最新人教版七年级上册数学应用题汇总

合集下载

新人教版七年级上册数学应用题汇总

新人教版七年级上册数学应用题汇总

新人教版七年级上册数学应用题汇总(只列式不计算)一、“工程问题”1、一项工程甲单独完成要6天,乙单独完成要12天,丙单独完成要15天(1)甲、乙合作几天完成这项工作?(2)甲、乙、丙合作几天完成这项工程?(3)甲、丙合作几天完成这项工作?(4)乙、丙合作几天完成这项工程?3?(5)甲、乙合作几天完成这项工作的43?(6)甲、乙、丙合作几天完成这项工程5(7)甲单独做了2天后,甲乙合作几天完成这项工作?(8)甲单独做了2天后,甲乙丙合作几天完成这项工作?(9)甲、丙合作3天后有其他工作离开,由乙单独完成,一共几天完成这项工作?4,问甲共工作了(10)乙单独做了3天,后甲乙丙合作,完成了该工程的5几天完成这项工程?4,剩下的由丙单独(11)乙单独做了3天,后甲乙合作,完成了该工程的5完成这项工作,问甲、乙、丙各工作了几天?2、某车间接到x件零件加工任务,计划每天加工120件。

(1)6天能完成,问总任务是多少件?(2)实际每天比计划多加工20件,7天能完成,问总任务多少件?2,4天能完成,问总任务多少件?(3)实际每天比计划多加工5(4)实际每天比计划多加工20件,结果比计划提前了2天完成,问总任务多少件?1,结果比计划多用了4天完成,问总任务多少(5)实际每天比计划少加工5件?3、某工程,甲单独完成要45天完成,乙单独做要30天完成,若乙先单独做了22天,剩下的由甲去完成,问甲、乙一共用几天可以完成全部工程?4、一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两对合作。

(1)求甲、乙合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天施工费为2500元,求完成此项工程需付给甲、乙两队共多少钱?5、一件工作甲队单独完成需7.5小时,乙队单独完成要5小时,现乙队单独先做1小时候,剩余工作由甲、乙两队共同完成,问这项工作还需要多长时间完成?二、配套问题1、一个工厂有32工人,要加工一批螺母和螺栓,一个工人每天可生产120个螺母或80个螺栓,已知一个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?2、一个木材加工厂,有28名职工,接到一批方桌生产任务,一个工人每天可制作120条桌腿或40个桌面,1张方桌需要一个桌面和4条桌腿,问,如何安排职工才可使每天完成的桌面和桌腿刚好配套?3、用木料做方桌,每立方米木料可做桌面50个或桌腿300条,一张方桌需要一个桌面和4条桌腿,5立方米的木料敲好可做多少张方桌?4、整理一批档案,由一个人完成需要20天,先计划由一部分人先做2天,3,假设每人的效率都然后再增加2人与他们一起做了8天,完成了这项任务的4一样,具体应先安排多少人工作?5、有一批苹果和一些箱子,如果每个箱子里装6千克,则剩余4千克苹果无箱可装,如果每个箱子装8千克苹果则期中一个箱子再装6千克才装满,还剩1只空箱子无苹果可装,问一共有多少个箱子和多少千克苹果?6、美术课上,老师计划将同学们分成若干小组做手工制作,如果每组5人,则多3人;如果每组6人则少5人,教师计划将同学们分成几组?7、一个工厂有职工660人,要加工一批螺母和螺栓,一个工人每天可生产14个螺母或20个螺栓,已知两个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?8、某校七年级安排170名学生参加义务绿化活动。

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题(含简单答案)

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题(含简单答案)

