薄膜光学技术-2-6第2章 光学薄膜膜系设计及其应用
光学薄膜制备与应用
光学薄膜制备与应用光学薄膜是指在各种光学元件表面上吸附一层具有特定的光学性质的薄膜。
它是由一系列具有慢光效应的光学材料所制备出来的,在现代光学技术领域扮演着重要的角色。
光学薄膜不仅可以改变光的反射和透射性质,还可以调节材料的机械、光学、电学和磁学性质,因此被广泛应用于显示器、太阳能电池板、半导体器件、光纤通信和激光器等领域。
光学薄膜的分类根据光学薄膜在光学元件表面上的位置和形态不同,可以将光学薄膜分为膜片、反射镜和分束器等几种类型。
其中,膜片是指在光学元件表面上涂覆一层薄膜,它可以改变光学元件的透明度、色彩和散射等性质;反射镜是指在光学元件表面上吸附一层金属材料制成的薄膜,它能够反射某一波长的光线,使得只有特定波长的光线透过它;分束器是指将光线通过光学薄膜分离为不同的波长,并反射或透射到选择器中使得光线在不同的介质下行驶。
光学薄膜的制备光学薄膜的制备涉及到很多工序,并且需要高精度和高分辨率的仪器,下面我们就来了解一下光学薄膜的制备流程。
1. 薄膜材料选择:选择特定的光学材料,如二氧化硅、氮化硅、氮化铟等,这些材料具有良好的光学、电学和化学性质,具有较高的透明度和稳定性。
2. 沉积膜层:沉积膜层通常采用物理气相沉积法(PVD)或化学气相沉积法(CVD)等方法,在设备中制造真空环境,将材料施加在光学元件的表面上,并控制所施加材料的厚度和稳定性。
3. 配合多层膜:多层膜是指在光学元件上定期施加不同材料的薄膜,以达到所要求的光学性质。
因此,制造多层薄膜需要精确测量和计算材料的厚度、均匀性和粘附效果等要素,确定合适的物理和化学参数,温度、时间、气压等等,以确保所有的层次都均匀分布。
4. 防反射薄膜:防反射薄膜是一种用于减少光线反射的光学涂层。
材料通常是氧化钙或钛等纯金属材料,它们涂覆在表面上,可以减少光的反射,增强光的透过率。
因此,制造防反射薄膜需要选择合适的物理和化学参数,以确保薄膜材料的粘附效果和抗严寒、耐腐蚀效果能够达到最佳效果。
光学薄膜技术及其应用
光学薄膜技术及其应用张三1409074201摘要:介绍了传统光学薄膜的原理,根据薄膜干涉的基本原理及其特点,介绍了光学薄膜的性能、制备技术,研究了光学薄膜在的应用和今后的发展趋势。
关键词:光学薄膜、薄膜干涉、应用、薄膜制备引言:光学薄膜是指在光学玻璃、光学塑料、光纤、晶体等各种材料的表面上镀制一层或多层薄膜,基于薄膜内光的干涉效应来改变透射光或反射光的强度、偏振状态和相位变化的光学元件,是现代光学仪器和光学器件的重要组成部分。
光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。
本文在简单叙述薄膜干涉的一些相关原理的基础上,介绍了光学薄膜常见的几种制备方法,研究了光学薄膜技术的相关应用,并且展望了光学薄膜研究的广阔前景。
正文:1.光学薄膜的原理光学薄膜的直接理论基础是薄膜光学, 它是建立在光的干涉效应基础上的、论述光在分层介质中传播行为。
一列光波照射到透明薄膜上,从膜的前、后表面或上、下表面分别反射出两列光波,这两列相干光波相遇后叠加产生干涉。
该理论可以比较准确地描述光在数十微米层、纳米层甚至原子层厚的薄膜中的传播行为,由此设计出不同波长、不同性能、适应不同要求的光学薄膜元件。
2.光学薄膜的性质及功能光学薄膜最基本的功能是反射、减反射和光谱调控。
依靠反射功能, 它可以把光束按不同的要求折转到空间各个方位;依靠减反射功能,它可以将光束在元件表面或界面的损耗减少到极致, 完美地实现现代光学仪器和光学系统的设计功能;依靠它的光谱调控功能, 实现光学系统中的色度变换, 获得五彩缤纷的颜色世界。
不仅如此, 光学薄膜又是光学系统中的偏振调控、相位调控以及光电、光热和光声等功能调控元件, 光学薄膜的这些功能, 在激光技术、光电子技术、光通信技术、光显示技术和光存储技术等现代光学技术中得到充分的应用, 促进了相关技术和学科的发展。
3.传统光学薄膜和新型光学薄膜3.1传统光学薄膜传统的光学薄膜是以光的干涉为基础。
《光学薄膜膜系设计》课件
,常用的测量方法有光谱椭偏仪法和光谱反射法等。
03
光学薄膜设计方法
膜系设计的基本原则
光学性能原则
薄膜的光学性能应满足设计要求,如 反射、透射、偏振等特性。
