膨胀或产生微粒运移,它们往往堵塞了孔隙通道,使得渗透率降低,从而不同程度地损害了储层的生产能力,即储层伤害。 (1)油气田勘探开发生产中的储层伤害原理与特点。国内外大量的研究发现,油气储层一般都具有高应力敏感性、高毛细管压力、高含水饱和度和高水敏性的特点。而低渗透储层还具有低孔隙度、低渗透率和高含水饱和度的特征。一般研究认为,储层损害是一个复杂的系统工程,它是由于内伤害源(储层内固有的)、外伤害源(外来的)和复合伤害源(内、外伤害源相互作用)导致的结果。具体损害形式有:①固相微粒(外来和内部的)运移造成的储层损害;②外来流体与储层岩石、流体不配伍造成的损害:如水敏性损害、碱敏性损害和无机垢、有机垢堵塞等;③润湿性、毛管现象引起的储层损害(水锁、润湿反转、乳头液堵塞、气泡堵塞);④地层湿度、压力变化引起的储层损害;⑤微生物对储层的损害。 油气田勘探开发生产过程中的储层损害具有如下特点:①损害周期长。几乎贯穿于油气田勘探开发生产的整个生命期,损害具有累积效应;②损害涉及到储层的深部而不仅仅局限于近井地带,即由井口到整个储层;③更具有复杂性。井的寿命不等,先期损害程度各异,经历了各种作业,损害类型和程度更为复杂,地面设备多、流程长,工艺措施种类多而复杂,极易造成二次损害;④更具叠加性。每一个作业环节都是在前面一系列作业的基础上叠加进行的,加之作业频率比钻井、完井次数高,因此,损害的叠加性更为突出。 (2)储层伤害评价方法。储层伤害评价技术包括室内评价和矿场评价,室内评价的目的是研究油气层敏感性,配合进行机理研究,同时对可采用的保护技术进行可行性和判定性评价,为现场提供室内依据(见图1)。矿场评价则是在现场开展有针对性的试验,分析判断室内试验效果,选择合理的方法、技术。 从室内进行储层损害研究的方法上讲,常规的室内研究方法主要是在模拟储层现场条件的情况下,进行岩心流动试验,在观察和分析所取得试验结果的基础上,研究岩心损害的机理。主要实验内容包括:X--衍射分析;扫描电镜分析;薄片分析;岩心薄片和铸体薄片;储层敏感性试验,包括流速敏感性试验,水敏性和盐敏性试验,酸敏性试验,碱敏性试验以及压力敏感性试验。 (3)矿场评价技术方法。试井评价技术方法,主要包括稳定试 井法、不稳定试井法、重复电缆地层测试(RFT)和钻柱测试(DST)。测井评价技术方法,包括电阻率测井法、深度探测测井法和时间推移测井法。 用其他资料评价伤害的方法,包括用试油后排液量的资料评价伤害程度、用各阶段(中途、完井和投产)测试资料评价伤害程度和用投产后采油指数等生产参数的变化情况评价伤害程度(表1)。 20世纪90年代以来,国外很多油气田和国内一些油气田已经形成了从伤害机理研究到现场施工一整套系统保护油气的研究思路和工作方法,并取得了丰硕的成果和较好的经济效益。 (1)钻井保护油气层技术。重视钻井过程中的油气层保护技术,有利于发现油气层,准确评价储层性质,提高油井产量。主要包括探井岩性、物性、敏感性、地层孔隙压力、破裂压力钻前预测、随钻监测技术,裂缝性油气藏损害机理及屏蔽暂堵保护技术,油气层保护射孔与矿场评价技术,欠平衡钻井储层保护技术。 (2)开发注水中的储层改造技术。油田开发过程中,由于储层孔喉小,经常堵塞,导致注水压力高,甚至注不进水,无法完成配注任务。因此油田注水过程中储层保护技术研究显得越来越重要。通过研究注入水与油藏配伍性、孔喉内粘土矿物损害、有机垢和无机垢形成趋势,确定了注水开发油层物性的界限,建立注入水水质标准、水质控制与保障体系。在此基础上优选注水精细过滤技术、粘土稳定技术、细菌控制技术等,有效提高注水效率。 (3)增产改造储层保护技术。储层增产改造可以解除、弱化钻井完井及生产作业造成的损害,然而增产改造作业本身还有可能带来损害,如何减小储层损害就成为增产改造的重要的发展方向。主要研究使用优质入井液、压裂液,防漏失管柱、抽砂泵捞砂等技术,解决了配伍性差、液相和固相侵入损害问题。采用空心杆清蜡、防蜡管、自动清蜡器及强磁防蜡技术避免了压(修)井作业的漏失损害。应用自生热油清蜡技术,并与化学清蜡相结合,使清蜡速度大幅度提高。大量的实践表明,油气田的高效开发离不开储层保护,防止储层损害已经成为油气井(注入井)作业及油气田开发优化的重要目标,是开发效益最大化的基本途径。从开发井钻井、完井、油气生产、直至提高采收率的全过程,实施以系统工程观点建立起来的油气层保护技术是大幅度提高采收率的保障,也是增加产量、降低生产成本的必由之路。 1 油气储层伤害机理 2储层保护技术 3 认识与展望 参考文献 [1] [2] [3][4] 表1储层伤害评价指标 (转118页) 油气储层伤害评价与保护技术 王胜利 (中国地质大学) 摘要关键词储层伤害评价及保护技术的研究是油气田勘探开发过程中重要的技术,也是提高油气勘探和开发质量的重要环节。本文探讨了油气储层伤害的机理,评价油气储层伤害的主要方法和标准。并根据不同的油藏类型,总结了国内外的油气储层保护方法。 储层伤害储层保护储层敏感性

