可见光吸收光谱

合集下载

5.紫外-可见吸收光谱法

5.紫外-可见吸收光谱法

•双波长分光光度计
双波长分光光度计的优点:是可以在有 背景干忧或共存组分吸收干忧的情况下 对某组分进行定量测定。 岛津UV-2700双光束双波长的
5.4 分析条件的选择 (一)显色反应的选择及类型 选择显色反应时应考虑的因素:
灵敏度高、选择性高、生成物稳定、显色剂在测定波 长处无明显吸收,两种有色物最大吸收波长之差:“对比 度”,要求△ > 60nm。
吸光度A与显色剂用量CR 的关系会出现如图所示的几种 情况。选择曲线变化平坦处。
2.反应体系的酸度
在相同实验条件下,分别测定不同pH值条件 下显色溶液的吸光度。选择曲线中吸光度较大且 恒定的平坦区所对应的pH范围。
3.显色时间与温度
由实验确定。
4.溶剂
一般尽量采用水相测定。
(三) 波长的选择
一般根据待测组分的吸收光谱,选择最大 吸收波长作为测定波长。
收物质最大限度的吸光能力,也反映了光度法测定该物质可 能达到的最大灵敏度。 (5)εmax越大表明该物质的吸光能力越强,用光度法测定该 物质的灵敏度越高。 ε>105:超高灵敏; ε=(6~10)×104 :高灵敏;
ε<2×104 :不灵敏。
3. 吸光度A与透光度T的关系
透过光的强度It与入射光的强度Io之比称 为透光度或透光率,用T表示。 T = I t / I0
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,摩尔吸光系数εmax一般在104 L· mol-1· cm-1以上,属于
强吸收。不饱和烃、共轭烯烃和芳香烃类均可发生该类跃迁 。如:乙烯π→π*跃迁的λmax为162 nm,εmax为1×104 L·mol1· cm-1。
在波长200-750nm内,基于分子内电子跃迁的吸收 光谱来确定物质的组成、含量,推测物质结构的一种 分析方法,又称为紫外-可见分光光度法。它属于分子 吸收光谱法。