物理化学稳定性原则
薄膜应具有优良的物理和化学稳定性 ,能够经受环境因素的影响,如温度 、湿度、紫外线等。
机械强度原则
薄膜应具有足够的机械强度,能够承 受加工和使用过程中的应力。
干涉色散
由于薄膜干涉作用,不同波长的光 波会产生不同的相位差,导致不同 的干涉效果,从而产生色散现象。
薄膜的光学常数
光学常数定义
01
描述介质对光波的折射率、消光系数等光学性质的一组参数。
薄膜的光学常数
02
对于光学薄膜,其光学常数包括折射率、消光系数、热光系数
等。
光学常数测量
03
通过测量光波在薄膜中的传播特性,可以获得薄膜的光学常数
反射膜的应用案例
总结词
反射膜主要用于将特定波段的光反射回原介质,常用于聚光镜、太阳能集热器等领域。
详细描述
反射膜具有高反射率和宽光谱特性,被广泛应用于太阳能利用和照明工程中。通过将反 射膜镀在金属镜面上,可以大大提高光的反射效率,从而实现高效聚光和散热。此外,
反射膜还用于制作装饰性和广告用反射镜面。
干涉现象
当两束或多束相干光波相遇时,会因相位差而产生明暗相间的干 涉条纹。
干涉条件
为了产生稳定的干涉现象,需要满足相干波源、相同频率、相同 方向和相同振动情况等条件。
薄膜的干涉效应
薄膜干涉原理
当光波入射到薄膜表面时,会因 反射和折射而产生干涉现象。
薄膜干涉类型
根据光波在薄膜中传播路径的不同 ,可分为前表面反射干涉和后表面 反射干涉。
光学薄膜及其应用
溅射方式
包括直流溅射、射频溅射和脉冲 溅射等,其中射频溅射和脉冲溅
射适用于绝缘靶材的镀膜。
应用范围
广泛用于制造各种光学薄膜,如 金属薄膜、介质薄膜等。
化学气相沉积
物理基础
基于气相化学反应原理,在基底表面形成固态薄 膜。
反应方式
包括热分解、化学合成和等离子体增强化学反应 等多种方式。
多层膜技术
多层膜技术可以增加光学薄膜的复杂性和功能性,提高薄膜的性能和稳 定性。未来,多层膜技术将成为光学薄膜领域的一个重要研究方向。
政策与环境分析
国家政策支持
近年来,国家对于光学薄膜产业的发展给予 了大力支持,出台了一系列相关政策,包括 财政补贴、税收优惠等,以促进光学薄膜产 业的发展。
行业标准制定
研究挑战与展望
制造工艺的优化与改进
提升薄膜性能
通过优化制造工艺,提高薄膜的光学、力学、化学等性能,以满 足实际应用中的严格要求。
降低制造成本
研究更低成本的制造工艺,减少生产过程中的浪费和成本,提高 光学薄膜的性价比。
制造环境友好型薄膜
探索绿色、环保的制造工艺,减少对环境的负面影响,为可持续 发展做出贡献。
04
CATALOGUE
光学薄膜的市场与发展趋势
市场规模与增长
全球市场规模
近年来,随着光学技术的不断发展,光 学薄膜市场呈现出快速增长的趋势。根 据市场研究机构的统计数据,全球光学 薄膜市场规模预计在未来几年内将持续 扩大。
VS
国内市场规模
我国光学薄膜市场也呈现出快速增长的趋 势,尤其是在液晶显示、太阳能光伏等领 域,光学薄膜的应用越来越广泛。据不完 全统计,我国光学薄膜市场规模年均增速 在10%以上。
光学薄膜的原理及应用
光学薄膜的原理及应用光学薄膜是一种专门用于控制光波传播和反射的薄膜成分和结构,它具有薄、透明和多层次的特点。
光学薄膜最初用于光学仪器中的镀膜,随着科学技术的发展,现已广泛应用于各个领域,如光学器件、光纤通信、太阳能电池等。
本文将介绍光学薄膜的原理以及其在不同领域的应用。
光学薄膜的原理主要包括干涉和多层膜的叠加。
干涉是指当光波在界面上反射和透射时,由于光的相位差而产生的干涉现象。
多层膜则是指将多个薄膜成分按一定顺序垂直叠加,形成了多层结构的光学膜。
通过控制每一层的厚度和折射率,可以使得入射光在多层膜中发生多次反射和透射,并使得特定的光波相长相消,实现对光的控制和调节。
光学薄膜在实际应用中有着广泛的应用,下面将介绍几个重要的应用领域。
1.光学镀膜:光学薄膜最早应用于镀膜领域,用于提高光学仪器的透过率和反射率。
光学镀膜可以根据需求进行设计,可实现对特定波长的选择性透射和反射,从而用于制作滤光片、分光器、反射镜等光学元件。
2.光纤通信:光纤是一种用于传输光信号的光学器件,光学薄膜在光纤通信中起到关键作用。
光学薄膜可以用于光纤端面的反射镀膜,以提高光纤的耦合效率。
