初中数学思想方法教学几点思考

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学思想方法教学的几点思考

【摘要】:数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关。从有利于中学教学。一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的以及在教学活动中遵循的原则。

【关键词】:数学方法数学思想遵循原则

《九年义务教育全日制初级中学数学教学大纲》明确提出数学思想方法是数学基础知识的重要组成部分。数学教学如何才能有利于促进学生数学思想方法的形成和发展呢?数学思想方法的渗透应根据教学计划有步骤地进行。一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等等。在知识的结论、公式、法则等规律的推导阶段,要强调和灌输思维方法,如函数的数与形的转化、判定两个三角形相似有哪些常用思路等。在知识的总结阶段或新旧知识结合部分,要选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的相互转化,分数讨论思想体现了局部与整体的相互转化。

一、开展数学思想方法教育是新课标提出的重要教学要求

数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。初中数学思想方法教育,是培养和提高学生素质的重要内容。新的《课程标准》突出强调:“在教

学中,应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。”因此,开展数学思想方法教育应作为新课改中所必须把握的教学要求。中学数学知识结构涵盖了辩证思想的理念,反映出数学基本概念和各知识点所代表的实体同抽象的数学思想方法之间的相互关系。数学实体内部各单元之间相互渗透和维系的关系,升华为具有普遍意义的一般规律,便形成相对的数学思想方法,即对数学知识整体性的理解。数学思想方法确立后,便超越了具体的数学概念和内容,只以抽象的形式而存在,控制及调整具体结论的建立、联系和组织,并以其为指引将数学知识灵活地运用到一切适合的范畴中去解决问题。数学思想方法不仅会对数学思维活动、数学审美活动起着指导作用,而且会对个体的世界观、方法论产生深刻影响,形成数学学习效果的广泛迁移,甚至包括从数学领域向非数学领域的迁移,实现思维能力和思想素质的飞跃。笔者认为进行数学思想方法教学,除了应遵循通常的数学教学的基本原则外,还应遵循以下五条基本原则:

二、初中数学思想方法教学应遵循四条基本原则

1、在知识发生过程中渗透数学思想方法。

(1)不简单下定义。数学概念既是数学思维的基础,又是数学思维的结果。所以概念教学不应简单给出定义,应当引导学生感受或领悟隐含于概念形成之中的数学思想。比如负数概念的教学,初一代数上册借助于温度计给出描述性定义,学生对负数概念往往难以透彻理解。若设计一个揭示概念与新问题间矛盾的实例,使学生感到

“负数”产生的合理性和必要性,领悟其中的数学符号化思想的价值,则无疑有益于激发学生探究概念问题。

(2)定理公式教学中不过早给结论。数学定理、公式、法则等结论都是具体的判断,而判断则可视为压缩了知识链。教学中要恰当地拉长这一知识链,引导学生参与结论的探索、发现、推导的过程,弄清每个结论的因果关系,探讨它与其他知识的关系,领悟引导思

维活动的数学思想。例如,有理数加法法则的教学,我们通过设计若干问题,有意识地渗透或再现一些重要的数学思想方法。在讨论两个有理数相加有多少种可能的情形中,渗透分类思想;在寻找各种

具体的有理数运算的结果的规律中,渗透归纳、抽象概括思想;在“两个相反数相加得零”写在“异号两个数相加”的法则里,渗透特殊与一般思想。

2、在思维教学活动过程中,揭示数学思想方法。

数学课堂教学必须充分暴露思维过程,让学生参与教学实践活动,揭示其中隐含的数学思想,才能有效地发展学生的数学思想,提高

学生的数学素养。让学生亲自参加与探索定理的结论及证明过程,大大激发了学生的求知兴趣,同时,他们也体验到“创造发明”的愉悦,数学思想在这一过程中得到了有效的发展。

3、在问题解决方法的探索过程中激活数学思想方法。

我们认为,数学知识可以用言传口授的方法传递给学生,而数学

思想则显然不能,课堂教学中给学生的至多是关于数学思想方面的知识,不妨称为知识形态的数学思想,这种知识形态的数学思想需

要经历学生个体独立的思维活动才能发展为认知形态的数学思想。换言之,数学教学在使学生初步领悟了某些最高思想的基础上,还要积极引导学生参与数学问题的解决过程,通过主体主动的数学活动激活知识形态的数学思想,数学思想也只有在需要该种思想的数学活动中才能形成。

4、在知识的总结归纳过程中概括数学思想方法。

数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想方法要纳入教学计划,应有目的、有步骤地引导学生参与数学思想的提炼概括过程,尤其是在章节结束或单元复习中对知识复习的同时,将统摄知识的数学思想方法概括出来,可以加紧学生对数学思想方法的运用意识,也使其对运用数学思想解决问题的具体操作方式有更深刻的了解,有利于活化所学知识,形成独立分析、解决问题的能力。

由于同一数学知识可表现出不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的知识点里,所以通过课堂小结、单元总结或总复习,甚至是某个概念、定理公式、问题数学都可以在纵横两方面归纳概括出数学思想方法。思想的数学活动中才能形成。任何数学问题的解决无不是以数学思想为指导,以数学方法为手段。数学思想和方法是数学学习和研究的核心和灵魂。作为教师再讲解具体数学内容和方法时,应高度重视数学思想方法的挖掘和渗透。让学生领悟其价值从而掌握数学思想方法这个锐利的武器而

受用终生。

【参考文献】:

《数学通讯》、《中学数学杂志》、《河北教育》

相关文档
最新文档