紫外和可见光吸收光谱

紫外和可见光吸收光谱

紫外和可见光吸收光谱1.紫外光谱及其产生⑴紫外光的波长范围紫外光的波长范围为4-400nm。

200-400为近紫外区,4-200nm为远紫外区。

由于波长很短的紫外光会被空气中氧和二氧化碳吸收,研究远紫外区的吸收光谱很困难,一般的紫外光谱仅仅是用来研究近紫外区的吸收。

⑵紫外光谱当把一束光通过有机化合物时,某一波长的光可能吸收很强,而对其他波长的光可能吸收很弱,或者根本不吸收。

当化合物吸收一定波长的紫外光时,电子发生跃迁,所产生的吸收光谱叫做紫外吸收光谱,简称紫外光谱。

⑶电子跃迁的种类在有机化合物分子中,由于化合物的价电子有三种类型,即σ键电子、π键电子和未成键的 n 电子,在电子吸收光谱中,电子跃迁主要是经下三种。

①σ-σ*跃迁σ电子是结合得最牢固的价电子,在基态下,电子在成键轨道中,能级最低,而σ*态是最高能级。

σ-σ*跃迁需要相当高的辐射能量。

在一般情况下,仅在200nm以下约~150nm才能观察到,即在一般紫外光谱仪工作范围之外,只能用真空紫外光谱仪才可观察出来(在无氧和二氧化碳的情况下)。

所以测紫外光谱时,常常用烷烃作溶剂。

② n电子的跃迁n 电子是指象N,S,O,X 等原子上未共用的电子。

它的跃迁有两种方式。

第一种方式:n-π* 跃迁未共用电子激发跃入π*轨道,产生吸收带,称为R带(基团型的,Radikalartig德文),由n-π*引起的,在200 nm以上。

如:醛酮分子中羰基在275-295nm处有吸收带,为C=O中n-π*跃迁吸收带。

第二种方式是n→σ*跃迁,这种跃迁所需的能量大于n-π*,故醇醚均在远紫外区才出现吸收带。

~ 200nm。

如甲醇λmax183nm。

③π→π*跃迁乙烯分子中π电子吸收光能量,跃迁到π*轨道。

吸收带在远紫外区。

当双键上氢逐个被烯基取代后,由于共轭作用,π→π*能级减小。

吸收带向长波递增。

由共轭双键产生的吸收带称为K带,其特征是摩尔消光系数大于104。

在近紫外区吸收,CH2=CH2 λmax162nm,CH2=CH-CH=CH2 λmax217nm。

紫外-可见吸收光谱的产生及基本原理

紫外-可见吸收光谱的产生及基本原理

判别顺反异构体
H
H C C H
C C
H
顺式
反式 λmax=295nm εmax=27000
λmax=280nm εmax=13500
共平面产生最大共轭效应, εmax大
判别互变异构体
O CH3 C H O C C H OC2H5
H O O H O H O H
酮式:λmax=272nm,εmax=16
汞灯用于波长检定。
用积分球的检测器波长<2500nm。
单色器
将光源发射的复合光分解成单色光并可从中选出一任波 长单色光的光学系统。 ①入射狭缝:光源的光由此进入单色器; ②准光装置:透镜或返射镜使入射光成为平行光束; ③色散元件:将复合光分解成单色光;棱镜或光栅; ④聚焦装置:透镜或凹面反射镜,将分光后所得单色光聚焦 至出射狭缝; ⑤出射狭缝。
a
b c
比例常数,称为吸光系数
液层厚度,单位cm 浓度。当浓度 c 以 g· L-1 为单位,液层厚度 b 以 cm 为单位 时,吸光系数的单位为:L· g-1· cm-1
紫外分光光度法定性分析
比较吸收光谱曲线法:
可以将在相同条件下测得的未知物的吸收光谱与标准谱图 进行比较来作定性分析。如果吸收光谱的形状,包括吸收光谱 的λmax、λmin、吸收峰的数目、位置、拐点以及等完全一致,则 可以初步认为是同一化合物。
OH CH3 C H O C C OC2H5
O H
O
烯醇式:λmax=243nm,εmax=16000
纯度的控制和检验
a) 根据吸收光谱判断
含10-6M蒽的苯溶液
苯溶液
b) 根据lgε判断
4.10 例如:标准菲 lg 氯仿 max( 296 nm )

有机化合物的紫外可见吸收光谱

有机化合物的紫外可见吸收光谱
A
1:1
3:1
1.0
2.0 3,0 c(R)/c(M)
25
2. 等摩尔连续变化法: cM + cR = c(常数)
M:R=1:1
M:R=1:2
0.5
cM/c
0 0.2 0.4 0.6 0.8 1
0.33
cM/c
0 0.2 0.4 0.6 0.8 1
M + nR �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(UV-Vis)紫外-可见吸收光谱分析

(UV-Vis)紫外-可见吸收光谱分析
由于分子中从基态到激发态的电子能级的能量变化范 围刚好对应于被吸收光的紫外-可见光200-800nm波段, 因此,紫外-可见吸收光谱可以探测材料分子中电子 在能级间的跃迁,进而可以研究材料的内部结构如禁 带和定量分析。
朗伯-比耳定律 材料对光的吸收可以用吸收定律加以描述。
布格Bouguer和朗伯Lambert先后于1729年和1760年阐 明了光的吸收和吸收层厚度的关系,称为朗伯定律。 1852年比耳又提出了光的吸收和吸收物浓度之间的关 系,称为比耳定律。两者的结合称为朗伯比耳定律。
1
B(hv Eg ) 2
为吸收系数,B为常数,hv 为光子的能量
Eg 为半导体的禁带宽带。
( )2和 hv为线性关系,由半导体的吸收光谱,做 ( )2
B
B

