运筹学题库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学A卷)

一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分)

1.线性规划具有唯一最优解是指

A.最优表中存在常数项为零

B.最优表中非基变量检验数全部非零

C.最优表中存在非基变量的检验数为零

D.可行解集合有界

2.设线性规划的约束条件为

则基本可行解为

A.(0, 0, 4, 3) B.(3, 4, 0, 0)

C.(2, 0, 1, 0) D.(3, 0, 4, 0)

3.则

A.无可行解B.有唯一最优解medn

C.有多重最优解D.有无界解

4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系

A.Z > W B.Z = W

C.Z≥W D.Z≤W

5.有6 个产地4个销地的平衡运输问题模型具有特征

A.有10个变量24个约束

B.有24个变量10个约束

C.有24个变量9个约束

D.有9个基变量10个非基变量

6.下例错误的说法是

A.标准型的目标函数是求最大值

B.标准型的目标函数是求最小值

C.标准型的常数项非正

D.标准型的变量一定要非负

7. m+n-1个变量构成一组基变量的充要条件是

A.m+n-1个变量恰好构成一个闭回路

B.m+n-1个变量不包含任何闭回路

C.m+n-1个变量中部分变量构成一个闭回路

D.m+n-1个变量对应的系数列向量线性相关

8.互为对偶的两个线性规划问题的解存在关系

A.原问题无可行解,对偶问题也无可行解

B.对偶问题有可行解,原问题可能无可行解

C.若最优解存在,则最优解相同

D.一个问题无可行解,则另一个问题具有无界解

9.有m个产地n个销地的平衡运输问题模型具有特征

A.有mn个变量m+n个约束…m+n-1个基变量

B.有m+n个变量mn个约束

C.有mn个变量m+n-1约束

D.有m+n-1个基变量,mn-m-n-1个非基变量

10.要求不超过第一目标值、恰好完成第二目标值,目标函数是

A.

)

(

m in

2

2

2

1

1

+

-

++

+

=d

d

p

d

p

Z

B.

)

(

m in

2

2

2

1

1

+

-

+-

+

=d

d

p

d

p

Z

C.

)

(

m in

2

2

2

1

1

+

-

--

+

=d

d

p

d

p

Z

D.

)

(

m in

2

2

2

1

1

+

-

-+

+

=d

d

p

d

p

Z

二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。每小题1分,共15分)

11.若线性规划无最优解则其可行域无界X基本解为空

12.凡基本解一定是可行解X同19

13.线性规划的最优解一定是基本最优解X可能为负

14.可行解集非空时,则在极点上至少有一点达到最优值X可能无穷

15.互为对偶问题,或者同时都有最优解,或者同时都无最优解

16.运输问题效率表中某一行元素分别乘以一个常数,则最优解不变X

17.要求不超过目标值的目标函数是

18.求最小值问题的目标函数值是各分枝函数值的下界

19.基本解对应的基是可行基X当非负时为基本可行解,对应的基叫可行基

20.对偶问题有可行解,则原问题也有可行解X

21.原问题具有无界解,则对偶问题不可行

22.m+n-1个变量构成基变量组的充要条件是它们不包含闭回路

23.目标约束含有偏差变量

24.整数规划的最优解是先求相应的线性规划的最优解然后取整得到X

25.匈牙利法是对指派问题求最小值的一种求解方法

三、填空题(每小题1分,共10分)

26.有5个产地5个销地的平衡运输问题,则它的基变量有( 9 )个 27.已知最优基

,C B =(3,6),则对偶问题的最优解是( )

28.已知线性规划求极小值,用对偶单纯形法求解时,初始表中应满足条件( 对偶问题可行 ) 29.非基变量的系数c j 变化后,最优表中( )发生变化

30.设运输问题求最大值,则当所有检验数( )时得到最优解。

31.线性规划

的最优解是(0,6),它的

第1、2个约束中松驰变量(S 1,S 2)= ( )

32.在资源优化的线性规划问题中,某资源有剩余,则该资源影子价格等于( )

33.将目标函数转化为求极小值是( )

34.来源行

55

1

134663

x x x +-=的高莫雷方程是( )

35.运输问题的检验数λij 的经济含义是( ) 四、求解下列各题(共50分) 36.已知线性规划(15分)

123123123max 3452102351,2,3j

Z x x x x x x x x x x j =++⎧+-≤⎪

-+≤⎨⎪≥=⎩0,

(1)求原问题和对偶问题的最优解;(2)求最优解不变时c j 的变化范围 37.求下列指派问题(min )的最优解(10分)

相关文档
最新文档