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。

(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。

最新人教版七年级上册数学二元一次方程应用题及答案汇总

最新人教版七年级上册数学二元一次方程应用题及答案汇总

最新人教版七年级上册数学二元一次方程应用题及答案汇总1. 问题:某商店购进了20件衣服,每件衣服成本为300元。

商店希望将成本与售价之间的差距控制在4000元以内。

请问商店至少应以多少元的售价出售每件衣服?解答:设每件衣服的售价为x元。

根据题意,售价与成本之间的差距控制在4000元以内,可列出方程:x - 300 ≤ 4000。

解这个不等式可得x ≤ 4000 + 300。

答案:商店至少应以4300元的售价出售每件衣服。

2. 问题:某公司在一年内生产了件产品,已知公司每个月的生产量是上个月生产量的1.5倍。

求这个公司每个月的生产量。

解答:设这个公司每个月的生产量为x件。

根据题意,每个月的生产量是上个月生产量的1.5倍,可列出方程:x = 1.5 * x。

答案:这个公司每个月的生产量为 / 12 = 1500件。

3. 问题:某地区的人口在过去的四年中呈等比增长,第一年的人口是人,第四年的人口是人。

求这个地区每年的人口增长率。

解答:设这个地区每年的人口增长率为r。

根据题意,人口在过去的四年中呈等比增长,可列出方程: * (1 + r)^3 = 。

解这个方程可得r ≈ 0.116。

答案:这个地区每年的人口增长率约为11.6%。

4. 问题:某书店在一次促销活动中卖出了400本书,减价幅度为x元每本,共收入元。

求减价幅度x。

解答:设减价幅度为x元每本。

根据题意,减价后的售价与初始售价之间的差距为x,可列出方程:400 * x = 。

答案:减价幅度为30元每本。

以上是最新人教版七年级上册数学二元一次方程应用题及答案的汇总。

初一上册数学应用题大全及答案新人教版

初一上册数学应用题大全及答案新人教版

初一上册数学应用题大全及答案新人教版一、选择题:本大题共12小题,每小题3分,共36分,请你将认为正确答案前面的代号填入括号内1.﹣22=()A. 1 B.﹣1 C. 4 D.﹣4考点:有理数的乘方.分析:﹣22表示2的2次方的相反数.解答:解:﹣22表示2的2次方的相反数,∴﹣22=﹣4.故选:D.点评:本题主要考查的是有理数的乘方,明确﹣22与(﹣2)2的区别是解题的关键.2.若a与5互为倒数,则a=()A. B.﹣ C.﹣5 D. 5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:由a与5互为倒数,得a= .故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.(3分)(2014 秋•北流市期中)在式子:,m﹣3,﹣13,﹣,2πb2中,单项式有()A. 1个 B. 2个 C. 3个 D. 4个考点:单项式.分析:直接利用单项式的定义得出答案即可.解答:解:,m﹣3,﹣13,﹣,2πb2中,单项式有:﹣13,﹣,2πb2,共3个.故选:C.点评:此题主要考查了单项式,正确把握单项式的定义是解题关键.4.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C. |﹣3|=|3| D.(﹣3)100=3100考点:有理数的乘方;绝对值.分析:根据有理数的乘方分别求出即可得出答案.解答:解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.点评:此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.5.如果2x2y3与x2yn+1是同类项,那么n的值是()A. 1 B. 2 C. 3 D. 4考点:同类项.专题:计算题.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出n的值.解答:解:∵2x2y3与x2yn+1是同类项,∴n+1=3,解得:n=2.故选B.点评:此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.( 3分)(2014秋•北流市期中)经专家估算,整个南海属于我国海疆线以内的油气资源约合1500忆美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()A. 1.5×104美元 B. 1.5×105美元C. 1.5×1012 美元 D. 1.5×1013美元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将15000亿用科学记数法表示为:1.5×1012.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列结论正确的是()A.近似数1.230和1.23精确度相同B.近似数79.0精确到个位C.近似数5万和50000精确度相同D.近似数3.1416精确到万分位考点:近似数和有效数字.分析:近似数的有效数字,就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,并且对一个数精确到哪位,就是对这个位后边的数进行四舍五入进行四舍五入.解答:解:A、近似数1.230有效数字有4个,而1.23的有效数字有3个.故该选项错误;B、近似数79.0精确到十分位,它的有效数字是7,9,0共3个.故该选项错误;C、近似数5万精确到万位,50000精确到个位.故该选项错误;D、近似数3.1416精确到万分位.故该选项正确.故选C.点评:本题考查了近似数与有效数字,主要考查了精确度的问题.8.若|x﹣1|+|y+2|=0,则(x+1)(y﹣2)的值为()A.﹣8 B.﹣2 C. 0 D. 8考点:非负数的性质:绝对值.分析:根据绝对值得出x﹣1=0,y+2=0,求出x、y的值,再代入求出即可.解答:解:∵|x﹣1|+|y+2|=0,∴x﹣1=0, y+2=0,∴x=1,y=﹣2,∴(x+1)(y﹣2)=(1+1)×(﹣2﹣2)=﹣8,故选A.点评:本题考查了绝对值,有理数的加法的应用,能求出x、y的值是解此题的关键,难度不大.9.一种金属棒,当温度是20℃时,长为5厘米,温度每升高或降低1℃,它的长度就随之伸长或缩短0.0005厘米,则温度为10℃时金属棒的长度为()A. 5.005厘米 B. 5厘米 C. 4.995厘米 D. 4.895厘米考点:有理数的混合运算.专题:应用题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:5﹣(20﹣10)×0.0005=5﹣0.005=4.995(厘米).则温度为10℃时金属棒的长度为4.995厘米.故选C.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A. a+b>0 B. a﹣b>0 C. ab>0 D.考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置判断出a,b的取值范围,进而可得出结论.解答:解:∵由图可知,a<﹣1<0<b<1,∴a+b<0,故A错误;a﹣b<0,故B错误;ab<0,故C错误;<0,故D正确.故选D.点评:本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.11.若k是有理数,则(|k|+k)÷k的结果是()A.正数 B. 0 C.负数 D.非负数考点:有理数的混合运算.分析:分k>0,k<0及k=0分别进行计算.解答:解:当k>0时,原式=(k+k)÷k=2;当k<0时,原式=(﹣k+k)÷k=0;当k=0时,原式无意义.综上所述,(|k|+k)÷k的结果是非负数.故选D.点评:本题考查的是有理数的混合运算,在解答此题时要注意进行分类讨论.12.四个互不相等的整数a,b,c,d,它们的积为4,则a+b+c+d=()A. 0 B. 1 C. 2 D. 3考点:有理数的乘法;有理数的加法.分析: a,b,c,d为四个互不相等的整数,它们的积为4,首先求得a、b、c、d的值,然后再求得a+b+c+d.解答:解:∵a,b,c,d为四个互不相等的整数,它们的积为4,∴这四个数为﹣1,﹣2,1,2.∴a+b+c+d=﹣1+(﹣2)+1+2=0.故选;A.点评:本题主要考查的是有理数的乘法和加法,根据题意求得a、b、c、d的值是解题的关键.二、填空题.本大题共8小题,每小题3分,满分24分.请将答案直接写在题中的横线上13.﹣5的相反数是 5 .考点:相反数.分析:根据相反数的定义直接求得结果.解答:解:﹣5的相反数是5.故答案为:5.点评:本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.14.﹣4 = ﹣.考点:有理数的除法;有理数的乘法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=﹣4××=﹣.故答案为:﹣.点评:此题考查了有理数的除法,有理数的乘法,熟练掌握运算法则是解本题的关键.15.请写出一个系数为3,次数为4的单项式3x4 .考点:单项式.专题:开放型.分析:根据单项式的概念求解.解答:解:系数为3,次数为4的单项式为:3x4.故答案为:3x4.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.16.三个连续整数中,n是最小的一个,这三个数的和为3n+3 .考点:整式的加减;列代数式.专题:计算题.分析:根据最小的整数为n,表示出三个连续整数,求出之和即可.解答:解:根据题意三个连续整数为n,n+1,n+2,则三个数之和为n+n+1+n+2=3n+3.故答案为:3n+3点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.17.若a2+2a=1,则2a2+4a﹣1= 1 .考点:因式分解的应用;代数式求值.分析:先计算2(a2+2a)的值,再计算2a2+4a﹣1.解答:解:∵a2+2a=1,∴2a2+4a﹣1=2(a2+2a)﹣1=1.点评:主要考查了分解因式的实际运用,利用整体代入求解是解题的关键.18.一只蜗牛从原点开始,先向左爬行了4个单位,再向右爬了7个单位到达终点,规定向右为正,那么终点表示的数是 3 .考点:数轴.分析:根据数轴的特点进行解答即可.解答:解:终点表示的数=0+7﹣4=3.故答案为:3.点评:本题考查的是数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.19.若多项式a2+2kab与b2﹣6ab的和不含ab项,则k= 3 .考点:整式的加减.专题:计算题.分析:根据题意列出关系式,合并后根据不含ab项,即可确定出k的值.解答:解:根据题意得:a2+2kab+b2﹣6ab=a2+(2k﹣6)ab+b2,由和不含ab项,得到2k﹣6=0,即k=3,故答案为:3点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n棵树之间的间隔有2(n﹣1)米.考点:列代数式.分析:第一棵树与第n棵树之间的间隔有n﹣1个间隔,每个间隔之间是2米,由此求得间隔的米数即可.解答:解:第一棵树与第n棵树之间的间隔有2(n﹣1)米.故答案为:2(n﹣1).点评:此题考查列代数式,求得间隔的个数是解决问题的关键.三、本大题共3小题,每小题4分,满分12分21.计算:22﹣4× +|﹣2|考点:有理数的混合运算.分析:先算乘法,再算加减即可.解答:解:原式=4﹣1+2=5.点评:本题考查的是有理数的混合运算,熟知有理数混合运算顺序是解答此题的关键.22.利用适当的方法计算:﹣4+17+(﹣36)+73.考点:有理数的加法.分析:先去括号,然后计算加法.解答:解:原式=﹣4+17﹣36+73=﹣4﹣36+17+73=﹣40+90=50.点评:本题考查了有理数的加法.同号相加,取相同符号,并把绝对值相加.23.利用适当的方法计算: + .考点:有理数的乘法.分析:逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.解答:解:原式= ×(﹣9﹣18+1)= ×(﹣26)=﹣14.点评:本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.四、本大题共2小题,每小题5分,满分10分24.已知:若a,b互为倒数,c,d互为相反数,e的绝对值为1,求:(ab)2014﹣3(c+d)2015﹣e2014的值.考点:代数式求值;相反数;绝对值;倒数.分析:由倒数、相反数,绝对值的定义可知:ab=1,c+d=0,e=±1,然后代入求值即可.解答:解:由已知得:ad=1,c+d=0,∵|e|=1,∴e=±1.∴e2014=(±1)2014=1∴原式=12014﹣3×0﹣1=0.点评:本题主要考查的是求代数式的值,相反数、倒数、绝对值的定义和性质,掌握互为相反数的两数之和为0、互为倒数的两数之积为1是解题的关键.25.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,把a=﹣1,b=2代入得:6+4=10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、本大题共2小题,每小题5分,满分10分26.已知全国总人口约1.41×109人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少kg粮食?(结果用科学记数法表示)考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.解答:解:1.41×109×0.5=0.705×109=7.05×108(kg).答:全国每天大约需要7.05×10 8kg粮食.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.27.某市出租车的收费标准为:不超过2前面的部分,起步价7元,燃油税1元,2千米到5千米的部分,每千米收1.5元,超过5千米的部分,每千米收2.5元,若某人乘坐了x(x大于5)千米的路程,请求出他应该支付的费用(列出式子并化简)考点:列代数式.分析:某人乘坐了x(x>5)千米的路程的收费为W元,则W=不超过2km的费用+2km至5km的费用+超过5前面的费用就可以求出x与W的代数式.解答:解:7+1+3×1.5+2.5(x﹣5)=8+4.5+2.5x﹣12.5.=2.5x(元).答:他应该支付的费用为2.5x元.点评:本题考查了列代数式,解答时表示出应付费用范围划分.六、本大题共1小题,满分9分2 8.学校对七年级女生进行了仰卧起坐的测试,以能做40个为标准,超过的次数用正数表示,不足的次数用负数表示,其中6名女生的成绩如下(单位:个):2 ﹣1 03 ﹣2 1(1)这6名女生共做了多少个仰卧起坐?(2)这6名女生的达标率是多少?(结果精确到百分位)考点:正数和负数.分析:(1)由已知条件直接列出算式即可;(2)根据题意可知达标的有4人,然后用达标人数除以总人数即可.解答:解:(1)40×6+(2﹣1+0+3﹣2+1)=240+3=243(个).答:这6名女生共做了243个仰卧起坐;(2)×100%≈0.67=67%.答:这6名女生的达标率是67%.点评:本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.七、本大题共1小题,满分9分29.如图,边长为a的正方形工件,四角各打一个半径为r的圆孔.(1)列式表示阴影部分的面积;(2)当a=15,r=2时,阴影部分的面积是多少?(π取3.14,结果精确到0.1)考点:列代数式;代数式求值.分析:(1)阴影部分面积=正方形的面积﹣四个圆的面积;(2)把a=15,r=2代入(1)所列的代数式中,计算即可.解答:解:(1)阴影部分的面积:a2﹣4πr2;(2)当a=15,r=2时,a2﹣4πr2=152﹣4×3.14×22,=225﹣50.24≈174.8.答:阴影部分的面积是174.8.点评:此题主要考查了列代数式,关键是掌握圆的面积公式和正方形的面积公式.八、本大题共1小题,满分10分30.一振子从A点开始左右水平来回的震动8次后停止,如果规定向右为正,向左为负,这8次震动的记录为(单位:毫米):+10,﹣9,+8,﹣7,+6,﹣5,+5,﹣4.(1)该振子停止震动时在A点哪一侧?距离A点有多远?(2)若该振子震动1毫米需用0.02秒,则完成上述运动共需多少秒?考点:正数和负数.分析:(1)根据有理数的加法,可得答案;(2)根据距离的和乘以单位距离所需的时间,可得总时间.解答:解:(1)10﹣9+8﹣7+6﹣5+5﹣4=1+1+2=4(毫米).答:该振子停止震动时在A点右侧.距离A点有4毫米.(2)(|+10|+|﹣9|+|+8|+|﹣7|+|+6|+|﹣5|+|+5|+|﹣4|)×0.02=54×0.02=1.08(秒).答:完成上述的运动共需1.08秒.点评:本题考查了正数和负数,利用距离的和乘以单位距离所需的时间等于总时间,注意第二问计算的是距离的和.。