(
)
2和
hv
的图谱,就得到线性吸收边
B
如果将吸收边的线性关系延伸到与 hv
轴相交的地方,就可以得到半导体的带隙 Eg
一般将用这种方法得到的带隙叫做光学带隙,它的测 量是紫外-可见吸收光谱在半导体材料中最常见的应用。
dI x

ai dni
i 1
Ix
s
当光束通过厚度为b的吸收层时,产生的总的吸光度等
于在全部吸收层内吸收的总和,对上式积分得到:
m
ln I0

ai ni
i 1
I
s
吸光度是指吸光体对光的吸收程度,通常人们用
A

log
I0 I
来表示,因此,根据吸光度A的定义
A log I0
I
2. 禁戒的直接跃迁
某些情况下,即使在直接禁带的半导体材料中,其价 带顶和导带底都在K空间的原点,但是它们之间的跃 迁即K=0可能被选择定则禁止,而K不为0的情况下的 跃迁反而被允许,一般把这种跃迁称为禁戒的直接跃 迁。同样通过计算,可以得到吸收系数和光子能量的 关系

可见光吸收光谱实验

可见光吸收光谱实验
数据处理:实验数据可能存在误差,需要进一步处理和验证 实验操作:实验过程中可能存在操作不规范或错误,导致结果不准确 实验条件:实验条件可能不够理想,如温度、湿度等环境因素影响实验结果 实验设备:实验设备可能存在老化或故障,影响实验结果的稳定性和准确性
探讨实验的改进方向与未来发展
优化实验设备: 提高检测精度和 稳定性
实验原理:物质对不同波长的可见光具有选择性吸收,当一束白光通过溶液时,不同波长的 光被吸收的情况不同,形成吸收光谱
实验步骤:准备实验器材和试剂,进行实验操作,记录实验数据并分析
实验结果:展示实验数据,分析可见光吸收光谱的基本原理
学习使用光谱仪进行实验操作
掌握光谱仪的基 本操作方法
学习如何设置实 验参数
不同物质具有不同的光谱特征 通过光谱图可以判断物质的种类 定性分析的依据是光谱图的峰位和峰强 对比不同物质的光谱图可以发现差异
根据数据计算相关物理量,进行定量分析
吸光度与浓度的关系:通过吸光度值计算样品浓度 线性回归分析:对实验数据进行线性回归分析,确定线性关系 斜率和截距:计算线性回归方程的斜率和截距 误差分析:对实验结果进行误差分析,评估实验的准确性和可靠性
了解光谱分析的 基本原理
掌握数据处理和 分析的方法
分析实验数据,探究物质对可见光的吸收特性
添加标题
实验目的:通过测量物质对不同波长可见光的吸收程度,分析实验数据,探究物质对可见光的吸 收特性。
添加标题
实验原理:根据朗伯-比尔定律,物质对光的吸收程度与光程、吸光物质浓度及光波长有关。通过 测量不同波长下的吸光度,可分析物质对可见光的吸收特性。
光的吸收:物质吸收特定波长的可见光,产生吸收光谱 分子振动:物质分子振动导致电子跃迁,产生吸收光谱 能量转移:能量从低能级向高能级转移,产生吸收光谱 物质组成:不同物质具有不同的吸收光谱,可用于物质鉴别

紫外-可见吸收光谱

紫外-可见吸收光谱

6.生化反应动力学的研究
如果某生化反应中一种反应物的浓度发生变化, 则可以利用紫外-可见吸收光谱研究反应进行的快慢 即反应的动力学。例如在酶反应中,底物的减少会使 其吸收幅度下降,产物的吸收峰幅度增加,因此可以 利用底物或产物吸收峰的变化来研究反应的进行情况 及其反应速度。
乳酸脱氢酶
乳酸盐 + NHD+
2. 纯度的检验
如果有机物在紫外可见光区没有明 显的吸收峰,而杂质在紫外区区有较强 的吸收,则可利用紫外光谱检验化合物 的纯度。
3. 样品浓度的测定
根据吸收定律: A=εcl
同一物质的消光系数ε是一定的,因 此在光径相同的样品池中,A与样品浓度c 成正比。
• 比较法
• 标准曲线
配置一系列不同浓度的标准溶液,在波 长最佳处分别测定标准溶液的吸光度A,然后 一浓度为横坐标,以相应的A为纵坐标绘制出 标准曲线。
1. 化合物的鉴定
利用紫外光谱可以推导有机化合物的分子骨架 中是否含有共轭体系,如CH2=CH-CH=CH2 , CH2=CH-CH=O ,CH2=CH-C≡N ,苯环等,利用 紫外光谱鉴定有机化合物远不如利用红外有效,因 为紫外光谱特征性不强。
苯丙氨酸 酪氨酸 色氨酸
具有环状共轭双键
鉴定的方法
时,测量到的透射光的强度与入射光强度之差即为样品 对入射光的吸收。
Io
It
A=lg(Io/It)
二.紫外光谱的特点
1. 紫外吸收光谱所对应的电磁波波长短,能量大, 反映分子中价电子能级跃迁的情况,主要用于
共轭体系及芳香族化合物的分析。
2. 但是由于谱峰宽,重叠多,而不是像红外吸收 光谱或核磁共振谱那样得到的是各个特定化学 键的峰。
丙酮酸盐 + NADH + H+