油气层保护

第一章绪论 1.如何理解保护油气层技术的系统性、针对性和高效性? 保护油气层技术是一项涉及多学科、多部门的系统工程技术。认识储集层和保护储集层和开发(含改造)储集层要注意以下四个方面:? 认识储集层、保护储集层和开发改造储集层都是一项系统工程? 各个作业环节都存在地层损害,因此保护油气层技术要互相配合,安系统工程进行整体优化;? 储集层损害的诊断、预防和处理、改造也是一项系统工程;? 保护油气层的技术和经济效益也是一项系统工程。针对性:保护油气层技术的针对性很强。? 储层特征不同(储层岩石、矿物组成、物性特征、流体性质等)? 作业特征及其开发方式不同? 储层产能不同高效性:保护油气层技术是一项少投入、多产出的新技术。? 保护储层单井投入相对较低? 实施保护技术后对于一个高产井每提高1%的产量就意味着巨大的经济效益;? 降低生产井改造成本;? 延长油气井生产寿命;? 提高油气田最终采收率;? 提高注水井注水效益,降低其成本。 2.油气层保护的重要性及特点及主要内容。 ⑴重要性 ①勘探过程中,采用油气层保护技术有利于及时发现油气层、准确评价油气层,直接 关系到勘探目标资源潜力的评估和油气储量评估 ②在开发过程中,实施油气层保护技术有利于充分解放油气层生产能力,有利于提高 油气田开发经济效益。 ③在油气田开发生产各项作业中,搞好保护油气层工作有利于油气井生产或注入能力 的长期高位保持和长寿命安全运行。 ⑵特点 ①涉及多科学、多专业和多部门的系统工程 ②具有很强的针对性 ③在研究方法上采用三个结合:微观研究与宏观研究结合,室内研究与现场实践结合, 理论研究与技术应用相结合。 ⑶油气层保护的主要内容 ①基础资料的收集与储层潜在损害分析 ②储层敏感性与钻井完井液和射孔压井液保护储层效果评价技术 ③钻井完井液和射孔试油损害储层机理研究 ④保护储层射孔压井液所须处理剂研制与评选 ⑤保护储层的射孔压井液技术 ⑥保护储层的射孔试油工艺技术 ⑦油气层损害现场诊断与矿场评价技术 3.保护储集层技术十项原则 (1)以经济效益为中心,以提高油气产能和采收率为目标(2)技术进步、经济效益和环 境保护要统筹考虑(3)任何保护技术都应有利于及时发现、有利于准确评价、有利于高效开发(4)立足以预防损害为主,解除损害为辅(5)各作业环节的保护技术要前后照应,做到系统整体优化(6)在保护中开发油气藏,在开发中保护油气藏(7)不该进入储层的工作液要尽量避免进入,至少要少进入(8)凡进入储层的固相和液相都能够通过物理、化学和生物化学方法予以解除(9)不可避免要进入的工作液,应该与油气层配伍,且不含固相(10)力争减少井下事故,避免各种复杂情况发生,否则前功尽弃 第二章岩心分析

保护油气层试题

油层保护 一、填空题 1、X-射线衍射,(扫描电镜)(薄片分析)是保护油气层岩相学分析的三大常规技术。 2、砂岩的四种常见的孔隙喉道类型是缩径吼道、点状喉道、片状或弯片状喉道及管束状喉道。 3、敏感性矿物的产状有四种类型,即薄膜衬垫式、栉壳式、桥接式、孔隙充填式、不同产状对油气层损害的影响不同。 4、与油气层损害有关的天然气性质主要是硫化氢和二氧化碳等腐蚀性气体的含量,含量越高,对设备的腐蚀越严重,越易造成微粒运移损害。 5、粘土矿物的水化膨胀可分为两个阶段,即表面水化和渗透水化阶段 6、细菌主要以菌落堵塞、粘液堵塞和代谢产物堵塞三种方式损害油气层。 7、针对不同的分析内容,可选用相应的岩心分析方法。一般情况下,(X-射线衍射)适用于定性鉴定或定量测定各物组组成及其含量,特别是粘土矿物的成分和含量,而(扫描电镜)更适于观察孔喉的状态、大小及孔隙的连通关系。 8、宏观上描述油气层特性的两个基本参数是孔隙度和渗透率。 9、敏感性矿物可分为速敏性矿物、水敏和盐敏性矿物、碱敏性矿物和酸敏性矿物五种类型。

10、根据水中主要离子的当量比,可将水划分为氯化钙型、氯化镁型、碳酸氢钠型和硫酸钠型,常见的地层水多为氯化钙型和碳酸氢钠型。 二、名词解释 1、间层矿物:是指有两种或两种以上不同结构层,沿C轴方向相间成层叠积组合而成的晶体结构。 2、乳化堵塞:外来流体中的油(如油基钻井液中的基油)与地层水或外来水与储层原油在表面活性物质的存在下可形成相对稳定、高粘度的乳状液,该乳状液产生两个方面的危害。一方面是比孔喉大的乳状液滴可堵塞孔喉,另一方面是提高流体粘度,增加油流阻力。 3、贾敏损害:是指由于非润湿相液滴对润湿相流体流动产生附加阻力,从而导致油相渗透滤降低的现象,或由于液珠或气泡对通过孔喉的流体造成附加的阻力效应,从而导致流体的渗流能力降低,这种现象称为贾敏损害。 4、临界流速:在生产过程中使油气层微粒开始运移的流体速度。或在速敏实验中,引起渗透率明显下降时的流体流动速度称为该岩石的临界速度,即临界流速。 5、微粒运移的损害:微粒在一定外力作用下,从孔壁上分离下来并随着流体一起运动,当运移至喉道位置时,粒径大于喉道直径的微粒被捕集而沉积下来,对孔喉产生堵塞,造成油气层的绝对渗透率下降,这种现象称为微粒运移损害。