七年级上册应用题大全

七年级上册应用题大全

七年级上册应用题大全一、有理数相关应用题。

1. 某冷库的温度是零下10°C,下降 -3°C后又下降5°C,求两次变化后的库温。

- 解析:零下10°C记为 - 10°C。

下降 - 3°C,实际是温度上升3°C,此时温度为-10+3 = - 7°C。

又下降5°C后,温度为-7 - 5=-12°C。

2. 一潜水艇所在高度为 - 50米,一条鲨鱼在潜水艇上方10米处,求鲨鱼所在的高度。

- 解析:潜水艇高度为 - 50米,鲨鱼在其上方10米处,那么鲨鱼所在高度为-50+10 = - 40米。

3. 某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。

试用正、负数表示各月的利润,并算出该商场上半年的总利润额。

- 解析:- 1月利润:+13万元;2月利润:+12万元;3月利润: - 0.7万元;4月利润: - 0.8万元;5月利润:+12.5万元;6月利润:+10万元。

- 上半年总利润为:(13 + 12+12.5 + 10)+(-0.7-0.8)=47.5 - 1.5 = 46(万元)二、整式相关应用题。

4. 一个长方形的长是2x cm,宽比长少4cm,若将长方形的长和宽都增加3cm,求面积增大了多少?- 解析:- 原长方形宽为(2x - 4)cm。

- 原长方形面积为S1 = 2x(2x - 4)=4x²-8x。

- 长和宽增加3cm后,长为(2x + 3)cm,宽为(2x - 4+3)=(2x - 1)cm。

- 新长方形面积为S2=(2x + 3)(2x - 1)=4x²+4x - 3。

- 面积增大的值为S2 - S1=(4x²+4x - 3)-(4x² - 8x)=12x - 3(cm²)5. 已知A = 3x²+5y² - 2xy²,B = 4x² - 2y²+xy²,求A - B。

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。

人教版七年级上册数学应用题全集及答案

人教版七年级上册数学应用题全集及答案

人教版七年级上册数学应用题全集及答案1.一元一次方程应用题市场经济中,打折销售是一种常见的促销手段。

在此背景下,我们需要掌握以下知能点:1)商品利润=商品售价-商品成本价2)商品利润率=商品利润/商品成本价×100%3)商品销售额=商品销售价×商品销售量4)商品的销售利润=(销售价-成本价)×销售量5)商品打几折出售,即按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售。

1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。

已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元。

这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元。

这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:45%×(1+80%)x-x=504.某商品的进价为800元,出售时标价为1200元。

后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折。

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。

经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。

求每台彩电的原售价。

知能点2:方案选择问题6.某蔬菜公司有一种绿色蔬菜。

若在市场上直接销售,每吨利润为1000元。

经粗加工后销售,每吨利润可达4500元。

经精加工后销售,每吨利润涨至7500元。

当地一家公司收购这种蔬菜140吨。

该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨;如果进行粗加工,每天可加工6吨。

但两种加工方式不能同时进行。

受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕。

为此,公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工。

人教版数学七年级上册应用题专项(附答案)

人教版数学七年级上册应用题专项(附答案)

人教版数学七上应用题专项练习一、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千米,甲车速度50千米每小时从A地出发,乙车速度40千米每小时从B地出发。

同时出发相对而行,几小时后相距30千米?2.甲乙两车从相距300千米的AB两地同时出发,甲速度是乙速度的1.5倍,4小时后相遇,乙速度是多少?3.甲乙两地相距600千米,慢车速度40千米每小时从甲地出发,快车速度60千米每小时从乙地出发;如果让慢车先走55分钟后,快车再出发,求快车开出多少小时后两车相遇?二、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在乙车前方600米处,甲速度40千米每小时,乙车速度60千米每小时,同时出发,乙车几小时能追上甲车?②AB两地相距62千米,甲从A出发,每小时行14千米,乙从B出发每小时行18千米,若甲在前乙在后,两人同时同方向出发,几小时后乙超过甲10千米?2.同地不同时:先走者的时间=后走者的时间+时间差先走者的路程=慢走者的路程①慢车从车站开出,每小时行48千米,45分钟后,一快车从同车站同向开出,1.5小时追上了慢车,快车的速度是多少?②古代一队士兵去城外进行训练,以每小时5千米的速度行进,走了18分钟,城内要将一个重要信息传给队长,通讯员骑马以每小时14千米的速度按原路追赶。

通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=一圈的路程同地同向:两者路程差=一圈的路程1.一条环形跑道长400米,甲每分钟行450米,乙每分钟行250米;甲乙两人同时同地反向出发,几分钟后再相遇?甲乙两人同时同地同向出发,几分钟后再相遇?2.甲乙两人在400米的环形跑道上跑步,若同时同地同向跑则3分20秒相遇一次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少米?四、年龄问题等量关系式:大小年龄差永远不会变,一年一岁,人人平等1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲年龄是儿子年龄的3倍?3.父亲和女儿的年龄和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?4.现在甲的年龄是乙的2倍,8年后两人年龄和是76岁,现在甲比乙大几岁?五、行船问题顺流航速=船的静水速度+水流速度逆流速度=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离?2.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?六、飞行问题顺风速=飞机无风速+风速逆风速=飞机无风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/小时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打几折出售此商品?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利利润相等,该工艺品每件的进4.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?八、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。