此外,光学薄膜还可以应用于光纤光栅、光纤滤波器等光学器件的制作。
3.太阳能电池:光学薄膜在太阳能电池中的应用也非常重要。
通过在太阳能电池表面镀膜,可以实现对太阳光的反射和透射控制,提高太阳能电池的光吸收效率。
此外,光学薄膜还可以用于制作透明电极和反射镜,用于提高光电转换效率和光热利用效率。
4.光学涂层:光学薄膜还可以应用于光学涂层领域。
通过在材料表面镀膜,可以实现对材料的防反射、抗刮擦、防腐蚀等特性改善。
此外,光学薄膜的选择性吸收性质还可以应用于光热转换材料的制备。
5.光学传感:光学薄膜可以用于制备各种传感器,如光学气体传感器、光学温度传感器等。
通过对光学薄膜的设计和调整,可以实现对特定物理量的敏感和测量,用于环境监测、生物医学等领域。
总结起来,光学薄膜是一种重要的光学器件,在不同领域有着广泛的应用。
光学薄膜及其应用
加大对光学薄膜产业的投入力度,包括资 金、人才、设备等方面的支持,推动产业 快速发展。
加强国际交流与合作
建立光学薄膜的标准体系,制定相关标准 和规范,提高产品质量和市场竞争力。
加强与国际同行之间的交流与合作,引进 国际先进技术和管理经验,提高我国光学 薄膜产业的国际竞争力。
THANKS
在常压环境下,通过化学反应生成薄膜材料并沉积在基片上。反应条件温和,设 备要求相对较低。
等离子体增强化学气相沉积
利用等离子体激活反应气体,促进化学反应并在基片上沉积成膜。具有高沉积速 率和优良薄膜质量的优点。
溶胶凝胶法技术
凝胶化过程:溶胶经陈化,胶粒 间缓慢聚合,形成三维空间网络 结构的凝胶。
热处理:对干凝胶进行高温热处 理,得到最终的光学薄膜。
光学薄膜的分类
根据光学薄膜的特性和应用,可以将其 分为以下几类
滤光片:选择性地透过或反射特定波长 光线的薄膜,用于光学滤波和色彩调节 。
分光膜:将光线按照一定比例分成多束 的薄膜,用于光谱分析和光学仪器。
反射膜:具有高反射率的薄膜,用于光 线的反射和镜面效果。
增透膜:减少光线反射,增加光线透射 率的薄膜,提高光学元件的透过率。
光学薄膜发展历程
01
02
03
04
05
光学薄膜的发展历程经 历了以下几个阶段
初期探索阶段:早期科 学家通过对自然现象的 观察和实验,发现了薄 膜干涉、衍射等光学现 象,为光学薄膜的研究 奠定了基础。
理论研究阶段:随着光 学理论的发展,科学家 们建立了完善的薄膜光 学理论体系,为光学薄 膜的设计和制备提供了 理论指导。
工作原理
利用光的干涉原理,使反射光增强。
应用领域
光学薄膜膜系设计方法
光学薄膜膜系设计方法光学薄膜啊,就像给光学元件穿上了一层特制的小衣服。
那这膜系设计呢,就像是精心挑选衣服的款式和布料。
一种常见的方法是基于经验的设计。
这就好比咱做饭,一开始照着老菜谱做。
那些有经验的工程师啊,他们经过好多好多的实践,知道在哪些情况下用哪种薄膜材料组合比较好。
比如说,要是想让光更多地透过,可能就会想到某些透光度高的材料,像氟化镁之类的。
他们心里有个小本本,记着不同材料在不同光学环境下的表现,就这么凭经验先搭出个大概的框架来。
还有一种是计算机辅助设计。
这个就很酷炫啦。
现在科技这么发达,计算机就像个超级聪明的小助手。
我们把光学薄膜需要达到的各种要求,比如反射率要多少、透过率要多少之类的参数输进去。
然后计算机就开始它的魔法之旅啦。
它会根据内置的算法,算出各种可能的膜系结构。
这就像是我们在网上搜衣服,输入自己的尺码、喜欢的风格,然后出来一堆推荐一样。
不过呢,计算机算出来的结果也不是完全就可以拿来用的,还得经过人工的分析和调整。
在设计膜系的时候啊,材料的选择可太重要啦。
就像我们挑衣服的布料,得考虑它的质地、颜色、功能啥的。
对于光学薄膜材料,我们要关注它的折射率、吸收率这些特性。
不同的折射率会让光在薄膜里的传播路径发生不同的变化。
要是选错了材料,那这个光学薄膜可能就达不到我们想要的效果啦,就像穿错了衣服去参加活动,会很尴尬的呢。
另外,膜层的厚度也是个关键因素。
这厚度就像衣服的厚度一样,得刚刚好。
如果膜层太厚或者太薄,光的干涉效果就会受到影响。
比如说,要是想通过干涉来增强反射,那膜层厚度就必须得精确控制,差一点点都不行哦。
光学薄膜膜系设计不是一件简单的事儿,但是只要我们掌握了这些方法,就像掌握了搭配时尚穿搭的秘诀一样,就能设计出很棒的光学薄膜啦。