油气层损害机理

第四章油气层损害机理 当探井落空、油气井产量快速递减、注入井注入能力下降,人们首先想到的是油气层可能被损害。随着勘探开发的地质对象越来越复杂(规模变小,储层致密、深层高温高压、老油气田压力严重衰竭),探井成功率降低,开发作业成本增加,使得油气层损害研究更加倍受关注。 油气层被钻开之前,在油气藏温度压力环境下,岩石矿物和地层流体处于一种物理、化学的平衡状态。钻井、完井、修井、注水和增产等作业或生产过程都能改变原来的环境条件,使平衡状态发生改变,这就可能造成油气井产能下降,导致油气层损害。 为了揭示油气层损害机理,不仅要研究油气层固有的工程地质特征和油气藏环境(损害内因),而且还应研究这些内因在各种作业条件下(损害外因)产生损害的具体过程。损害机理研究以岩心分析、敏感性评价、工作液损害模拟实验和矿场评价为依托,通过综合分析,诊断油气层损害发生的具体环节、主要类型及作用过程,最后要提出有针对性的保护技术和解除损害的措施建议。 第一节油气层损害类型 油气井生产或注入井注入能力下降现象的原因及其作用的物理、化学、生物变化过程称为油气层损害机理。通常所说的油气层损害,其实质就是储层孔隙结构变化导致的渗透率下降。渗透率下降包括绝对渗透率的下降(即渗流空间的改变,孔隙结构变差)和相对渗透率的下降。外来固相侵入、水敏性损害、酸敏性损害、碱敏性损害、微粒运移、结垢、细菌堵塞和应力敏感损害等都改变渗流空间;引起相对渗透率下降的因素包括水锁(流体饱和度变化)、贾敏、润湿反转和乳化堵塞。油气层损害主要发生在井筒附近区,因为该区是工作液与油气层直接接触带,也是温度、压力、流体流速剧烈变化带。钻井完井过程的损害一般限于井筒附近,而增产改造、开发中的损害可以发生在井间任何部位。 对于某一油气藏和具体作业环节到底如何有效地把握主要的损害呢?大量研究工作和现有的评价手段已能清楚地说明主要损害原因。目前比较普遍

花岗岩储层损害机理及保护技术

·199· 花岗岩大部分都是分布在盆地的底部,但规模一般较大,且埋藏较深,因此开采的程度较低,从现在的研究状况来看,花岗岩中一般储存的油气较少一般难以达到成藏条件。但花岗岩若达到了成藏条件就会形成规模较大的油气藏,从而具备很好的开发前景。 1 花岗岩储层特征 1.1 岩性特征 花岗岩的基本组成成分是长石、石英、黑云母等,有时还含有一些灰石[1]。矿物成分中石英约20%~30%,斜长石约50%~60%,钾长石约10%~20%,黑云母为5.39%~31.24%,由此可以看出花岗岩储层的矿物主要以长石为主。1.2 物性特征 花岗岩岩体内部各类裂缝沟通孔隙在上部形成了较好的储集空间,孔隙度为0.1%~27.5%,平均4.2%,其中<5%的样品占66%,渗透率最小值<0.01mD,最大为93.2mD,平均1.8mD。不含较大孔缝。从以上数据就能明显的得出一个结论,岩石致密、渗透性差,花岗岩储层的储量主要取决于其孔隙,裂隙主要影响其渗透性,所以裂缝就成了主要的渗流通道。1.3 孔隙结构特征 花岗岩储层的储集空间和渗流通道可以分为一下几类:1)孔隙。花岗岩中原生孔隙不发育,溶蚀孔隙属于次生孔隙,主要由于水流沿着断裂或裂缝渗入而形成,多为矿物溶孔,溶蚀矿物主要为斜长石和角闪石。2)裂缝。有岩心观察可以看出花岗岩中的裂缝类型有构造裂隙和构造-溶蚀裂隙两种,裂缝的宽度一般为0.1~0.5mm,还可以由测井资料看出宏观裂缝不发育,大多数为构造—溶蚀裂缝。3)溶洞。花岗岩油藏中的溶洞相对而言不是很多,但是在一些特殊的情况下也会有很多的溶洞。4)微裂隙。花岗岩油藏中溶洞不是很多,但裂缝是比较发育的,这些裂缝在岩石应力的影响下又会进一步形成微裂缝。 2 花岗岩储层潜在损害机理 2.1 固相侵入 花岗岩储层的裂缝微裂缝占了很大一部分,所以裂缝微裂缝对它的渗流能力起到的非常大的作用,花岗岩储层中的油大部分都是通过裂缝来进行流动的。钻井液一般由膨润土、加重剂和混入钻井液的地层微粒组成,同时固体颗粒的粒径是在一定范围内分布。 2.2 应力敏感性损害 由前面分析可知,花岗岩储层中的裂缝微裂缝比较发育,这样的储层中裂缝在导流能力方面就起着重要的作用,如果花岗岩储层中发生应力敏感损害这样的话,储层中的微裂缝就会在压差作用下合在一起,储层中油流就会很难通过甚至无法通过。2.3 水锁损害 有前面的研究可以看出,花岗岩储层中溶洞不是很发育,孔隙也相对不发育,但是储层中的裂缝微裂缝是比较发育的,经研究表明水锁对花岗岩储层的损害就是对其中大量发育的裂缝的损害。 3 花岗岩储层保护技术 3.1 欠平衡钻井技术 目前欠平衡钻井技术是保护花岗岩储层的最好的方式,如果能把非直井开采技术和欠平衡钻井技术相结合,这样以来就可以穿过更多的储层来更好的提高单井的产量。3.2 低压屏蔽暂堵技术 由于各个地区的地层特征不尽相同,所以要根据现场的情况选择最佳的钻井方式来达到保护储层的目的。如果要选择欠平衡钻井,就要在全部的开采过程中都使用欠平衡钻井开采,钻完井后要采用裸眼完井方式完井,完井后就可以投入生产;同样如果要采用低压屏蔽封堵技术,最好使用套管射孔完井方式完井,这样有利于后期的酸化压裂等增产措施。 4 结论 1)由以上的研究可以得出,花岗岩储层岩性致密、低孔低渗、裂缝发育且为储层中主要的渗流通道,花岗岩储层类型主要是裂缝型。2)钻井液固体颗粒侵入损害、储层岩石应力敏感的伤害、储层中的流体和酸性液体造成的损害、钻井液流速过快造成的损害为花岗岩储层的主要损害类型。3)欠平衡钻井技术和低压屏蔽暂堵技术为保护花岗岩储层的主要技术,相对而言欠平衡钻井技术对花岗岩储层更好,但是还要根据现场情况和地层特征选择最佳的钻井方式。 参考文献: [1] 邱树立.D块稠油油藏兴隆台油层兴Ⅱ组储层物性特征[EB/ OL].云南化工,2017(12). 收稿日期:2017-11-29 作者简介:张磊,西安石油大学。 花岗岩储层损害机理及保护技术 张 磊 (西安石油大学,陕西 西安 710065) 摘 要:通过扫描电镜、铸体薄片等技术,对花岗岩储层的岩性特征、物性特征和它的损害机理等做了系统 全面的分析,探讨了花岗岩油藏的保护方法。 关键词:花岗岩储层;储层损害;欠平衡钻井 中图分类号:TE258 文献标识码:B 文章编号:1004-275X(2018)01-199-01