(完整)人教版七年级上册数学应用题及答案

(完整)人教版七年级上册数学应用题及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(水费电费问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(水费电费问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(水费电费问题)训练a a(3)如果丙用户某月用水量为吨,则丙该月应缴交水费多少元?(用含的式子表示,并化简)参考答案:1.(1)(2)(3)小林家在11月份的用电量为305度.【分析】本题考查的是列代数式,一元一次方程的应用.(1)由可得此时单价为每度元,利用总价等于单价乘以数量即可得到答案;(2)由小林家月份用电度,可得此时分两段计费,其中度每度元,超过部分度,每度元,从而可得答案;(3)设小林家在月份的用电量为度,由,可得,再列方程,解方程可得答案.【详解】(1)解:∵,∴小林家4月份应付的电费(元).故答案为:90;(2)解:∵小林家6月份用电度,∴小林家6月份应付的电费元,故答案为:;(3)解:设小林家在11月份的用电量为x 度,∵,∴.根据题意得:,解得:.答:小林家在11月份的用电量为305度.2.(1)40,102(2)160(3),,(4)居民丁12月用电460度,见解析90()0.863x -180<210,0.56(x 210x >)2100.5()210x -0.811x 2100.5105181⨯=<210x >0.863181x -=180210<1800.5=90⨯()210x x >()()2100.5+0.82101050.81680.863x x x ⨯-=+-=-()0.863x -2100.5105181⨯=<210x >0.863181x -=305x =0.5x ()0.6515x -()0.7535x -【分析】本题考查一元一次方程的应用,理解题意,正确列出代数式是解题的关键.(1)根据某地对居民用户用电收费标准作如下规定列式即可求出答案;(2)根据某地对居民用户用电收费标准作如下规定列式即可求出答案;(3)根据某地对居民用户用电收费标准作如下规定列式并化简即可求出答案;(4)先判断出居民丁在12月份用电范围,再列方程即可解决问题.【详解】(1)解:,∴居民甲9月份应缴纳电费:(元),,∴居民乙10月份应缴纳电费:(元),故答案为:40,102;(2),∴居民丙11月份应缴纳电费:(元),故答案为:160;(3)当x 不超过100度,需交电费:元;当x 超过100度不超过200度,需交电费:(元),如果超过200度,需交电费:(元),故答案为:,,;(4)由(2)可知,该月用电超过200度,故,解得,答:居民丁12月用电460度.3.(1)的值为;(2)该用户用水35立方米.【分析】本题主要考查了一次函数的应用.(1)根据题意列出关于a 的方程,解方程即可;(2)先判断用水量超过30立方米,然后列出关于x 方程,解方程即可.【详解】(1)解:由题意,得,解得.80100< 800.540⨯=100180200<< ()1000.50.65180100102⨯+⨯-=260200> ()()0.51000.652001002602000.75160⨯+⨯-+-⨯=0.5x ()5010006506515x ..x +-⨯=-()()0510006520010020007507535..x ..x ⨯+⨯-+-⨯=-0.5x ()06515.x -()07535.x -07535310.x -=460x =a 2.981029.8a = 2.98a =答:的值为;(2)解:∵用水30立方米时,水费为,∴,∴,解得.答:该用户用水35立方米.4.(1)60(2)当时,这个月应缴纳电费为:元,当时,这个月应缴纳电费为:元,(3)九月份应缴电费127元,十月份用电225度.【分析】本题考查列代数式以及一元一次方程的应用,注意分类讨论缴费情况,本题还涉及代入求值问题.(1)根据,结合电费=单价×度数,列式求值即可,(2)根据“如果每月每户用电不超过150度,那么每度电元;如果该月用电超过150度,那么超过部分每度电元”分别讨论和时,这个月应缴纳的电费,列出关于a 的整式,(3)令,代入(2)中的代数式中即可求出九月份应缴电费;根据可得十月份电费超过150度,据此列方程计算即可.【详解】(1)解:根据题意得:(元),答:这个月应缴纳电费60元,(2)当时,这个月应缴纳电费为:元,当时,这个月应缴纳电费为:元;(3)当,应缴费为:(元)∵,∴十月份电费超过150度,根据题意可得,解得:,答:九月份应缴电费127元,十月份用电225度.a 2.9830 2.9889.4109.4⨯=<30x >()()30 2.9830 2.98 1.02109.4x ⨯+-⨯+=35x =150a 0≤≤0.5a 150a >()0.845a -120150<0.50.8150a ≤150a >215a =0.845a -0.515075135⨯=<0.512060⨯=150a 0≤≤0.5a 150a >()()0.51500.81500.845a a ⨯+-=-215a =2150.845127⨯-=0.515075135⨯=<0.845135a -=225a =5.(1)36.5(2)31吨【分析】(1)根据题意列式求解即可;(2)首先判断李强家六月份用水量超过吨而没有超过吨,然后设小强家六月份用了吨水,根据题意列出方程,求解即可获得答案.【详解】(1)解:根据题意,可得王明家要交水费;(2)解:∵,∴李强家六月份用水量超过吨而没有超过吨,设李强家六月份用了吨水,根据题意,可得,解得 ,所以,李强家六月份用了31吨水.【点睛】本题主要考查了列代数式以及一元一次方程的应用,理解题意,弄清数量关系是解题关键.6.(1)120(2)九月份共用电320千瓦时,应交电费是144元【分析】(1)根据题中所给的关系,分情况讨论:若每月用电量超过a 千瓦时,找到等量关系,然后列出方程求出a ;若每月用电量没有超过a 千瓦时,再求解看是否符合题意;(2)先设九月份共用电x 千瓦时,从中找到等量关系,然后列出方程求出x 的值,进一步得到应交电费是多少元.【详解】(1)解:根据题意可得:若每月用电量没有超过a 千瓦时,则共交电费,不符合题意;则八月用电量超过a 千瓦时,则解得:;2040x 1.320(1.30.8)(20)49.1x ⨯++⨯-=()()1.320 1.30.8252036.5⨯++⨯-=1.320(1.30.8)(4020)6849.1⨯++⨯-=>2040x 1.320(1.30.8)(20)49.1x ⨯++⨯-=31x =0.41405657.6⨯=≠0.40.4120%(140)57.6a a +⨯-=120a =答:a 为120;(2)解:设九月份共用电x 千瓦时,解得:∴元,答:九月份共用电320千瓦时,应交电费是144元.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思, 根据题目给出的条件,找出合适的等量关系列出方程, 再求解.7.(1)元(2)度【分析】(1)根据收费标准,列式计算即可求出老王家10月份应交电费;(2)设老王家去年6月份的用电量为度,由电费的平均价为元可得出,根据收费标准结合总电价=单价×数量,即可得出关于的一元一次方程,解之即可得出结论.【详解】(1)解:依题意可得:(元),答:老李家今年10月份需交电费235元;(2)解:设老李家今年11月份的用电量为度,因为,所以今年11月份老李家用电量是多于400度,依题意得,解得,答:老李家今年11月份的用电量为560度.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程.8.(1)2.3(2)28立方米【分析】(1)根据题意即可求出的值;(2)首先判定用水量的范围,然后根据不超过22立方米的水费超过22立方米的水费列出的一元一次方程,求出的值.0.450.41200.4120%(120)x x =⨯+⨯⨯-320x =0.45320144⨯=235560y 0.70400y >y 2400.6(380240)0.65235⨯+-⨯=y 0.650.700.90<<2400.6(400240)0.65(400)0.900.70y y ⨯+-⨯+-⨯=560y =a +71=x x【详解】(1)由题意得:,解得:.(2)设用户的用水量为立方米,因为用水22立方米时,水费为:,所以用水量,所以,解得:,答:该用户7月份用水量为28立方米.【点睛】此题考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所需的等量关系.9.(1)78元;1100元(2),;(3)450吨【分析】(1)根据两种付费的标准分别计算,即可;(2)根据两种付费的标准分别求出结论;(3)设该单位用水为x 吨,根据题意,列出一元一次方程,求出其解即可.【详解】(1)解:若用水吨,水费元;若用水吨,水费元,故答案是:,;(2)由题意,得当用水量小于等于300吨,水费元;当用水量大于300吨,水费;∴故答案为:,;(3)设该单位用水x 吨,当时,,解得(舍去)当时,,解得2046a =2.3a =x 22 2.350.671⨯=<22x >()()22 2.322 2.3 1.171x ⨯+-+=28x =3x 4300x -2602603780=⨯=35033005041100=⨯+⨯=780110013y x =()300343004300x x ⨯+-=-24300y x =-3x 4300x -300x ≤31500x =500x =300x >43001500x -=450x =若某月该单位缴纳水费元,则该单位这个月用水吨.【点睛】此题考查了一元一次方程的实际运用,理解题意,利用基本数量关系列出代数式或方程是解决问题的关键.10.(1)该用户10月份应该缴纳水费元;(2)该用户11月份用水;(3)该用户12月份实际应该缴纳水费76元.【分析】(1)根据表中数据即可得出;(2)先判断11月份是否超过,再根据等量关系列出方程求解即可;(3)先判断12月份是否超过,再列方程求出实际用水量,最后算出水费即可.【详解】(1)解:根据表中数据可知, 每月不超过,实际每立方米收水费 (元),10月份某用户用水量为,不超过,∴该用户10月份应该缴纳水费(元),(2)由(1)知实际每立方米收水费3元, ,∴11月份用水量超过了,设11月份用水量为,根据题意列方程得, ,解得,答:该用户11月份用水;(3)由(1)知实际每立方米收水费3元, ,∴水表12月份出故障时收费按没有超过计算,设12月份实际用水量为,根据题意列方程得,,解得,(元),答:该用户12月份实际应该缴纳水费76元.【点睛】本题主要考查一元一次方程的应用,理解题意,根据等量关系列出方程是解题的关键.150045054325m 320m 320m 320m 2.050.80.153++=318m 320m 18354⨯=2036080⨯=<320m 3m x ()()20320 3.050.80.1580x ⨯+-⨯++=25x =325m 203=60>54⨯320m 3m x ()3125%54x ⨯-=24x =()()2032420 3.050.80.1576⨯+-⨯++=11.