宝子们,是不是感觉还挺有趣的呢?。
光学薄膜技术的研究与应用
光学薄膜技术的研究与应用光学薄膜技术是指利用高分子材料制作膜,内含一种或多种其他物质的技术,仅有几个纳米(nm)到几百纳米厚度的薄膜为主。
随着科学技术的不断提升,光学薄膜技术在工业、医学、环保、能源等领域中的应用越来越广泛。
本文将从薄膜技术原理、应用、革新方面阐述光学薄膜技术的优越性,以及对社会发展的重要作用。
一、薄膜技术原理1.1 薄膜的优势与传统材料相比,薄膜拥有许多独特的优点。
首先,薄膜具有高纯度、均匀性和稳定性,这使得其在制造过程中受到的影响会更小,可以获得更好的性能。
其次,薄膜可以极大地提高材料的表面积,这使得其更适合用于各种重要的应用领域。
1.2 光学薄膜技术原理光学薄膜技术是一种通过控制材料的物理和化学性质,制备一层具有特殊光学性质的薄膜,以调整和控制光传播的过程的技术。
其原理是利用高分子材料制作膜,并在其内部嵌入一种或多种其他物质。
这种特殊结构使薄膜产生不同的光学效应,比如颜色、反光、吸光和透光等,这正是其应用于光学领域的重要原因。
二、光学薄膜技术的应用2.1 光学仪器光学薄膜技术在制造光学仪器方面发挥着重要作用。
光学薄膜可以用于镀膜光镜、滤光镜、分束镜和薄膜反射器等方面,能够提高光器件的重要性能。
例如,利用薄膜技术制造玻璃镜片,可以使光子在镜片表面反射多次,提高反射率,使得镜片切实地进行反射成像,有效地避免光线偏斜和反射影响,从而提高了光学仪器的性能。
2.2 红外应用光学薄膜技术还常常应用于红外技术中,以实现各种领域的红外探测和成像。
多片式棱镜式红外探测和成像系统,其依赖于反射、透射和散射等各种光学效应,而光学薄膜正是实现这些效应的关键技术。
利用薄膜技术制造表面粗糙收光器官,可以使得红外光子在这些收光器官上进行反射,从而实现更加准确的红外探测和成像。
2.3 环保领域光学薄膜技术在环保领域的应用也很广泛。
例如,在太阳能光伏电池中,隔离膜材料的使用,能化学循环的能量回收,能够多次利用,大大提高了材料的使用效率。
光学薄膜技术的研究和应用
光学薄膜技术的研究和应用一、引言光学薄膜技术已成为现代光学领域的一种重要技术,具有广泛的应用前景。
光学薄膜技术是指将某一种材料或多种材料制成若干稳定层,根据不同的光学性能而形成一个具有一定厚度的薄膜层。
在各种光学系统中,多层膜是光学元件发挥特殊光学性能的重要基础。
随着光学领域的不断发展,光学薄膜技术的研究和应用受到了越来越广泛的关注。
本文将从光学薄膜技术的基本原理、制备方法、应用等几个方面进行介绍。
二、光学薄膜技术的基本原理光学薄膜技术中的薄膜可以是单层膜,也可以是多层膜。
光学薄膜的主要原理是利用薄膜的光学性质,把光学薄膜看做一个复合材料,具有不同的光学特性和机械特性。
光学薄膜技术中最基本的薄膜是单层膜。
单层膜是指单一材料薄膜,它的光学性质由单一材料决定。
单层膜的厚度约为光的波长的一部分,通常在50~500nm之间。
单层膜具有各向同性,即各个方向上的光学性质相同。
多层膜是指由两种或多种薄膜交替而成的膜,它的厚度约在波长的几倍到十几倍之间。
多层膜可以分为带通膜和反射膜两种。
带通膜主要是利用光的衍射原理,在一定频率范围内传递光波,而其他波段则被反射或吸收。
反射膜则是利用反射原理,将进入膜的大部分光线反射回去,从而达到特定的光学效果。
三、光学薄膜技术的制备方法光学薄膜技术的制备方法主要分为物理镀膜、化学气相沉积和溅射镀膜等。
1、物理镀膜物理镀膜是将材料加热到高温后,使其表面挥发成原子或分子,然后在基片上沉积形成膜层的过程。
物理镀膜包括电子束蒸发、阴极溅射、磁控溅射等方法。
电子束蒸发是将材料加热到高温后,利用电子束将其挥发成原子或分子,然后在基片上沉积成膜。
阴极溅射是将材料作为阴极被放置在真空室中,利用离子轰击材料使其表面挥发成原子或分子,然后在基片上沉积成膜。
磁控溅射则是在溅射过程中施加外电场,使溅射的材料遵循磁场方向沉积。
2、化学气相沉积化学气相沉积根据某些气相反应的规律,在真空室中通过沉积物质的蒸汽在基片上沉积形成膜。
光学薄膜膜系设计
光学薄膜膜系设计光学薄膜膜系设计是一项关键的技术,旨在通过优化薄膜层的结构和材料,达到特定的光学性能。
光学薄膜在眼镜、液晶显示器、太阳能电池等领域起着重要的作用。