保护油气层技术

保护油气层技术 (徐同台、赵敏、熊友明等编) 目录 第一章绪论……………………………………………………(1) 第一节保护油气层的重要性及主要内容…………………(2) 第二节保护油气层技术的特点与思路……………………(6) 第二章岩心分析……………………………………………(10) 第一节岩心分析概述……………………………………(10) 第二节岩心分析技术及应用……………………………(14) 第三章油气层损害的室内评价……………………………(29) 第一节概述………………………………………………(29) 第二节油气层敏感性评价………………………………(30) 第三节工作液对油气层的损害评价……………………(40) 第四节储层敏感性预测技术……………………………(44) 第四章油气层损害机理……………………………………(49) 第一节油气层潜在损害因素……………………………(50) 第二节外因作用下引起的油气层损害…………………(55) 第五章钻井过程中的保护油气层技术……………………(68) 第一节钻井过程中造成油气层损害原因分析…………(68) 第二节保护油气层的钻井液技术………………………(73) 第三节保护油气层的钻井工艺技术……………………(90) 第四节保护油气层的固井技术………………………(100) 第六章完井过程中的保护油气层技术……………………(107) 第一节完井方式概述……………………………………(107) 第二节射孔完井的保护油气层技术……………………(111) 第三节防砂完井的保护油气层技术……………………(125) 第四节试油过程中的保护油气层技术…………………(140) 第七章油气田开发生产中的保护油气层技术……………(143) 第一节概述………………………………………………(143) 第二节采油过程中的保护油气层技术…………………(147) 第三节注水中的保护油气层技术………………………(149) 第四节增产作业中的保护油气层技术…………………(156) 第五节修井作业中保护油气层技术……………………(164) 第六节提高采收率中的保护油气层技术………………(168) 第八章油气层损害的矿场评价技术………………………(175) 第一节油气层损害的矿场评价方法……………………(175) 第二节油气层损害的评价参数…………………………(181) 第三节油气层损害的测井评价…………………………(186) 第九章国外保护油气层技术发展动向……………………(198) 参考文献………………………………………………………(213) 张绍槐,罗平亚.保护储集层技术北京:石油工业出版社 钟松定,张人和,樊世忠.油气层保护技术及其矿场管理实例.北京:石油工业出版社,1999 第一章绪论

油气层损害的机理

一、油气层损害的基本概念 油气层损害: 任何阻碍流体从井眼周围流入井底的现象。 油气层损害的主要表现形式: 油气层渗透率的降低,包括油藏岩石绝对渗透率和油气相对渗透率的降低。 发生油气层损害的主要作业环节: 在钻井、完并、修井、实施增产措施和油气开采等发生油气层损害的机理: 工作流体与储层之间物理的、化学的或生物的相互作用。 二、保护油气层的重要性 ①在油气勘探过程中,直接关系到能否及时发现油气层和对储量的正确估算。 ②保护油气层有利于提高油气井产量和油气田开发经济效益。可以大大减少试油、酸化、压裂和修井等井下作业的工作量,降低生产成本。 ③有利于油气井的增产和稳产。 三、保护油气层涉及的技术范围 八方面内容: ①岩心分析、油气水分析和测试技术; ②油气层敏感性和工作液损害室内评价技术; ③油气层损害机理研究和保护油气层技术系统方案设计; ④钻井过程中的油气层损害因素分析和保护油气层技术;

⑤完井过程中的油气层损害因素分析和保护油气层技术; ⑥开发生产中的油气层损害因素分析和保护油气层技术; ⑦油气层损害现场诊断和矿场评价技术; ⑧保护油气层总体效果评价和经济效益综合分折技术。 四、油气层损害机理 1油气目的潜在损害因素 1)油气层储渗空间 孔喉类型和孔隙结构参数与油气层损害关系很大 2)油气层的敏感性矿物 速敏、xx、盐敏、酸敏、碱敏 3)油藏岩石的润湿性 4)油气层流体性质 2固体颗粒堵塞造成的损害 1)流体中固体颗粒堵塞油气层造成的损害 2)地层中微粒运移造成的损害 3工作液与油气层岩石不配伍造成的损害 1)水敏性损害 2)碱敏性损害 3)酸敏性损害 4)油气层岩石润湿反转造成的损害 4工作液与油气层流体不配伍造成的损害

保护油气层技术复习资料.