(1)A 企业十月份用水70吨(2)若,则B 企业八月份应缴元水费,若,则B 企业八月份应缴元水费.【分析】(1)首先计算出用水40吨时的水费,该市A 企业十月份用水超过40吨,然后设A 企业十月份用水x 吨,由分段缴费列出方程求解即可;(2)该市B 企业八月份用水m 吨,由分段缴费列出代数式即可.【详解】(1)∵,∴该市A 企业十月份用水超过40吨,设A 企业十月份用水x 吨,根据题意得:,解得,答:A 企业十月份用水70吨;(2)若,则B 企业八月份应缴(元)水费,若,则B 企业八月份应缴元水费.【点睛】本题考查了一元一次方程的应用,解决本题的关键是要分段缴费.12.(1)47元(2)(3)12立方米【分析】(1)根据分段收费标准列式计算即可;(2)设每月用水为n 立方米(),列式为,再化简即可;(3)先判断用水超过了10立方米,再结合(2)列方程,再解方程即可.【详解】(1)解:(元)(2)当时,费用为(3)∵用水10立方米的费用为:(元),而,∴,解得,答:小颖家11月份共用水12立方米.40m ≤2m 40m >(2.416)m -40(1.80.2)80152⨯+=<40(1.80.2)(40)(2.20.2)152x ⨯++-⨯+=70x =40m ≤(1.80.2)2m m +=40m >40(1.80.2)(2.20.2)(40)(2.416)m m ⨯+++-=-3.59n ->10n ()2.610 3.510n ⨯+⨯-()2.610 3.5161047⨯+⨯-=10n >()2.610 3.510 3.59n n ⨯+⨯-=-10 2.626⨯=2633<3.5933n -=12n =【点睛】此题主要考查了列代数式,一元一次方程的应用,关键是正确理解题意,理清题目中的收费方式.13.(1)(2)(3)【分析】(1)根据题意,每户每月用水不超过吨时,水价为元/吨,则当时,应交水费元;(2)当时,用含的代数式表示该户这个月交水费为元;(3)根据题意,列出方程,解方程即可求解.【详解】(1)根据题意,每户每月用水不超过吨时,水价为元/吨;∴当时,用含的代数式表示该户这个月应交水费元,故答案为:(2)当时,用含的代数式表示该户这个月交水费为(元),故答案为:(3)因为,所以小明家用水肯定超过10吨,设用水为吨,根据题意得,解得,即小明家这个月用水15吨.【点睛】本题考查了列代数式,一元一次方程的应用,根据题意列出代数式与一元一次方程是解题的关键.14.(1)小明家八月份应交244元电费(2)该户居民该月应交电费元(3)小刚家该月用电340度【分析】(1)根据小明家八月份共用电450度,分三档计算应交电费,相加即可求解;(2)根据,分别表示出一、二档应交电费,相加后进行化简即可求解;1.2x()1.86x -1510 1.210x ≤1.2x 10x >x ()10 1.210 1.8x ⨯+-⨯10 1.210x ≤x 1.2x 1.2x10x >x ()10 1.210 1.8 1.86x x ⨯+-⨯=-()1.86x -2112>x ()1.21010 1.821x ⨯+-⨯=15x =()0.5511a -220420a <≤(3)设小刚家该月用电x 度,先计算÷用电220度、420度时费用,得到,再列方程,解方程即可求解.【详解】(1)解:(元).答:小明家八月份应交244元电费;(2)解:.答:该户居民该月应交电费元;(3)解:设小刚家该月用电x 度,当用电220度时,应交电费(元),当用电420度时,应交电费(元),因为,所以,所以,解得.答:小刚家该月用电340度.【点睛】本题考查了一元一次方程的应用,分段计费问题,理解题意中分段计费的收费方式是解题关键.15.(1)(2)30立方米【分析】(1)根据时的水费标准,列出方程,即可求解;(2)根据题意可得,再根据超出22立方米的部分水费单价为元/立方米,列出方程,即可求解.【详解】(1)解:根据题意得:,解得:.答:a 的值为;(2)解:设该户居民四月份的用水量为x 立方米.∵,,∴.220420x <<()()2200.54202200.554504200.811011024244⨯+-⨯+-⨯=++=()2200.52200.550.5511a a ⨯+-⨯=-()0.5511a -2200.5110⨯=()2200.54202200.55110110220⨯+-⨯=+=110176220<<220420x <<0.5511176x -=340x =2.422x ≤22x >()1.1a +1843.2a =2.4a = 2.422 2.452.8⨯=52.880.8<22x >根据题意得:,解得:.答:该户居民七月份的用水量为30立方米.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(1)元,元;(2)490分钟;(3)250分钟.【分析】(1)利用通话费用=月租费+超时加收通话费标准×超时的时间,即可用含的代数式表示出甲和乙的通话费用;(2)根据甲、乙的通话费用相同,即可得出关于的一元一次方程,解之即可;(3)当时,设甲、乙的通话时间均为t 分钟,分为三种情况讨论,即可得出关t 的一元一次方程,解之即可.【详解】(1)解:依题意得:甲的通话费用为元,乙的通话费用为元,(2)解:依题意得:,解得,答:乙的通话时间为490分钟.(3)解:当时,设甲、乙的通话时间均为t 分钟,当时,甲的费用为58元,乙的费用为88元,不符合题意;当时,,解得;当 时,,无解;甲和乙在10月份通话时间和通话费用都一样,则通话时间为250分钟,故答案为:250分钟.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是要读懂题意找出等量关系才能正确列出方程.()()22 2.422 2.4 1.180.8x ⨯+-⨯+=30x =1(0.313)t +2(0.317)t -12t t 、2t 12t t =0150t ≤<,150350350t t ≤<,>11580.3(150)(0.313)t t +-=+22880.3(350)(0.317)t t +-=-20.3170.339013t -=⨯+2490t =12t t =0150t ≤<150350t ≤<0.31388t +=250t =350t >0.3130.317t t +=-∴17.(1)6月份需交水费为30元;(2)7月份张老师需交水费61元;(3)①当a ≤16时,需交水费2.5a 元;②当16<a ≤30时,需交水费(3.5a -16)元;(4)张老师家9月份的用水量是28吨.【分析】(1)首先得出6月份的用水量12吨,应分一段交费,再利用已知表格中数据求出答案;(2)根据题意,7月份的用水是22吨应分两段交费,利用已知表格中数据求出答案;(3)分两种情况讨论,①当a ≤16时,②当16<a ≤30时,求出答案;(4)首先根据9月份交费判断该月用水量位于16~30吨之间,应分两段交费,设出未知数,列出算式即可解答.【详解】(1)解:∵12<16,∴2.5×12=30(元),答:6月份需交水费为30元;(2)解:∵30>22>16,∴16×2.5+(22-16)×3.5=61,答:7月份张老师需交水费61元;(3)解:根据题意,a 不超过30,∴分两种情况:①当a ≤16时,需交水费2.5a 元;②当16<a ≤30时,需交水费,2.5×16+(a -16)×3.5=(3.5a -16)元;(4)解:∵用水量是16吨时水费为40元,用水量是30吨时水费为89元,且89>82>40,∴应该分两段交费,设9月份所用水量为a 吨,依据题意可得:3.5a -16=82;解得:a =28;答:张老师家9月份的用水量是28吨.【点睛】此题主要考查了一元一次方程的应用以及列代数式,正确表示出水费的总额是解题的关键.18.(1)92.5元;(2)当时,当月所付水费金额为元;当时,当月所付水费金额为030x <… 2.5x 30x >()3.530x -元;(3)50立方米.【分析】(1)根据收费标准计算即可;(2)分两种情况:不超过30m 3,超过30m 3,进行讨论即可求解;(3)根据等量关系:不超过30立方米的单价×30+超过30立方米的单价×超过30立方米的用水量=平均水费单价×王鹏家12月份的用水量,依此列出方程求解即可.【详解】(1)解:根据题意,得答:他上个月应交水费92.5元.(2)解:当时,当月所付水费金额为元当时,当月所付水费金额为(3)解:根据题意,得解得答:王鹏家12月份用水50立方米.【点睛】本题考查了一元一次方程的应用,列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,由水费找出合适的等量关系列出方程,再求解.19.(1)m =1.5;n =2.5(2)该用户12月份应缴水费34.5元;(3)当时,应缴水费是1.5x (元);当时,应缴水费是(元).【分析】(1)先根据11月份的用水情况列方程求出m ,再根据10月份的用水情况列方程求出n 即可;(2)根据用水收费标准列式计算即可;(3)分时和时两种情况,分别根据用水收费标准列式即可;【详解】(1)解:该用户11月份用水16立方米小于18立方米,所以(元/立方米),10月份用水24立方米超过18立方米,所以有:,解得:(元/立方米);()30 2.53530 3.592.5⨯+-⨯=030x <… 2.5x 30x >()()30 2.530 3.5 3.530x x ⨯+-⨯=-3.530 2.9x x-=50x =18x ≤18x > 2.518x -18x ≤18x >2416 1.5m =÷=()18 1.5241842n ⨯+-=2.5n =(2),答:该用户12月份应缴水费34.5元;(3)由题意得:当时,应缴水费是1.5x (元),当时,应缴水费是(元).【点睛】本题考查了一元一次方程的应用,有理数混合运算的应用以及列代数式,正确理解用水收费标准是解题的关键.20.(1)16;(2)23;(3)当时,元;当时,元;当时, 元.【分析】(1)根据月用水量,求解即可;(2)设用水量为吨,当时,根据题意列方程求解;(3)根据的取值范围,分三种情况,讨论求解即可.【详解】(1)解:甲当月需缴交的水费为(元),故答案为:(2)设乙用户的用水量为吨,由题意可得:∴解得答:乙用户用水量为吨;(3)当时,丙该月应缴交水费为(元);当时,丙该月应缴交水费为(元)当时,丙该月应缴交水费为(元)【点睛】本题主要考查了列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式,解题的关键是理解题意.()18 1.52118 2.534.5⨯+-⨯=18x ≤18x >()18 1.518 2.5 2.518x x ⨯+-⨯=-020a <≤ 1.6a 2030a <≤()2.416a -30a >()3.240a -x 20x 30<≤a 10 1.616⨯=16x 20x 30<≤1.620 2.4(20)39.2x ⨯+⨯-=23x =23020a <≤ 1.6a 2030a <≤ 1.620 2.4(20)(2.416)x a ⨯+⨯-=-30a > 1.620 2.410 3.2(30)(3.240)x a ⨯+⨯+⨯-=-。