可见光吸收光谱

可见光吸收光谱
分析化学可分为定性分析、定量分析和结构分析三 个层次;以及化学分析和仪器分析两大类方法。
化学分析
化学分析:基于试样的化学反应以及反应物之间定 量关系达到分析目标的方法,主要包括重量分析和 容量分析,分别通过测定相关物质的重量或体积进 行分析。 化学分析主要应用于无机元素和无机化合物的定性 、定量分析。目前渐渐被仪器分析所取代。
仪器装置
紫外-可见光分光光度仪主要组件:光源、分光系 统、吸收池、检测显示装置
紫外-可见分光光度仪示意图
紫外-可见分光光度仪
光源:可见光用钨灯(400~1000nm)或卤素灯(320~ 2500 nm);紫外光用氢灯或氘灯(180~375nm)。 分光系统:包括狭缝、棱镜或光栅、准直装置等,可 见光分光光度计常用玻璃材质分光器件,由于玻璃对 紫外光有吸收,紫外—可见光分光光度计常用石英材 质分光器件。 吸收池:在可见光范围内可使用光学玻璃,在紫外光 范围内使用石英。
电磁波谱范围与分子、电子能级的对照关系表
光谱名称
X射线 远紫外光 近紫外光 可见光 近红外光 中红外光 远红外光 微波
波长范围
0.01~10nm 10~200nm 200~400nm 400~750nm 0.75~2.5μm 2.5~5.0μm 5.0~1000μm 0.1~100cm
跃迁类型
n=1和2层电子 中层电子 外层电子 外层电子 分子振动 分子振动 分子转动和振动 分子转动
棱镜分光和光栅分光
棱镜分光
光栅分光
仪器装置
检测器:接受样品辐射的电磁波,将其转变 为电信号并记录。 检测器有摄谱仪、单道光子检测器、多道光 子检测器等。其中多道光子检测器,如电荷 耦合阵列检测器(CCD)等已成为主流检测 器,可实现全光谱多元素的同时定量测定。

紫外-可见吸收光谱.

紫外-可见吸收光谱.
饱和烃的取代衍生物如卤代烃,其卤素原子上存 在n电子,可产生n* 的跃迁。 n* 的能量 低于*。例如,CH3Cl、CH3Br和CH3I的n* 跃迁分别出现在173、204和258nm处。
3.有机化合物的吸收光谱与分子结构
(2)不饱和烃及共轭烯烃
在不饱和烃类分子中,除含有键外,还含有 键,它们可以产生*和*两种跃迁。 *跃迁的能量小于 *跃迁。例如,在 乙烯分子中, *跃迁最大吸收波长为180nm。
第一节 紫外-可见吸收光谱 一、分子吸收光谱的产生
过程:
运动的分子外层电子---吸收外来辐射--产生电子能级跃迁----分子吸收光谱。
M h I0 M * It
一、分子吸收光谱的产生
在分子中,除了电子 相对于原子核的运动 外,还有核间相对位 移引起的振动和转动。 这三种运动能量都是 量子化的,并对应有 一定能级。左图为分 子的能级示意图。
丙酮
例:KMnO4紫红色,吸收的是绿光,λmax=525nm。它 对其它颜色的光吸收极小。吸收曲线形状是物质特有 的。当KMnO4的量不同,只使曲线沿纵座标上下移动, 但曲线形状不变。
图 KMnO----4的吸收光谱图 浓度:5、10、20、40μg/ml,1cm厚比色杯
四、分子跃迁类型及吸收光谱
max 较大 (104以上),可用于定量分析。
2.几个概念
生色团(Chromogenesis group)
有机化合物分子中含有非键或键的电子体系,
能吸收外来辐射时并引起n-* 和-*跃迁,可产生 此类跃迁或吸收的结构单元,称为生色团。
是一些具有不饱和健和含有孤对电子的基团。
如-C=C-、-C ≡ C-、—CH=O、—N=N—、-N=O 、—C≡N、—NO2等