1、油气层损害的定义:在钻井,完井,井下作业及油气田开采全过程中,造成油气层渗透率下降的现象统称为油气层损害。 2、油气层损害的实质:绝对渗透率的下降和相对渗透率的下降。 3、保护油气层的重要性:a.勘探过程中,保护油气层工作的好坏直接关系到能否及时发现新的油气层、油气田和对储量的正确评价。b.保护油气层有利于油气井产量及油气田开发经济效益的提高。c.油气田开发生产各项作业中,搞好油气层保护有利于油气井的稳产和增产。 4、保护油气层技术的特点: a.保护油气层技术是一项涉及多学科、多专业、多部门并贯穿整个油气生产过程的系统工程。从钻开油气层、完井、试油、采油、增产、修井、注水、热采的每一项作业过程中均可能使油气层受到损害,而且如果后一项作业没搞好保护油气层工作,就有可能使前面各项作业中的保护油气层所获得的成效部分或者全部丧失。因此保护油气层技术是一项系统工程,此项工程涉及地质、钻井、测井、试油、采油、井下作业等多个部门,只有这些部门密切配合,协同工作,正确对待投入与产出,才能受到良好的效果。 b. 保护油气层技术具有很强的针对性. 保护油气层技术的研究对象是油气层,油气层特性资料是研究此项技术的基础。由于不同的油气层具有不同的特点,因此从油气层特性出发研究出的保护油气层技术也具有很强的针对性。 c. 保护油气层技术在研究方法上采用三个结合. 保护油气层技术在研究方法上采用三个结合:微观研究与宏观研究相结合;机理研究与应用规律相结合;室内研究和现场实践相结合。 5、保护油气层系统工程的技术思路: 保护油气层系统工程的主要技术思路可归纳为五个方面: 1. 分析所研究油气层的岩石和流体特性,以此为依据来研究 该油气层潜在损害因素与机理。 2. 收集现场资料,开展室内试验,分析研究每组油气层在各 项作业过程中潜在损害因素被诱发的原因、过程及防治措 施。 3. 按照系统工程研究各项作业中所选择的保护油气层技术措 施的可行性与经济上的合理性,通过综合研究配套形成系 列,纳入钻井、完井与开发方案设计及每一项作业的具体 设计中。 4. 各项作业结束后进行诊断与测试,获取油气层损害程度的 信息,并评价保护油气层的效果和经济效益。然后反馈给

浅议开发过程中对油气层损害

浅议开发过程中对油气层损害 摘要:在油气田开发过程中,油气层损害问题非常普遍。油气层损害不仅损失 油气资源,而且提高生产成本。油气层保护对油田生产至关重要,其目的是要力 争做到既能保护油气层,又要降低作业费用,使油气田达到最经济的开发。对油 气田开发各环节中发生的油气层损害的机理分析是油气层保护的基础。本文对了 解钻井、完井、生产、修井、增产增注措施以及提高采收率等作业中潜在的油气 层损害的类型以及机理进行了分析,认为一方面油气田开发过程中的油气层损害 问题是不可避免的。 关键词:钻井过程油气层损害;完井过程油气层损害;开发生产过程油气层 损害 1.1 钻井 钻开油气层时,在正压差和毛管力的作用下,钻井工程对油气层损害的两个 主要来源是: 1.滤失到地层的钻井液与油气层岩石矿物的反应; 2.钻井液中固体微粒的入侵。 钻井过程中造成油气层损害的因素有以下几方面: 1.压差。压差是造成油气层损害的最主要因素之一。在一定压差下,钻井液 中的滤液和固相就会渗入地层内,造成固相堵塞和粘土水化等问题。钻井液进入 油气层的深度和损害程度均随正压差的增大而增大,但过高的负压差又会引起出 砂问题。 2.浸泡时间。钻井液滤失到油气层中的数量随钻井液浸泡时间的延长而增加。 3.环空流速。若环空流速设计不合理,也将损害油气层的渗透率。高的环空 流速,对井壁的冲刷严重,钻井液的动滤失量增大,钻井液固相和液相对油气层 侵入深度及损害程度亦随之增加;同时增大钻井液对井底的有效液柱压力,即增 大对井底的压差。 4.钻井液中的固相含量及固相粒子的级配。固相对油气层损害的大小决定于 固相粒子的形状、大小及性质和级配。 5.钻井液对粘土水化作用的抑制能力。油气层中粘土的水化膨胀、分散、运 移是油气层水敏损害的根本原因,钻井液对粘土水化的抑制性愈弱,则地层水敏 损害愈大。 6.钻井液液相与地层流体的配伍性。钻井液液相与地层流体,若经化学作用 产生沉淀或形成乳状液,都会堵塞油气层,其中水基钻井液滤液通常与地层水不 配伍、能形成各类沉淀,是最常见的损害。 7.各种钻井液处理剂对油气层的损害。各类钻井液处理剂随钻井液滤液进入 油气层都将会与油气层发生作用,尽管其作用类型、机理因处理剂种类和油气层 组成结构不同而异,但大多数会对油气层产生不同程度的损害。 1.2 固井 固井作业中,在钻井液和水泥浆有效液柱压力与油气层孔隙压力之间产生的 压差作用下,水泥浆通过井壁被破坏的泥饼而进入油气层,滤失到地层的氢氧化 钙同地层内部的硅反应生成硅酸钙等化合物损害油气层;水泥微粒的入侵也会对 油气层产生损害。一般认为,固井作业引起的地层损害的原因有以下几个方面: 1.环空封固质量不好,不同压力系统的油气水层相互干扰和窜流,从而造成 有机垢、无机垢或乳化堵塞等损害。

疏松砂岩的储层损害机理及保护措施

疏松砂岩的储层损害机理及保护措施 摘要在油田生产过程中疏松砂岩储层的保护与损害都是非常重要的,在实际生产中,疏松砂岩储层的伤害机理有:固相微粒堵塞、产液乳化、岩石润湿性反转等。其中,固相颗粒的存在会加剧产液乳化程度、增强乳化液的稳定性、提高产出液的粘度,进而加剧颗粒运移; 固相颗粒高岭石和片状伊利石的存在,不但使地层岩石发生润湿反转, 而且微粒也吸附产出液的重组分, 使微粒被包裹形成具有粘弹性的固相微粒,聚集在近井壁地带, 堵塞渗流通道。基于对生产过程中疏松砂岩储层伤害机理的认识,防止对储层造成损害,需要进行一系列的保护措施。 关键词疏松砂岩储层伤害固相微粒储层保护 一、储层损害机理 储层储渗空间、岩石矿物、岩石表面性质、内部环境、岩石强度、地层膨胀性和阳离子交换容量等方面的研究表明,疏松砂岩储层存在微粒运移和润湿反转潜在损害因素,这些潜在损害通过在钻井、完井、修井作业中不配伍的工作液进入地层、浸泡等外部因素而诱发,降低了储层的渗流能力。 固相微粒的存在,增强了乳化液的稳定性,加剧了产液乳化程度,增大了产液粘度,加剧了微粒运移及其对储层的伤害程度,如此恶性循环,结果严重伤害地层,使产液量大幅度下降。 通过研究,发现疏松砂岩油田储层伤害可能与以下种因素都有关系: 1.流体与流体的不配伍,如侵入油层的钻井液滤液和地层水之间产生乳状液 2.储层岩石与流体的不配伍,主要是指水基工作液造成的蒙脱石膨胀和高岭石 分散 3.固相侵入,如加重材料或钻屑的侵入 4.相捕集或封堵,如水基钻井液与地层岩石不配伍形成的颗粒在近井壁地带被 捕集或堵塞孔道 5.化学吸附和润湿反转,如乳化剂的吸附使地层润湿性和流体流动性质改变 6.微粒运移,由于微粒在岩石孔隙结构内部移动导致孔喉桥塞和堵塞 7.生物活动,钻完修井过程中,菌体进入地层并产生多糖聚合物粘液,而导致地下流体粘度增大。 不管基于哪一类基础条件,储层伤害的原因不可能超出内在因素、外在因素和地下 流体因素三大因素的范围。现以这三大因素为分类方法进行归纳总结,然后对储层伤害 的评价方法进行简述,并对储层改造进行论述。值得注意的是,这些因素往往不止一个, 而且有可能是共同作用的结果,同时也要动态地认识因素也在发展和变化。处理这个问 题,可选择任其发展、储层改造和重新钻井三种方法,主要依据经济效益来决定。从调 研的文献来看,目前还没有将疏松砂岩从储层中作为一个方向专门研究,也没有实质意 义上的疏松砂岩储层伤害评价的新方法及储层改造的新技术。 二、疏松砂岩的保护措施