最新人教版七年级数学应用题库(附答案)

最新人教版七年级数学应用题库(附答案)

最新,人教,版,七年级,数学,应用,题库,附,答案,1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人?8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克?9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵?10、一块三角形地的面积是840平方米,底是140米,高是多少米?11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

每件大人衣服用2.4米,每件儿童衣服用布多少米?12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。

甲几小时到达中点?16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。

如果甲从A地,乙从B 地同时出发,同向而行,那么4小时后甲追上乙。

七年级上应用题100道题

七年级上应用题100道题

七年级上应用题100道题姓名:__________ 班级:__________ 得分:__________一、一元一次方程应用题1.一个数的 6 倍减去 10 等于这个数的 4 倍加上 15,求这个数。

2.某数的 5 倍比它的三分之二大 50,求这个数。

3.一个数加上 20 的差等于这个数的 7 倍减去 12,求这个数。

4.某数的 8 倍加上 15 等于这个数的 10 倍减去 10,求这个数。

5.一个数的 9 倍减去 20 等于这个数的 7 倍加上 18,求这个数。

6.某数的 7 倍比它的 6 倍多 42,求这个数。

7.一个数减去 18 的差等于这个数的 5 倍加上 10,求这个数。

8.某数的 9 倍加上 20 等于这个数的 11 倍减去 15,求这个数。

9.一个数的 10 倍减去 25 等于这个数的 8 倍加上 20,求这个数。

10.某数的 8 倍比它的 7 倍多 56,求这个数。

11.一个数的 11 倍加上 15 等于这个数的 13 倍减去 10,求这个数。

12.某数的 9 倍比它的一半大 72,求这个数。

13.一个数加上 25 的和等于这个数的 8 倍减去 15,求这个数。

14.某数的 10 倍加上 20 等于这个数的 12 倍减去 10,求这个数。

15.一个数的 12 倍减去 30 等于这个数的 10 倍加上 25,求这个数。

16.某数的 10 倍比它的 9 倍多 60,求这个数。

17.一个数减去 22 的差等于这个数的 6 倍加上 12,求这个数。

18.某数的 11 倍加上 25 等于这个数的 13 倍减去 15,求这个数。

19.一个数的 13 倍减去 35 等于这个数的 11 倍加上 30,求这个数。

20.某数的 12 倍比它的 11 倍多 72,求这个数。

二、行程问题应用题21.甲、乙两地相距 550 千米,一辆汽车从甲地开往乙地,速度为每小时 110 千米,几小时可以到达?22.小明骑自行车以每小时 25 千米的速度从家去学校,用时 24 分钟,小明家到学校有多远?23.一辆汽车以每小时 120 千米的速度行驶,经过 4.5 小时到达目的地,返回时速度为每小时100 千米,返回需要多长时间?24.甲、乙两人同时从相距 450 千米的两地相向而行,甲的速度是每小时 75 千米,乙的速度是每小时 60 千米,几小时后两人相遇?25.一艘轮船在两个码头之间航行,顺水航行需要 2.2 小时,逆水航行需要 3.5 小时,水流速度是每小时 6 千米,求轮船在静水中的速度。

人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练次进货价格比第一次每千克便宜了1.4元,两次一共购进600千克,且第二次进货的费用是第一次进货费用的1.44倍.(1)该水果店两次分别购进了多少千克的砂糖橘?(2)售卖中,第一批砂糖橘在其进价的基础上加价进行定价,第二批砂糖橘因为进价便宜,因此以第一批砂糖橘的定价再打七折进行销售.销售时,在第一批砂糖橘中有3%的砂糖橘变质不能出售,在第二批砂糖橘中有5%的砂糖橘变质不能出售,该水果店售完这两批砂糖橘能获利1700元,求a 的值.19.现在是互联网的时代,微商小古一次购进了一种时令水果250kg ,开始两天他以每千克高于进价的价格卖出180kg ,第三天他发现网上卖该种水果的商家陡增,于是他果断将剩余的该种水果在前两天的售价基础上打折全部售出.最后他卖该种水果获得元的利润.问:(1)这批水果的进价为多少元?(2)计算小古打折卖出剩余的水果比购进这些水果亏了多少元?20.某商店销售一种电器,先将成本价提高30%作为标价进行出售,结果每销售一件该电器可以获利60元利润.(1)求这种电器的成本价为多少?(2)因市场调整原因,商品需要下架,所以当这批电器销售出100台时,剩下的40台按照标价的五折进行销售,请问:商店是赚了还是亏了?赚了或亏了多少钱,为什么?%a 40%4618参考答案:1.(1)设购买乒乓球盒时,两种优惠办法付款一样(2)去乙店购买,2.(1)到乙超市购物更优惠(2)350元3.(1)七(一)班买了彩灯和射灯各15个,35个(2)4.(1)该店用1300元可以购进A 型号的文具40只,购进B 型号的文具60只(2)若把所购进A ,B 两种型号的文具全部销售完,利润率超过,理由见解析5.(1)甲种商品每件进价为元(2)购进甲商品的数量为件,购进乙商品的数量为件(3)每件乙种商品的售价为元6.(1)元(2)元7.(1)(2)甲(3)在甲,乙两商店购买的本数相同.理由见解答.8.(1)绿叶水果店第一次购进甲种苹果千克,乙种苹果千克(2)第二次乙种苹果按原价打折销售9.712.4元或730元10.(1)第一次购进橙子200千克,第二次购进橙子400千克.(2)a 的值为80.1020m =40%40204062.527060(2.140)x +9540611.(1)每件服装的标价是300元,每件服装的成本是200元(2)712.(1)甲纪念品有40件,乙纪念品有60件(2)3400元13.(1)乙种服装每件进价为80元;(2)商场销售完这批服装,共盈利1450元.60%14.(1)40,(2)购进甲种商品40件15.(1)甲、乙两种文具的每件进价分别为80元和100元;(2)乙种文具每件售价为136元.16.(1)购进甲种水果70千克,乙种水果50千克(2)获得的利润是410元17.(1)甲、乙两种品牌书包每个进价分别是80元、60元(2)每个甲种品牌书包售价为116元18.(1)第一次购进砂糖橘200千克,则第二次进砂糖橘400千克(2)a的值为8019.(1)15元/千克(2)亏了462元20.(1)这种电器的成本价为200元(2)商店赚了3200元,理由见解析。

七年级上册数学题应用题

七年级上册数学题应用题

七年级上册数学题应用题一、行程问题1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?解析:设小时后两人相遇。