紫外-可见吸收光谱分析

紫外-可见吸收光谱分析

• 分子、原子或离子具有不连续的量子化能级,仅当
照射光光子的能量(hυ)与被照射物质粒子的基态和 激发态能量之差相当时才能发生吸收。不同的物质微粒 由于结构不同而具有不同的量子化能级,其能量差也不 相同。所以物质对光的吸收具有选择性。
三、吸收曲线(吸收光谱)
• 吸光度(A)--波长(λ)曲线称--。 • 光吸收程度最大处的波长叫 • 最大吸收波长,用λmax表示。 • 高锰酸钾的λmax=525nm。 • 浓度不同时,光吸收曲线形状不同,最大吸收波长
1852年,比耳(Beer)发现:
• 当单色光通过液层厚度b一
• 定的有色溶液时,溶液的吸
• 光度A与溶液浓度C成正比:

A= lg(I0/I)= k2 C
• --- 比耳定律

( C--有色溶液的浓度 k2--比例常数 )
• 将朗白定律与比耳定律合并起来:

A = lg(I0/I) = K b c
物质颜色
黄绿 黄 橙 红
紫红 紫 蓝
绿蓝 蓝绿
吸收光
颜色
波长范围

40/0n-m450

450-480
绿蓝
480-490
蓝绿
490-500
绿
500-560
黄绿
560-580

580-600

600-650

650-700
二、物质对光的选择性吸收
当一束光照射到某物质或其溶液时,组成该物质的 分子、原子或离子与光子发生“碰撞”,光子的能量就 转移到分子、原子上,使这些粒子由最低能态(基态) 跃迁到较高能态(激发态):M + hυ → M* 这个作用叫物质对光的吸收。

紫外-可见吸收光谱法精选全文完整版

紫外-可见吸收光谱法精选全文完整版

溶剂极性增大
吸收峰呈规律性蓝移
3、溶剂效应
O
异丙叉丙酮(CH3-C-CH=C
CH3
CH3 )的溶剂效应
吸收带
p → p*
正己烷
230nm
CH3Cl
238nm
CH3OH
237nm
H2 O
243nm
波长
红移
n→ p*
329nm
315nm
309nm

电子跃迁类型主要有四种:σ→σ*、n→σ*、π→π*和
n→π*,各种跃迁所需的能量大小不同,次序为:
σ→σ*> n→σ*≥ π→π* > n →π*,
因此,形成的吸收光谱谱带的位置也不相同。

σ→σ*跃迁:
需要能量最大, λ<200nm ,真空紫外区,εmax > 104
饱和烃(远紫外区);
C-H共价键,如CH4( λmax 125nm)
(I) 顺式二苯乙烯 (II)反式二苯乙烯
2、跨环效应的影响
助色基团虽不共轭,但由于空间排列使电子
云相互影响,使 n→π*吸收峰长移。
O
CH3-C - CH3
O
C
S
lmax156,279 nm
lmax238nm
3、溶剂效应影响
溶剂的极性增大时,n p* 跃迁吸收带蓝移
p p* 跃迁吸收带红移
少,分析速度快。
2 灵敏度高。如在紫外区直接检测抗坏血酸时,其最低检出浓度可
达到10-6g/mL。
3 选择性好。通过适当的选择测量条件,一般可在多种组分共存的
体系中,对某一物质进行测定。
4 精密度和准确度较高。在仪器设备和其他测量条件较好的情况下,