本文将介绍光学薄膜膜系设计的基本原理和常用方法,并以太阳能电池为例进行详细阐述。
在光学薄膜膜系设计中,常用的方法包括布拉格条件法、计算机辅助设计和光学膜层堆积生长技术等。
布拉格条件法是光学薄膜设计的基础理论,根据布拉格干涉条件,通过对薄膜层结构、光波长和入射角度等因素的优化,可以实现特定的光学性能。
布拉格条件法主要应用于光学薄膜的波长选择和色彩滤光器的设计。
计算机辅助设计是一种基于计算机模拟的方法,通过数值计算和优化算法,快速确定最佳的薄膜层结构和参数。
这种方法可以通过遗传算法、蒙特卡洛模拟等算法,对大量的设计空间进行,得到最优解。
计算机辅助设计主要应用于复杂的多层膜结构和非均匀膜厚的设计。
光学膜层堆积生长技术是指通过物理气相沉积或溅射等方法,在基底上逐层生长所需的薄膜材料。
这种技术可以实现高质量的薄膜层,并且可以控制薄膜层的厚度和组分。
光学膜层堆积生长技术主要应用于光学反射镜和透明导电薄膜的制备。
以太阳能电池为例,光学薄膜膜系设计在提高太阳能电池的转换效率、增强光吸收和抗反射等方面起着重要的作用。
在太阳能电池中,常用的光学薄膜包括透明导电薄膜、抗反射膜和光学增透膜等。
透明导电薄膜是太阳能电池的关键组件之一,用于收集和输送光电池产生的电子。
常见的透明导电薄膜材料包括氧化锌、氧化铟锡等。
在设计透明导电薄膜时,需要考虑电导率和透明度的平衡,以达到最佳的光电转换效率。
抗反射膜是为了减少太阳能电池上的反射损失,提高对太阳光的吸收。
常见的抗反射膜材料包括氧化硅、氮化硅、二氧化硅等。
在设计抗反射膜时,需要根据太阳光的光谱分布和太阳能电池的工作波长范围,选择合适的材料和膜层厚度,来实现最佳的抗反射效果。
光学增透膜可以提高太阳能电池对特定波长范围内光的吸收。
薄膜原理与技术_02 光学薄膜普遍定理
0
in1
i n1
0
0 in2
i n2 0
n2 n1
0
0
n1 n2
以这双层膜为基本周期的多层膜,其特征矩阵
M
s
(M1M 2 )s
(
n2 n1
0
)s
0
(
n1 n2
)s
应用:
1、 p q p 结构 ① 改变p与q的相对厚度,改变E的大小可以获得折射率从np到nq之 间任意
折射率的等效膜层;“变折射率膜层”
② 对于通带附近等效的折射率具有较大的色散。改变E的位置“偏周期设计 法”
很容易证明,这个结果能够推广到由任意多 层膜组成的对称膜系。首先划定多层膜的中 心三层,它们独自形成一个对称组合,这样 便可以用一个单层膜来代换。然后这个等效 层连同两侧的两层膜,又被取作第二个对称 三层组合,依然用一个单层膜来代换。重复 这个过程直到所有膜层被替换,于是最终又 形成一个等效单层膜。
2
2 2 22 22 2 2 2
2、L H L H L H L E, Γ E’,Γ’ E”,Γ”
当对称膜系中各分层的厚度很小时(例如不 超过10nm),等效折射率E几乎是一常数,它介 于Np和Nq之间,取决于分层厚度的比值,同时 位相厚度和对称膜系实际的总的位相厚度成比例, 在大多数情况下其比例常数接近于1。 因此这种 基本周期的厚度很小的周期性对称膜系非常类似 于色散很小的单层均匀薄膜,可以用来替换那些 折射率无法实现的膜层, 它在减反膜的设计中, 得到了实际应用。
薄膜光学技术_第02章 02 高反射膜
设截止波长为λe, 相应的位相厚度为δ e.
令高反射带的边界为:
e
2
ge
2
1
g
因此,c os2
e
sin2
g 2
g
2
sin 1
nH nH
nL nL
1 g 1 g
高反射带的波数宽度:
2g
4
A. 高反射区宽;
B. 偏振效应轻微; C. 膜层与基底附着性能差距很大:
Al ,Cr,Ni与玻璃附着力强; Au,Ag与玻璃附着力差; D. 膜层化学稳定性差,易被环境气体腐蚀; E. 机械性能差——软。
6
2. 金属-介质组合高反膜
目的:
A. 增强附着力
——在金属膜与玻璃之间增镀过渡层。
r0 , r1, r2 , r3....…..... rk
K-1 .
KH
入射光在光疏媒质中前进,遇到 光密媒质界面时,在掠射或垂直 入射2种情况下,在反射过程中产 生半波损失
12
高反射膜基本结构: G/(HL)SH/A.
Y
(
nH2 nL2
) S nH2
/ nsub
G/(LH)SL/A.