根据路程 = 速度×时间,甲走的路程为千米,乙走的路程为千米。

由于两人是相向而行,总路程为20千米,所以可列方程。

合并同类项得,解得。

2. 一艘轮船在两个码头间航行,顺水航行需4小时,逆水航行需5小时,水流速度为2千米/时,求轮船在静水中的速度。

解析:设轮船在静水中的速度为千米/时。

顺水速度 = 静水速度+水流速度,即千米/时;逆水速度=静水速度 - 水流速度,即千米/时。

根据两个码头间的距离不变,可列方程。

去括号得,移项得,合并同类项得,解得。

二、工程问题1. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析:把这项工程的工作量看作单位“1”。

甲的工作效率为,乙的工作效率为。

两人合作4天的工作量为。

剩下的工作量为。

乙单独完成剩下部分需要的时间为天。

2. 某工程队承建一项工程,要用12天完成。

如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。

如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?解析:设甲、乙、丙、丁的工作效率分别为、、、。

正常情况下工作效率为。

甲、乙交换工作内容后,工作效率为。

两式相减可得,即(这里说明甲、乙交换工作内容后效率降低了)。

当甲、乙交换且丙、丁交换时能按期完成,说明丙、丁交换后弥补了甲、乙交换带来的效率降低。

设丙、丁交换工作内容后,全工程需要天完成,则,因为且,所以丙、丁交换工作内容后效率提高了。

如果只让丙、丁交换工作内容,工作效率变为,所以需要10天完成,提前天。

三、销售问题1. 某商品的进价为200元,标价为300元,折价销售时的利润率为5%,求此商品是按几折销售的?解析:设此商品是按折销售的。

新人教版七年级上册整式教材应用题汇总附答案

新人教版七年级上册整式教材应用题汇总附答案

整式教材中可能考到的实际问题1.礼堂第1排有a个座位,后面每排都比前面一排多一个座位.第2排有多少个座位?第3排呢?用式子表示第n排的座位数.如果第1排有20个座位,计算第19排的座位数.【解答】解:第2排有(a+1)个座位;第3排有(a+2)个座位;第n排的座位数是a+n-1.当a=20,n=19时,座位数为20+19-1=38.2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度都是a km/h.(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少千米?【解答】解:(1)(50+a)×2+(50-a)×2=200千米;(2)(50+a)×2-(50-a)×2=4a千米.答:2小时后两船相距200千米;甲船比乙船多航行4a千米.3.做大小两个长方体纸盒,尺寸如下(单位:cm):少平方厘米?【解答】解:(1)2(1.5a×2b+2b×2c+1.5a×2c)+2(ab+bc+ac)=2ab+2bc+2ac+6ab+8bc+6ac=8ab+10bc+8ac答:做这两个纸盒共用料(8ab+10bc+8ac)平方厘米(2)2(1.5a×2b+2b×2c+1.5a×2c)-2(ab+bc+ac)=6ab+8bc+6ac-2ab+2bc+2ac=4ab+6bc+4ac答:做大纸盒比做小纸盒多用料(4ab+6bc+4ac)平方厘米.4.某村小麦的种植面积是a hm2,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5hm2,列式表示水稻的种植面积、玉米的种植面积,并计算水稻种植面积比玉米种植面积大多少?【解答】解:(1)水稻种植面积为:3a公顷,玉米种植面积为(a-5)公顷.(2)3a-(a-5)=3a-a+5=2a+5(公顷),答:水稻种植面积比玉米大(2a+5)公顷.5.(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数;(2)列式表示上面两位数与10的乘积;(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?【解答】解:(1)根据题意得两位数=10×b+a=10b+a;(2)依题意得 10(10b+a);(3)能.理由如下:依题意得 10b+a+10(10b+a)=110b+11a=11(10b+a).∵11(10b+a)÷11=10b+a.∴(1)中的两位数与它的10倍的和,这个和是11的倍数6. 10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是多少?【解答】解:6×6×(a×a)=36a2(cm2)故这个图形的表面积是36a2cm2.7.一种笔记本售价2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本.列式表示买n本笔记本所需钱数(注意对n的大小要有所考虑).请同学们讨论下面的问题:(1)按照这种销售价格规定,会不会出现多买比少买反而付钱少的情况?(2)如果需要100本笔记本,怎样购买能省钱?【解答】解:(1)当n≤100时:需要的钱数是2.3n元;当n>100时:需要的钱数是2.2n元;当n=100时,需要的钱数是2.3×100=230元,由2.2n<230得;n<104.5,则100<n≤104时,会出现多买比少买反而付钱少的情况;(2)∵如果需要100本笔记本,购买101本时,需要的钱数是101×2.2=222.2(元),购买100本时,需要的钱数是100×2.3=230(元),∴如果需要100本笔记本,购买101本能省钱;8.图1是某月的月历.(1)带阴影的方框中的9个数的和与方框正中心的数有什么关系?(2)如果将带阴影的方框移至图2的位置,(1)中的关系还成立吗?(3)不改变带阴影的方框大小,将方框移动几个位置试一试,你能得出什么结论?你能证明这个结论吗?(4)这个结论对于任何一个月的月历都成立吗?(5)如图3,如果带阴影的方框里的数是4个,你能得出什么结论?(6)如图4,对于阴影的方框里的数是4个,又能得出什么结论?【解答】解:(1)9个数之和为:3+4+5+10+11+12+17+18+19=99,99÷11=9,则方框中9个数之和为方框正中心的9倍;(2)移动位置,9个数字之和为:8+9+10+15+16+17+22+23+24=144,144÷16=9,所以改变位置,关系不变;(3)不改变带阴影的方框的大小,将方框移动位置,关系不变.设正中心的数为x,则9个数之和为:(x-8)+(x-7)+(x-6)+(x-1)+x+(x+1)+(x+6)+(x+7)+(x+8)=9x,9x÷x=9,故移动位置,方框中9个数之和为方框正中心的9倍.(4)这个关系对任何一个月的日历都成立,理由为任何一个日历表都具有这种排列规律;(5)11+12+18+19+15+16+22+23=136,136÷17=8;则方框中8个数之和为对称中心17的8倍;(6)12+19=13+18=31,则方框中对角两数之和相等.9.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,确定哪一种方案砌各圆形水池的周边需要材术料多.(堤示:比较两种方粜中各圆形水池周长的和)【解答】解:(1)∵方案1需要的材料为4πr ,方案2需要的材料为2πr+2π•6π+2π•3π+2π•2π=4πr , ∴方案1、2需要的材料一样多;10.一种商品每件的成本a 元,原来按成本增加22%定出价格,每件售价多少元?现在由于库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?【解答】解:∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为(1+22%)a =1.22a (元);现在售价:1.22a ×85%=1.037a (元);每件还能盈利1.037a -a =0.037a (元);答:每件售价1.22a 元;现在售价1.037a 元;每件还能盈利0.037a 元.。

人教版七年级上册数学应用题大全及答案

人教版七年级上册数学应用题大全及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 50 4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