材料表征方法第六章紫外可见光光谱

材料表征方法第六章紫外可见光光谱

b. 助色基(团):
有一些含有n电子的基团(如-OH、-OR、-NH2 等),它们本身没有生色功能(不能吸收λ>200nm的 光),但当它们与生色团相连时,就会发生n—π共 轭作用,增强生色团的生色能力(吸收波长向长波 方向移动,且吸收强度增加),这样的基团称为助 色团。
C.红移与蓝移
有机化合物的吸收谱带 常常因引入取代基或改变溶
D + A hυ D+A-
D+、A-为络合物或一个分子中的两个体系,D是 给电子体,A是受电子体。
例如:黄色的四氯苯醌与无色的六甲基苯形成的 深红色络合物。
O
CL
CL
CL
+ CL
O
O
CL
CL
=
CL
CL
O
(黄色) (无色) (深红色)
f、配位体场微扰的d →d*跃迁
过渡元素的 d 或 f 轨道为简并轨道(Degeneration orbit),当与配位体配合时,轨道简并解除,d 或f 轨 道发生能级分裂,如果轨道未充满,则低能量轨道 上的电子吸收外来能量时,将会跃迁到高能量的 d 或 f 轨道,从而产生吸收光谱。
3、电荷转移跃迁;
4、配位体场的d →d*跃迁 产生。
3.常用光谱术语及谱带分类
常用光谱术语:
a、生色基也称发色基(团):
是指分子中某一基团或体系,由于存在能使分子 产生吸收而出现谱带,这一基团或体系即为生色基。
最有用的紫外-可见光谱是由π→π*和n→π*跃迁产 生的。这两种跃迁均要求有机物分子中含有不饱和基 团。这类含有π键的不饱和基团称为生色团。简单的生 色团由双键或叁键体系组成,如乙烯基、羰基、乙炔 基、亚硝基、偶氮基—N=N—等

课件紫外可见吸收光谱(共83张PPT)

课件紫外可见吸收光谱(共83张PPT)

T I I0
I 为透射光的强度
I0 为入射光的强度
A lgI0
lgT
I
1760年朗伯(Lambert)阐明了光的吸收程度和吸收层厚度的 关系,即 A∝b
1852年比耳(Beer)又提出了光的吸收程度和吸收物浓度之间 也具有类似的关系,即 A∝ c
二者的结合称为朗伯-比尔定律,其数学表达式为:
AlgTkbc
Abc
摩尔吸光系数ε的讨论:
(1)吸收物质在一定波长和溶剂条件下的特征常数; (2)不随浓度c和光程长度b的改变而改变。在温度和波长等条件一定时 ,ε仅与吸收物质本身的性质有关,与待测物浓度无关;
(3)同一吸收物质在不同波长下的ε值是不同的。在最大吸收波长λmax 处的摩尔吸光系数,常以εmax表示。εmax表明了该吸收物质最大限度的
➢ 含有杂原子的不饱和化合物可以发生n→p*跃迁, 如含有羰基、硝基、亚硝基等
➢ n→p*跃迁所产生的吸收带称为R带
常用概念
➢ 发色团(或生色团):具有π电子的不饱和基团,即 可在紫外-可见光区产生吸收的官能团。如C=C、 C≡C、 C=O、-NO2等
➢ 助色团:有一些含有n电子的基团(如-OH、-NH2、OR、-SH、-Cl、-Br、-I等),它们本身没有生色功能
第二节
紫外-可见分光 光度计
UV-Vis spectrometer
一、基本组成
二、分光光度计的 类型
一、基本组成
1. 光源
➢ 要求:提供能量,激发被测物质分子使之产生价电子的跃迁, 从而产生电子光谱;在整个紫外光区或可见光谱区可以发射连续光 谱;具有足够的辐射强度、较好的稳定性、较长的使用寿命。
2. 有机化合物的紫外可见吸收光谱