Y
( nL2 nH2
与基底之间的过渡层
与保护层之间的过渡层
3
金(Au): 在红外波段的反射率很高,红外反射镜。 与玻璃的附着力较差,常用Cr作为过渡层。
解决方法:Ni (Ni-Cr) + Au+(一对TiO2/SiO2)或Bi2O3
与基底之间的过渡 层
保护层
4
薄膜光学技术-2-6第2章 光学薄膜膜系设计及其应用
②封闭在胶合棱镜中膜层的偏振效应更严重。
这种干涉型偏振镜的基本结构是长波通滤光片
G(0.5HL0.5H)SA。
当然,干涉型偏振分光镜也可以采用用胶合棱镜。
10
11
3. 金属栅偏振分光镜
原理: 当入射光的波长远大于栅距时,入射光中的电矢量 E
垂直于线栅的偏振光透过线栅,而电矢量 E平行于线栅 的偏振光则被线栅反射。
金属栅偏振器的主要优点是: 工作波段很宽; 全波段内偏振性好; 线栅用良导体制成,吸收可以忽略,抗光损伤阈值
所谓消偏振就是使光学导纳的偏振分离量ΔY=1。 应当注意的是:一个完整的消偏振设计,既需要对
膜系进行,也需要对入射介质和基底介质进行。
15
2.7.2 宽波段消偏振
1.“金属-介质”组合膜系 例:G/H metal H/G 其中 metal —— Ag
Rp Rs
G| 1.18H Ag(19.2nm) 0.82L 0.02M|A
高。所以,金属线栅偏振器是中,远红外区较理想的偏 振器 。
12
13
2.7 消偏振膜系
在许多光学系统中,偏振效应将带来偏振像差。 因此,消除偏振效应在许多光学系统中是必须的。
产生偏振效应的原因是有效光学导纳的分离。 定义s和p偏振分量有效导纳的偏振分离量为:
n s p n n c co o s c s1 2 o s 1 1 n 0 2s n 2 2 i0 n
光学薄膜的应用及分类
光学薄膜的应用及分类光学薄膜是一种由多层不同材料组成的薄膜结构,其厚度通常在纳米至微米的范围内。
光学薄膜具有良好的光学性能,可广泛应用于光学领域,如反射、透射、吸收、散射等。
下面将介绍光学薄膜的应用及分类。
光学薄膜的应用:1. 反射镜:光学薄膜可以制作高反射率的反射镜。
通过对光学薄膜的设计和优化,可以使反射镜在特定波长范围内达到很高的反射率。
反射镜广泛应用于激光系统、光学测量仪器和天文观测等领域。
2. 透镜:光学薄膜可以制作用于改变光线传播方向和改变光程的透镜。
透镜广泛应用于相机、望远镜、显微镜和光学仪器等设备中。
3. 光学滤波器:光学薄膜可以制作用于选择性透过或反射特定波长范围光线的滤波器。
光学滤波器在光学通信、荧光光谱分析和光学显示等领域具有重要应用。
4. 光学涂层:光学薄膜可以制作用于改变材料表面的光学性质的光学涂层,如抗反射涂层、硬质涂层和光学增透涂层等。
光学涂层广泛应用于眼镜、光学仪器和光电子器件等领域。
5. 光学传感器:光学薄膜可以制作用于传感特定物质、温度或压力等参数的光学传感器。
光学传感器在环境监测、生物医学和工业检测等领域具有广泛应用。
光学薄膜的分类:1. 单层膜:由单一材料组成的薄膜,如金、银、铝等金属薄膜。
单层膜通常具有特定的光学性质,如反射、吸收或透射特定波长的光线。
2. 多层膜:由多种不同材料交替堆叠而成的薄膜。
多层膜的光学性质通过调整不同材料的厚度和折射率来实现。
典型的多层膜结构包括抗反射膜、透过滤波器和反射镜等。
3. 光子晶体膜:由周期性变化的折射率材料构成的薄膜。
光子晶体膜可控制光的传播和散射特性,具有特殊的光学选择性和调制性能。
光子晶体膜在光学通信和光学传感器等领域具有广泛应用。
4. 多孔膜:具有空隙结构的薄膜。
多孔膜的孔隙结构可以通过调整制备条件来控制,从而实现对光的散射、透射和吸收等特性的调控。
多孔膜在表面改性、过滤和催化等领域具有广泛应用。
总之,光学薄膜具有广泛的应用领域,包括反射镜、透镜、滤波器、涂层和传感器等。
薄膜光学技术-2-3 第2章 光学薄膜膜系设计及其应用
得偏振条件:
ns sin s
nH nL nH2 nL2
tg H
nL nH
21
arctg nL nH
30.422 , nG sin 45 nH sin
nG 2
2nL2nH 2 nL2 nH 2
2 1.382 2.352 1.382 2.352
1.68
22
多层分光膜G/ (HL) 8 /G 45度入射