人教版七年级上册数学一元一次方程应用题(数字问题)专题训练

人教版七年级上册数学一元一次方程应用题(数字问题)专题训练

人教版七年级上册数学一元一次方程应用题(数字问题)专题训练1.一个两位数的数字之和是11,若原数加上45,则得到的数正好是原数的十位数字与个位数字交换位置后所得的数,求这个两位数.2.有一个三位数的个位数字为1,如果把这个1移到最前面的位置上,那么所得的新三位数的2倍比原数多15,求原来的三位数.3.现有一些分别标有-1,2,-4,8,-16,32,…的卡片,这些卡片上的数字是按一定规律排列的,小明拿到了相邻的三张卡片,且卡片上的数字之和为96,则小明拿到的三张卡片上分别标有什么数字?4.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位数.5.有一些分别标有7,14,21,28,…的卡片,后一张卡片上的数比前一张卡片上的数大7,小明拿了相邻的三张卡片.(1)若小明拿到的三张卡片上的数之和为273,则三张卡片上的数分别是多少?(2)小明能否拿到相邻的三张卡片,使得这三张卡片上的数之和等于171?如果能拿到,请求出这三张卡片上的数各是多少?如果不能拿到,请说明理由.6.一个三位数的三个数字和是24,十位数字比百位数字少2,若这个三位数减去两个数字都与百位数字相同的一个两位数所得的数也是三位数,而这个三位数的三个字母的顺序和原来三位数的数字的顺序恰好颠倒,求原来的三位数.7.有人问一个男孩:“你们家兄弟有几个,姊妹有几个?”他回答:“我有几个兄弟就有几个姊妹.”这人又问男孩的姐姐,她回答说:“我的兄弟数就是我的姊妹数的2倍.”请问他们家兄弟、姊妹各有几个?.8.有一列按一定规律排成的数:1,3,7,11,(1)这列数中的第100个数是多少?(2)2019,2021是否为这列数中的数?若是,是第几个数;若不是,请说明理由.9.一个三位数,十位数字是0,个位数字是百位数字的2倍,如果将这个三位数的个位数字与百位数字调换位置得到一个新的三位数,则这个新的三位数比原三位数的2倍少9,设原三位数的百位数字是x:(1)原三位数可表示为______,新三位数可表示为______;(2)列方程求解原三位数.10.已知有理数-3,1,m.(1)计算-3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.11.把100分成两个数的和,使第一个数加3,与第二个数减3的结果相等.这两个数分别是多少?12.如图是输入一个x的值,计算函数y的值的程序框图:(1)当输入x的值为100时,输出的y的值为多少?x时,输出的y的值为-500,则输入的0x的值是多少?(2)当输入一个整数13.将连续的奇数1,3,5,7,9,…排成如图所示的数表.(1)探索任意一个十字形框中的五个数之和与中间的数的关系是.(2)若十字框中的五数之和是2015,请求出此时框中的五个数分别是什么?14.一个两位数,把它的个位数字与十位数字交换位置得到新两位数,原两位数的个位数字比原两位数的十位数字大2,且新两位数与原两位数的和为154,求原两位数是多少?15.已知一个由50个偶数排成的数阵,请你观察框内的四个数之间的关系并解答下列问题:在数阵中任意作一个类似图中的框.(1)设框内左上角的数为x,那么其他三个数分别是:,,.(2)如果框内四个数的和是172,这四个数分别是什么?16.有一些分别标有7,13,19,25…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数之和为345.(1)猜猜小彬拿的3张卡片上的数各是多少?(2)小彬能否拿到相邻的3张卡片,使得3张卡片上的数字之和等于150?如果能拿到,请求出这3张卡片上的数各是多少,如果拿不到,请说明理由.17.幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中m,n的值分别是多少?18.将连续的偶数2,4,6,8,…排成如下表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和等于.(2)若将十字框上下左右移动,可框住另外的五个数,设中间的数为x,用代数式表示十字框中的五个数的和是.(3)在移动十字框的过程中,若框住的五个数的和等于2020,这五个数从小到大依次,,,,.(4)框住的五个数的和能等于2019吗?参考答案:1.382.2313.三张卡片上分别标有32,-64,1284.485.(1)三张卡片上的数分别是84、91、98.(2)不能拿到,理由见解析.6.原来的三位数为978.7.他们家兄弟有4个、姊妹有3个.8.(1)395;(2)2019是这列数中的数,是第506个数;2021不是这列数中的数. 9.(1)102x,201x(2)30610.(1)-1;(2)811.47;53.12.(1)-1500;(2)300或140或172.13.(1)五个数之和为中间数的5倍;(2)五个数分别为393,401,403,405,413.14.原两位数是6815.(1)x+2,x+12,x+14;(2)36,38,48,50.16.(1)小彬拿到的三张卡片上的数各是109,115,121;(2)小彬不能拿到相邻的3张卡片,使得这三张卡片上的数之和等于150,n=17.(1)3;(2)1m=-,318.(1)80;(2)5x;(3)这五个数分别为:394,402,404,406,414;(4)不能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级上册数学应用题汇总(只列式不计算)一、“工程问题”1、一项工程甲单独完成要6天,乙单独完成要12天,丙单独完成要15天(1)甲、乙合作几天完成这项工作?(2)甲、乙、丙合作几天完成这项工程?(3)甲、丙合作几天完成这项工作?(4)乙、丙合作几天完成这项工程?3?(5)甲、乙合作几天完成这项工作的43?(6)甲、乙、丙合作几天完成这项工程5(7)甲单独做了2天后,甲乙合作几天完成这项工作?(8)甲单独做了2天后,甲乙丙合作几天完成这项工作?(9)甲、丙合作3天后有其他工作离开,由乙单独完成,一共几天完成这项工作?4,问甲共工作了(10)乙单独做了3天,后甲乙丙合作,完成了该工程的5几天完成这项工程?4,剩下的由丙单独(11)乙单独做了3天,后甲乙合作,完成了该工程的5完成这项工作,问甲、乙、丙各工作了几天?2、某车间接到x件零件加工任务,计划每天加工120件.(1)6天能完成,问总任务是多少件?(2)实际每天比计划多加工20件,7天能完成,问总任务多少件?2,4天能完成,问总任务多少件?(3)实际每天比计划多加工5(4)实际每天比计划多加工20件,结果比计划提前了2天完成,问总任务多少件?1,结果比计划多用了4天完成,问总任务多少(5)实际每天比计划少加工5件?3、某工程,甲单独完成要45天完成,乙单独做要30天完成,若乙先单独做了22天,剩下的由甲去完成,问甲、乙一共用几天可以完成全部工程?4、一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两对合作.(1)求甲、乙合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天施工费为2500元,求完成此项工程需付给甲、乙两队共多少钱?5、一件工作甲队单独完成需7.5小时,乙队单独完成要5小时,现乙队单独先做1小时候,剩余工作由甲、乙两队共同完成,问这项工作还需要多长时间完成?二、配套问题1、一个工厂有32工人,要加工一批螺母和螺栓,一个工人每天可生产120个螺母或80个螺栓,已知一个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?2、一个木材加工厂,有28名职工,接到一批方桌生产任务,一个工人每天可制作120条桌腿或40个桌面,1张方桌需要一个桌面和4条桌腿,问,如何安排职工才可使每天完成的桌面和桌腿刚好配套?3、用木料做方桌,每立方米木料可做桌面50个或桌腿300条,一张方桌需要一个桌面和4条桌腿,5立方米的木料敲好可做多少张方桌?4、整理一批档案,由一个人完成需要20天,先计划由一部分人先做2天,3,假设每人的效率都然后再增加2人与他们一起做了8天,完成了这项任务的4一样,具体应先安排多少人工作?5、有一批苹果和一些箱子,如果每个箱子里装6千克,则剩余4千克苹果无箱可装,如果每个箱子装8千克苹果则期中一个箱子再装6千克才装满,还剩1只空箱子无苹果可装,问一共有多少个箱子和多少千克苹果?6、美术课上,老师计划将同学们分成若干小组做手工制作,如果每组5人,则多3人;如果每组6人则少5人,教师计划将同学们分成几组?7、一个工厂有职工660人,要加工一批螺母和螺栓,一个工人每天可生产14个螺母或20个螺栓,已知两个螺母和一个螺栓能配成一套,为了使每天生产的螺母和螺栓刚好配套,问需要分别多少个人生产螺母和螺栓?8、某校七年级安排170名学生参加义务绿化活动.如果每个男生平均一天能挖3个树窝,每个女生平均一天能载7棵树,要使每个树窝都能栽上树,那么该校七年级安排的男生和女生各有多少人?9、学校计划从甲公司购买A,B两种型号的小黑板,购买一块A型小黑板比购买一块B型小黑板多用了20元,且购买5块A型小黑板和4块B型小黑板共需820元.求购买一块购买一块A型小黑板、一块B型小黑板各需要多少元?10、某同学在A、B两家超市发现他看中的运动手环的单价相同,书包的单价也相同.运动手环和书包单价之和是452元,且运动手环的单价比书包的单价的4倍少8元.(1)该同学看中的运动手环和书包的单价各是多少?(2)超市促销,超市A所有商品打8折销售,超市B全场购物满100元返30元,该同学仅有400元钱,如果只在一家超市买两样商品,哪家更划算?11、一群学生去纪念馆参加活动,男生戴白色旅游帽女生戴红色旅游帽.休息时2他们坐在一起发现每位男生看到红色与白色的旅游帽一样多,而每位女生看到白色的旅游帽是红色旅游帽的2倍.这群学生共有多少人?12、为迎接新春,甲村准备美化村道,需采用A,B两种不同类型的灯笼2002.个,且B灯笼的个数是A灯笼的3(1)求,A,B两种灯笼的个数各需多少个?(2)已知A,B两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼共花费了多少钱?13、某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?14、某车间有技术工人85人,平均每天每人可加工A种不见16个或B种部件10个,2个A种部件和3个B 种部件配成一套,问:加工A、B两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?15、用白铁皮做罐头盒,每张铁皮可制作盒身25个或制作盒底40个.一个盒身和两个盒底配成一套罐头盒.现有36张白铁皮,用多少张铁皮制盒身,多少张铁皮制盒底可以使盒身和盒底刚好配套?16、某服装厂要做一批某种型号的校服,已知某种布料每3米长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用60米长的这种布料做校服,应分别用多少米布料做上衣和裤子,才能恰好配套?三、行程问题1、A、B两地相距480千米,一列慢车从A地开出,每小时走60千米,一列快车从B地开出,每小时走80千米;慢车先开1小时,相向而行,快车开出几小时后两车相距210千米?2、A,B两地之间的路程为360千米,甲车从A地出发开往B地,每小时行驶72千米;甲车发出25分钟后,乙车从B地出发开往A地,每小时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后,两车相距100千米时,甲车从出发开始共行驶了多长时间?3、一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶1小时后突然1,结果又用了两小时出现故障,修理15分钟后,又追这辆卡车,但速度减小了3才追上这辆卡车,求卡车的速度是每小时多少千米?4、一通讯员骑摩托车需要在规定的时间把文件送到某地,若每小时骑60千米,则早到12分钟;若每小时骑50千米,则要迟到7分钟,求通讯员行驶的路程?5、某船从A地顺流而下到达B地,然后逆流返回,到达A,B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/小时,水流速度为2千米/小时.A,C两地之间的距离为10千米,求A,B两地之间的距离是多少千米?四、球赛积分问题1、小强是七(3)班的篮球队员,在一场篮球比赛中,他一人得了27分(没有罚球得分),已知他投进的2分球比3分球的2倍多3个,若设他投进去的3分球为x个,求他投进的2分球有多少个?2、一次安全知识竞赛中,一共有25道题,答对一道题的10分,不答或答错一道题扣5分.设小明同学在这次竞赛中答对x道题.(1)根据所给条件,完成下表:(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?3、某球队参加了10场足球赛,共积17分,已知胜一场得3分,平一场得1分,负一场得0分,期中该队输了3场,则该队胜多少场?4、我市化学知识竞赛,共25道题,评分规则:答对一道题得5分,答错一道题扣2分,不答不得分,王芳同学在这次竞赛中得了62分,她说有5道题未答,她答对了几道题?四、打折销售问题1、某商品的进价是2000元,标价为3000元,商店要求以利润率为5%的售价打折出售,售货员可以打几折出售该商品?2、某商店先从广州以每件15元的价格购进某种商品10件,后又从深圳以每件12.5元的价格购进同种同规格商品40件,如果商店销售这些商品时要获利12%,南无这种商品的售价应定为每件多少元?3、某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,亲标价的8折销售,仍可盈利9%.(1)求这款空调每台的进价使多少元?(2)在这次促销活动中,商场销售了这款空调机100台,问:盈利了多少元?4、某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁每瓶的价格下调了5%.已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费了17.5元,问:这两种饮料在调价前每瓶个多少元?5、某玩具厂出售一种玩具,其成本价每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相同?(2)若每个月销售量达到1000件时,采取那种销售方式获利较多?6、某商品的进价为2000元,标价为3000元,商店打折销售后仍可获利5%,则售货员最低可以打几折出售此商品?7、体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利260元.(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?8、“五一”期间,某电器按成本价提高30%后标价,在打8折销售,售价为2080元.求该电器的成本价是多少元?9、一种商品连续两次均以10%的幅度降价后,售价为480元,问降价前售价为多少元?10、某商场因换季准备处理一批羊绒衫,若每件羊绒衫按标价的六折出售将亏110元,若按标价的八折出售,每件将赚70元.每件羊绒衫的标间是多少元?进价是多少元?11、新华书店某天内销售完甲乙两种书籍,甲种书籍卖得1500元,乙种书籍卖得1260元,若按两种书的成本分别计算,甲种书籍盈利25%,乙种书籍亏本10%,该书店这一天卖这两种书籍总计是盈利还是亏本?。

相关文档
最新文档