第五章 钻井过程中的保护油气层技术

第五章钻井过程中的保护油气层技术 第一节钻井过程中造成油气层损害原因分析 一、钻井过程中油气层损害原因 钻井的目的是交给试油或采油部门一口无损害或低损害的油气井。钻井中对油气层的损害不仅影响油气层的发现和油气井的产量。 钻开油气层时,在正压差、毛管力作用下,钻井液固相进入油气层造成孔喉堵塞,液相进入油气层与油气层岩石和流体作用,破坏油气层原有的平衡,从而诱发油气层潜在损害因素,造成渗透率下降。 钻井液中固相对地层渗透率的影响二、钻井过程中影响油气层损害程度的工程因素 影响油气层损害程度的工程因素:压差、浸泡时间、环空返速、钻井液性能(与固相、滤液和泥饼质量密切相关)

第二节保护油气层的钻井液技术 一、钻井液在钻井中的主要作用 钻井液的作用:冲洗井底和携带岩屑;破岩作用;平衡地层压力;冷却与润滑钻头;稳定井壁;保护油气层;获取地层信息;传递功率 二、保护油气层对钻井液的要求 1.钻井液密度可调,满足不同压力油气层近平衡压力钻井的需要 2.钻井液中固相颗粒与油气层渗流通道匹配 3.钻井液必须与油气层岩石相配伍 4.钻井液滤液组分必须与油气层中流体相配伍 5.钻井液的组分与性能都能满足保护油气层的需要 三、钻开油气层的钻井液类型 目前保护油气层钻井液技术已从初级阶段(仅控制钻井液密度、滤失量和浸泡时间)进入到比较高级的阶段。针对不同类型油气藏形成了系列的保护油气层钻井液技术。 1.水基钻井液 由于水基钻井液具有成本低、配置处理维护较简单、处理剂来源广、可供选择的类型多、性能容易控制等优点,并具有较好的保护油气层效果,是国内外钻开油气层常用的钻井液体系。 按钻井液组分与使用范围分: 1)无固相清洁盐水钻井液 2)水包油钻井液 3)无膨润土暂堵型聚合物钻井液 4)低膨润土聚合物钻井液

第四章 油气层损害机理

第四章油气层损害机理 油气层损害机理:就是油气层损害的产生原因和伴随损害发生的物理、化学变化过程。 目的:认识和诊断油气层损害原因及损害过程,以便为推荐和制定各项保护油气层和解除油气层损害的技术措施提供科学依据。 相对渗透率下降包括:水锁、贾敏、润湿反转和乳化堵塞 第一节概述 渗透空间的改变包括:外来固相侵入、水敏性损害、酸敏性损害、碱敏性损害、微粒运移、结垢、细菌堵塞和应力敏感损害; 内因(潜在损害因素) :凡是受外界条件影响而导致油气层渗透性降低的油气层内在因素,包括孔隙结构、敏感性矿物、岩石表面性质和地层流体性质,是储集层本身固有的特性。 外因:在施工作业时,任何能够引起油气层微观结构或流体原始状态发生改变,并使油气井产能降低的外部作业条件,均为油气层损害外因,主要指入井流体(固相和液相)性质、压差、温度和作业时间等可控因素。 外来流体与储集层岩石的相互作用造成: ①外来固相颗粒的堵塞与侵入; ②滤液侵入及不配伍的注入流体造成的敏感性损害; ③储集层内部微粒运移造成的地层损害; ④出砂; ⑤细菌堵塞。 外来流体与地层流体间的不配伍造成: ⑥乳化堵塞; ⑦无机结垢堵塞; ⑧有机结垢堵塞; ⑨铁锈与腐蚀产物的堵塞; ⑩地层内固相沉淀的堵塞; 其它损害包括: 射孔造成的压实和不完善等损害; 固井和修井作业的注水泥和水泥浆造成的特殊损害等; 机理研究除了要准确诊断和判别各种损害因素和各种可能原因外,还必须把各种因素对每个产层的危害性大小按序排列,分出主次,并找出主要因素。