19
偏振中性分光膜—布儒斯特角原理
θ1 n1 n2
θ2
1.0
R 增加S偏振 光的反射率
0.5
Rs
0
θB Rp
0
30
60
90
θ0
n1,n2界面反射率随入射角的变化
Rp=0的条件:
rp
n1 n1
cos 2 cos 2
n2 n2
cos 1 cos 1
tg(2 tg(2
1) 1)
0
1 2 90o
通常,光线从空气侧入射时,分光镜的反射率高, 所以,在使用分光镜时,一定要注意正确的使用方向。
8
2.3.2 介质-金属分束膜
理论基础:
金属膜对光的吸收不仅与金属自身的性质有关, 还与金属周围介质的性质有关。
方法:
在金属膜两边设计匹配膜堆,诱导出金属膜的最 大可能透射能力——势透射率。
9
金属分束膜的吸收损失与分光膜周围的介质有关,改变周围 的介质,可以减小吸收损失。
S/LH(2/3)L1.5HL2H/S
18
2.3.4偏振中性分光膜
偏振中性分光膜:
利用斜入射时光的偏振效应来实现50/50的 中性分光。
两点说明:
1)偏振中性分光膜只适应于自然光和圆偏振光的 中性分束;
薄膜光学技术_第02章 01 减反射膜
22
例如:
K9/MH1H2H3L/A nM=1.63, nH1=1.95, nH2=2.32, nH3=1.87,NL=1.38
nH1=1.95 nH3=1.87
0.379H20.215L0.379H2 0.288L0.384H20.288L
光学薄膜技术
Optical thin films and Technology
第二章 光学薄膜膜系设计及其应用
1
第二章:光学薄膜膜系及其应用
第一节 减反射膜 第二节 高反射膜 第三节 中性分束膜 第四节 干涉截止滤光片 第五节 带通滤光片 第六节 偏振分光膜
2
薄膜的分类及用途
3
薄膜的分类及用途
n3=1.71
n3=1.62
19
3.四层和四层以上增透膜的设计
通常遇到的问题:
a. 三层膜系的增透波段不够宽,或剩余反 射率还太高;
b. 满足设计要求的三种材料无法找全。
解决的办法: a. 优化三层母膜系G/M2HL/A中每层膜的折射率和 厚度,直至满足要求;可能出现现有膜料无法实 现的问题。 b. 以G/M2HL/A 为母膜系,将折射率设为定值, 调整膜层的厚度,并允许增加膜层层数,直到满 足要求。可能出现层数多以及极薄层的问题。
7
单层AR膜的光谱特点:
a. 对常用的多数
基底材料,满
单层减反射膜 G/L/A
1.52/1.38/1
足 n1 n0 nS 的膜料并不存
在,所以Rmin 0
很难实现零反
射。
b. V形减反射效
果,只能在某
个孤立波长点
实现最小反射,
光学薄膜技术和计算的基础
膜
技
术
薄膜制造技术 薄膜制造工艺 薄膜材料及其性质
薄膜特性测试
光学特性计算:导纳矩阵
减反射膜 高反射膜 截止滤光片 带通滤光片 偏振分束膜 消偏振膜 真空技术、薄膜沉积技术 工艺参数、实验设计、厚度监控 微观结构、常用材料 光学特性测试 非光学特性测试
课程目的
➢了解光学薄膜的基础理论及典型膜系,掌握简单的膜系设计 方法;
如果要求单层薄膜的反射率、透射率等→求出等 效介质的光学导纳
1、单层薄膜系统等效导纳求解
单层薄膜界面两侧的电磁场
图中箭头的方向是与电场相对应的光的传播方向. 即K0的方向。
联合1式可得到
说明: 菲涅尔反射、 投射系数仅与 介质的折射率 有关。
(2)倾斜入射
定义: H与界面平行,称为TM波(横磁波)或称为p-偏振波 E与界面平行,称为TE波(横电波)或称为s-偏振波
A:TM波(p偏振波)入射时,H与界面平行
B:TE波,即S偏振波入射时,E与界面平行
提示: 电场强度方向为切 向方向,磁场强度 分解为切向与法向 两个方向。
上式意义:电场强度E切向分量是连续的 同样,在界面上下不存在传导电流(即j=0)时,
H0t H1t
第节 单一界面的反射和折射(透射)
1. 反射定律和折射定律
反射定律
折射定律
2.Fresnell’s 公式
振幅反射系数(菲涅耳反射系数)r=Er/Ei 振幅透射系数(菲涅耳透射系数) t=Et/Ei
求解方法:
绪论
什么是光学薄膜? 什么是光学薄膜技术? 光学薄膜的发展史? 光学薄膜的种类? 光学薄膜应用?