材料分析测试第十章紫外可见吸收光谱法

材料分析测试第十章紫外可见吸收光谱法

(a)吸光度对波长的关系图
(b)百分透光率对波长的关系图
1.吸收峰 ;2.谷;3.肩峰;4.末端吸收
吸收曲线的吸收高峰(称最大吸收峰)所对应的波长称
为最大吸收波长,常用max表示
整理ppt
34
2. 无机固体光学吸收谱的类型
无机固体(含矿物)的光学吸收光谱(紫外-可见-近红外 吸收光谱),主要分为三种类型,它们分别用三种理论来 解释:晶体场光谱(晶体场理论)、电荷转移光谱(分子 轨道理论)和吸收边(能带理论)。
摩尔吸收系数()比较小,即吸收峰强度
比较小,很少在近紫外区观察到。
整理ppt
5
一些化合物n-*跃迁所产生吸收的数据
化合物 H2O
max/nm max
样品为气态
167 1480
CH3OH CH3Cl
184 150 max最大吸收波长 173 200
CH3I
258
(CH3)2S(乙醇溶液) 229
365 max最大摩尔吸收系数 140
利用吸收光谱的这一性质,可用来判断化合物的跃迁类型及谱带的归属。
整理ppt
12
共扼效应对max的影响
共扼烯烃及其衍生物的-*跃迁均为强吸收带,104,这
类吸收带称为K带。
在分子轨道理论中,电子被认为是通过共扼而进一步离 域化的,这种离域效应降低了*轨道的能级,光谱吸收峰
移向长波方向,即红移。
,-不饱和醛、酮中羰基双键和碳-碳双键-共扼也有类
实线-苯
虚线-甲苯
苯及其衍生物的长波区谱带(B带) 为一组尖锐吸收蜂,这是振动跃 迁叠加在电子跃迁上的结果。
苯和甲苯的紫外光谱图 (在环己烷中)
极性溶剂可以减少或消除这种精 细结构。

可见光紫外吸收光谱

可见光紫外吸收光谱

可见光紫外吸收光谱
可见光紫外吸收光谱是指在可见光和紫外线区域内被物质吸收的光谱。

这种光谱通常采用分光光度计测量,将被测样品溶于适当的溶剂中,然后将其置于光路中,经过适当配光后,使其透射或反射后经测量器测量,并用荧光检测仪测定信号,从而获得吸收光谱的数据。

可见光和紫外线区域的波长范围为200~800 nm。

在这个范围内,物质吸收各种波长的光的能力差异很大,因此可以获得对物质进行分析的光谱信息。

例如,DNA和RNA在260 nm处吸收光线,而蛋白质在280 nm处吸收光线。

可见光紫外吸收光谱广泛应用于分析和测定各种化学物质,如药物、蛋白质、核酸、大分子化合物等。

这种分析方法比较简单快速,在许多实验室中得到广泛使用。

可见光吸收光谱

可见光吸收光谱

可见光吸收光谱
可见光吸收光谱(Visible Absorption Spectrum)是物质吸收可见光的光谱。

当物质分子吸收特定波长的可见光时,电子从基态跃迁到激发态,从而产生吸收光谱。

在可见光吸收光谱中,不同物质对不同波长的光的吸收具有选择性。

这是因为不同物质的分子其组成和结构不同,它们所具有的特征能级也不同,其能级差不同,而各物质只能吸收与它们分子内部能级差相当的光辐射。

因此,可以通过观察物质对不同波长光的吸收程度来推断其成分和结构。

常见的可见光吸收光谱包括紫外-可见吸收光谱、红外吸收光谱等。

其中,紫外-可见吸收光谱是一种常用的分析方法,可以用于研究分子中的不饱和结构以及分子的共轭程度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可見光吸收光譜實驗注意事項
• 每次使用不同波長量測吸光值時,皆需使用蒸餾水歸零 • 取放比色槽需小心,不可濺用擦手紙,避免留下刻痕
實驗課善後
• 使用過的色素直接倒入水槽即可 • 比色管清洗乾淨後放至指定區域 • 儀器使用完畢關閉分光光度計後方的開關
分光光度計介紹
歸零 吸收度
機臺中央 光波長顯示
光源方向
機臺右方 光波長調整紐
濾光片號碼
濾光片號碼波長對應表
可見光吸收光譜(定性分析) 實驗注意事項
儀器需熱機20分鐘以上,並仔細研讀課本流程圖
可見光吸收光譜實驗注意事項
吸收度與波長之關係
注意濾光片須視波長範圍調整(波長勿扭轉超過650nm)
(380-濾光片位置1,381~481-濾光片位置2,482~736濾光片位置3)
相关文档
最新文档