第二节油气层潜在损害因素 储集层的主要特征:包括储层岩石骨架颗粒和填隙物等矿物的结构、成分、含量和分布状态,储集层孔隙结构和喉道特征;储集层中流体类型、成分、含量和流体压力等。它们都是影响和决定储集层损害的内在因素。 一、油气层孔隙结构特征与储集层损害的关系 1. 储层岩石物质组分 碎屑颗粒、杂基(或基质)、胶结物和空隙。杂基和胶结物统称为填隙物。他们决定了储集层岩石的基本特征。 碎屑颗粒称为骨架颗粒。主要 成分是石英、长石、岩屑和少量云 母和重矿物,占整个岩石的50%以 上。 填隙物(杂基和胶结物):是 填充在骨架颗粒之间的细小物质, 它包括了杂基和胶结物两部分。 杂基(或基质):是指碎屑岩中与 粗的骨架颗粒(如砾、砂)一起沉积 下来起填隙作用的细粉砂物质和粘土物质,如高岭石、水云母、蒙脱石、绿泥石等。具有很大的表面积。是储集层敏感性的内在因素。 胶结物:对骨架颗粒起胶结作用的化学沉淀物(自生矿物),主要存在于骨架颗粒之间的孔隙和吼道中,它们都是优先与进入地层内的流体接触,并发生物理、化学和物理化学作用导致地层损害,是增造成储层敏感性伤害极为重要的内在因素。 2.储层孔喉结构与油气层损害的关系

第二节__油气井钻井基本工艺流程

第二节油气井钻井基本工艺流程 文本框: 一口井从开钻到完钻要经过破碎岩石、取出岩屑并保护井壁、固井和完井多道工序。其基本工艺流程如下: ①钻前准备:定井位、道路勘察、基础施工、安装井架、搬家、安装装备。 ②钻进:加深井眼的过程。 ③固井:下入套管、注水泥固井。 (钻进、下套管固井作业是交替进行的,循环次数与井身结构有关。具体过程如下:第一次开钻(一开)→钻达一开设计井深→下表层套管、固井;二次开钻→钻达二开设计井深→下技术套管套管、固井;(井身结构复杂的井,继续进行三开、四开……等阶段的钻进和 一口井从开钻到完钻要经过破碎岩石、取出岩屑并保护井壁、固井和完 井多道工序。其基本工艺流程如下: ①钻前准备:定井位、道路勘察、基础施工、安装井架、搬家、安装装 备。 ②钻进:加深井眼的过程。 ③固井:下入套管、注水泥固井。 (钻进、下套管固井作业是交替进行的,循环次数与井身结构有关。具体 过程如下:第一次开钻(一开)→钻达一开设计井深→下表层套管、固井; 二次开钻→钻达二开设计井深→下技术套管套管、固井;(井身结构复杂的 井,继续进行三开、四开……等阶段的钻进和固井)钻达设计井深,下入油 层套管、固井。) ④完井:按设计要求连通油、气层和井眼,安装井口装置。

文本框: 1.钻前准备 在确定井位、完成井的设计后,钻前工程是钻井施工中的第一道工序,它主要包括: (1)修公路。修建通往井场的运输用公路,以便运送钻井设备及器材等。 (2)井场及设备基础准备。根据井的深浅、设备的类型及设计要求来平整场地,进行设备基础施工(包括钻机、井架、钻井泵等的基础)。 (3)钻井设备搬运及安装。包括设备就位、找正、调整、固定;钻井循环管线和油、气、水、保温管线及罐的安装等。 (4)井口设备准备。包括挖圆井(或不用)、下导管并封固、钻鼠洞及小鼠洞等。

固井对油气层的损害

固井对油气层的损害孔羽-- 油工601--12摘要:固井就是向井内下入一定尺寸的套管串,并在其周围注入水泥浆,把套管固定的井壁上,避免的是:封隔疏松、易塌、易漏等复杂地层;封隔油、气、水层井壁坍塌。其目,防止互相窜漏;安装井口,控制油气流,以利钻进或生产油气。在打开油气层后,如果钻井方式、钻井参数、泥浆性能等因素处理不当,可能会对生产层造成多种损害,研究这些损害机理,对保护和开发生产层具有重要意义。同时,使用同地层相配伍的钻井液,采用保护生产层的钻井方式将直接关系到油气井的产量及油气田的开发经济效益。 关键字:固井工艺油气层损害水泥浆套管研究进展 一、对固井过程中油层损害机理的基本认识 1.研究及试脸方法 固井过程中油层损害机理的研究,主要是用钻井过程中取出的岩芯在可以模拟井下压力、温度的流动试验装置上让冲洗液、水泥浆分别污染后,测定渗透率下降率.考虑到固井施工过程的特点,先用钻井液污染岩芯,再用冲洗液、最后用水泥浆污染,可得出最终污染深度及总的渗透率下降率,用以评价损害程度,并寻求降低损害的途径. 2.研究结论 根据模拟注水泥施工参数进行试验研究,得出如下结论. ①因清水冲洗液流经油层部位时污染压差与钻井液基本相同,且接触时间短,因此,冲洗液滤入油层很小(仅0.05m1),渗透率下降率4%-5%. ②水泥浆对油层的损害主要由滤液造成.造成损害的原因首先是滤液与粘土矿物间的各种有害作用,其次可能是水锁及少量滤液析出物在孔壁上的附结.由于钻并液先污染,所以水泥浆再次污染的损害程度比钻井液的要小,对于试验岩芯,渗透率下降率平均小于10%.水泥浆向地层的滤失由替浆动滤失和候凝静滤失两部分组成,污染深度随滤失速率、接触时间增加而增大. ③降低油层损害主要是控制水泥浆的失水量.对于尾浆、用量多(与油层接触时间长)的水泥浆,失水量控制应严一些,反之可适当放宽.水泥浆API失水量控制指标可用反演程序确定,即由射孔弹穿透的深度(允许污染的最大深度)和滤失时间推算水泥浆滤失速率和水泥浆的APT失水量. 二、固井的一般工艺流程 1作业准备阶段 根据其他影响因素确定水泥浆、水泥石的性能指标要求。选用合适的材料调配出能达到指标要求的水泥浆。通井、洗井、调整钻井液性能准备固井。 2注水泥 尽可能压稳地层流体,并且顶替效率不高,否则将导致地层流体窜槽或钻井液环空窜槽,从而影响固井质量。涉及的影响因素包括井眼条件、地层压力、钻井液、冲洗液、隔离液、水泥浆、平衡注水泥设计和提高顶替效率的措施。 3候凝 由于候凝过程中未能压稳地层流体、地层流体侵入环空、水泥浆凝结受到干扰,或由于水泥浆体系不稳定、出现水化缺陷,无法形成完整、优质的水泥环,或水泥与地层、套管界面胶结不良而影响固井质量。涉及的影响因素包括井眼条件、地层压力、水泥浆水化缺陷(如体积收缩)、注水泥过程中水泥浆密度波动控制,以及辅助压稳地层流体的措施,如环空憋压、振动固井等。 4水泥浆凝结以后 水泥浆凝结以后,地层流体腐蚀或高温强度衰退,可使水泥石的完整性、均质性遭到破坏;工况变化可使水泥石与地层、套管之间的界面胶结、密封能力遭到破坏,从而导致水泥环的长期密封性能失效。涉及的影响因素包括后期工况条件的变化(温度、压力变化,腐蚀性地层流体,地层水离子组成变化)和水泥石本身的力学、热学、化学性能。

保护油气层技术(精)

配伍、工艺措施不当。 钻井液与地层岩石不配伍。诱发水敏、盐敏、碱敏、润湿反转、处理剂吸咐。2钻井液与地层流体不配伍,形成无机盐沉淀、处理剂沉淀、发生水锁效应、产生乳化堵塞、细菌堵塞、液相侵入深度。 正压差2负压差3钻井液性能和返速4钻井事故与故障 建立四个压力剖面,为井身结构和钻井液密度设计提供科学根据.2 合理设计井身结构.3 实现近平衡钻井.4 减少浸泡时间.5 搞好中途测试.6 多套压力系统地层保护技术.7 调整井保护技术. 1钻进液密度可调,满足不同压力油气层近平衡压力钻井的需要。2钻井液中固相颗粒与油气层渗流通道匹配。3钻井液必须与油气层岩石相配伍。4钻井液滤液组分必须与油气层中的流体相配伍。5钻井液的组分与性能都能满足保护油气层的需要。 1 油基钻井液包括普通油基钻井液和油包水钻井液. 特点:a. 有效防止地层粘土水化,地层损害小;b. 可能产生乳化堵塞或地层润湿反转;c. 易发生火灾或环境污染;d. 成本较高。2 气体类钻井液,特点:a.分散介质为气体,井底压力低;

b.钻速高、地层损害很小; c.携岩能力差、需特殊装备、成本高. 3 水基钻井液, 钻开储层时,利用井底压差,在井壁附近迅速形成渗透率接近于零的屏蔽暂堵带,并可在完井过程中采取措施解堵的技术. 工艺要点:a.测定油气层孔喉分布曲线及孔喉的平均直径;b.按1/2~ 1/3孔喉直径选择架桥粒子(如超细碳酸钙、单向压力暂堵剂的颗粒尺寸,使其在钻井液中含量大于3% ;c.按颗粒直径小于架桥粒子(约1/4孔喉直径选用充填粒子,其加量大于 1.5% ;d.加入可变形的粒子,如磺化沥青、氧化沥青、石蜡、树脂等,加量一般 1%~2%,粒径与充填粒子相当。变形粒子的软化点应与油气层温度相适应。e.定期检测和维护钻井液中固相的颗粒粒度分布和含量。f.注意防止应力敏感和水锁损害 ①无固相清洁盐水.②水包油钻井液.③无膨润土暂堵型聚合物钻井液.④低膨润土聚合物钻井液.⑤改性钻井液.⑥正电胶钻井液.⑦甲酸盐钻井液.⑧聚合醇(多聚醇钻井液。⑨屏蔽暂堵钻井液。 a环空封固质量不好b固井质量差 a.水泥浆中固相颗粒堵塞油气层 b.水泥浆滤液与油气层岩石作用。c,水泥浆滤液与油气层流体作用

油气层损害的机理

一、油气层损害的基本概念 油气层损害:任何阻碍流体从井眼周围流入井底的现象。 油气层损害的主要表现形式:油气层渗透率的降低,包括油藏岩石绝对渗透率和油气相对渗透率的降低。 发生油气层损害的主要作业环节:在钻井、完并、修井、实施增产措施和油气开采等发生油气层损害的机理:工作流体与储层之间物理的、化学的或生物的相互作用。 二、保护油气层的重要性 ①在油气勘探过程中,直接关系到能否及时发现油气层和对储量的正确估算。 ②保护油气层有利于提高油气井产量和油气田开发经济效益。可以大大减少试油、酸化、压裂和修井等井下作业的工作量,降低生产成本。 ③有利于油气井的增产和稳产。 三、保护油气层涉及的技术范围 八方面内容: ①岩心分析、油气水分析和测试技术; ②油气层敏感性和工作液损害室内评价技术; ③油气层损害机理研究和保护油气层技术系统方案设计; ④钻井过程中的油气层损害因素分析和保护油气层技术; ⑤完井过程中的油气层损害因素分析和保护油气层技术; ⑥开发生产中的油气层损害因素分析和保护油气层技术; ⑦油气层损害现场诊断和矿场评价技术; ⑧保护油气层总体效果评价和经济效益综合分折技术。 四、油气层损害机理 1油气目的潜在损害因素 1)油气层储渗空间 孔喉类型和孔隙结构参数与油气层损害关系很大 2)油气层的敏感性矿物 速敏、水敏、盐敏、酸敏、碱敏 3)油藏岩石的润湿性 4)油气层流体性质 2固体颗粒堵塞造成的损害 1)流体中固体颗粒堵塞油气层造成的损害 2)地层中微粒运移造成的损害 3工作液与油气层岩石不配伍造成的损害 1)水敏性损害 2)碱敏性损害 3)酸敏性损害 4)油气层岩石润湿反转造成的损害 4工作液与油气层流体不配伍造成的损害 1)无机垢堵塞 2)有机垢堵塞 3)乳化堵塞 4)细菌堵塞 5油气层岩石毛细管阻力造成的损害 评价油气层损害的实验方法 评价实验是指在研究油层损害问题时,在实验室内进行的定性或定量分析测定的实验。该评价实验由一系列综合性的岩心分析实验组成。 一、评价实验的目的:保护油气层。 (1)弄清储层潜在因素; (2)弄清外因对储层的影响; (3)在内因外因的作用下,弄清储层损害类型及程度 (4)筛选合理的防治措施。

相关文档
最新文档