1.什么是光学薄膜
常见薄膜
肥皂泡、水面上的油膜 镀膜镜片 滤光片、反射镜
光学薄膜的制备和应用研究
光学薄膜的制备和应用研究光学薄膜是将光波经过薄膜后,由于薄膜的反射、折射和干涉的作用,产生不同颜色的光波,起到改变光学性能的作用。
光学薄膜常见于各类光学配件,如滤光片、反光镜、镀膜片等,是光学材料中的重要组成部分。
光学薄膜的制备技术光学薄膜的制备技术包括物理气相沉积法、化学气相沉积法、溅射法、离子束法等多种方法。
其中,物理气相沉积法是制备光学薄膜中最常见的一种方法。
物理气相沉积法通过灯源、真空度、控制固体材料蒸馏温度等参数,用高能电子或离子束轰击原材料,使原材料飞向待制备器件的表面并沉积,形成光学薄膜。
在具体的制备过程中,需要根据不同应用领域的光学配件,选择合适的制备方法,并在具体的制备过程中精细控制薄膜的厚度、成分、晶格结构和微观结构,以保证待制备器件的光学性能。
光学薄膜的应用研究光学薄膜的应用研究涵盖了许多领域,如光学显示、光学传感、激光等。
各种光学薄膜在应用领域中发挥着极其重要的作用。
在光学显示领域,利用光学薄膜可以制备各类滤光片、偏振器、反光镜等器件,实现光的反射、透射和偏振等特性,使得光的传播与反射更加精细,进一步提高了光学显示的品质。
在光学传感领域,利用光学薄膜可以制备各类传感器,如化学传感器、生化传感器等。
这些传感器利用光学薄膜的敏感性能,在外界光的激励下,实现对不同物理、化学和生物信号的感应,进而具备检测和分析生物、化学等领域中的物质的能力。
在激光领域,利用光学薄膜可以制备各类镀膜组件、反射镜、光学波导等器件。
利用光学薄膜的反射、折射和干涉等特性,可以实现激光光路的改变、分束、聚焦等功能,从而进一步提高激光器件的性能。
结语光学薄膜的制备技术和应用研究是当今光学研究领域中非常重要的研究方向。
随着技术的不断进步和应用场景的不断拓展,光学薄膜的应用前景将更加广阔,同时也需要我们不断地深入研究,尽力推进其进一步的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
膜系进行,也需要对入射介质和基底介质进行。
15
2.7.2 宽波段消偏振
1.“金属-介质”组合膜系 例:G/H metal H/G 其中 metal —— Ag
Rp Rs
G| 1.18H Ag(19.2nm) 0.82L 0.02M|A
显然: ①对独立的单层膜来说,Δn永远大于1,单层膜不可能消偏振; ②对分确离定越的小n0;和n,Δn随入射角θ0的减小而降低,即入射角越小,偏振 ③对于确定θ0和n,Δn随入射介质n0增大而增大,偏振分离也越大; 因此,①消偏振只能对膜层与周围介质组合、或多层膜系来实现;
②封闭在胶合棱镜中膜层的偏振效应更严重。
可以证明,受抑全反射消偏振分光入射角只与膜
层和入射介质的折射率有关,而与波长和膜层厚度
无关。即:
sin0
2n1 n0
1n1
n 2 0
17
单层宽波段消偏振分光镜
18
S-偏振光高反射区域的半宽度为:
gs
2s
in1ηηH H
ηL s ηL s
1 1
8
9
2. 平板型偏振分光膜
在基于布儒斯特角入射的棱镜偏振镜中,各介质 的P-偏振光的有效折射率都是相同的,其间不存在 界面,因而P-偏振光有高的透射并不是干涉的结果 (不产生干涉).
平板偏振分光镜是基于薄膜材料的P-偏振和S-偏 振的有效折射率不相等这一条件设计的,P-偏振光 的高透射率是通过干涉效应实现的.因此它们的工作 波段比较窄,优点是选择基片和薄膜材料有较大的灵 活性.
RP/% 0.99 1.19 1.81 4.48
2
(2)(LH)9 stack
λmax 00 550nm
Rmax 0.9994
Rs-max 0.9994
Rp-max 0.9994
Δλs 50
Δλp 480-650
300 530nm 0.9992 0.9997 0.9987 440-630 460-620
1. 例如:nH=2.35,nL=1.35, ns=1.52,根据上式计算棱镜 应有的角度θs=50.5° 2.例如:nH=2.35,nL=1.35 ,θs=45° ,则,ns=1.66。
7
中心波长处的反射率为:
Rη ηss ηηH H 2 2
ηs ηs
ηH ηH
ηL ηL
m12 m1
m为膜层的层数,并假定为奇数。
这种干涉型偏振镜的基本结构是长波通滤光片
G(0.5HL0.5H)SA。
当然,干涉型偏振分光镜也可以采用用胶合棱镜。
10
11
3. 金属栅偏振分光镜
原理: 当入射光的波长远大于栅距时,入射光中的电矢量 E
垂直于线栅的偏振光透过线栅,而电矢量 E平行于线栅 的偏振光则被线栅反射。
金属栅偏振器的主要优点是: 工作波段很宽; 全波段内偏振性好; 线栅用良导体制成,吸收可以忽略,抗光损伤阈值
500 510nm 0.9984 0.9999 0.9969 430-620 450-590
600 500nm 0.9930 0.9999 0.9864 390-600 430-550
3
棱镜偏振分光镜的设计:
根据布儒斯特角条件和折射定律确定膜层材料、光 线入射角和棱镜材料。
① t g H n L n H , n H s i n H n L s i n L = n G s i n G
高。所以,金属线栅偏振器是中,远红外区较理想的偏 振器 。
12
13
2.7 消偏振膜系
在许多光学系统中,偏振效应将带来偏振像差。 因此,消除偏振效应在许多光学系统中是必须的。
产生偏振效应的原因是有效光学导纳的分离。 定义s和p偏振分量有效导纳的偏振分离量为:
n s p n n c co o s c s1 2 o s 1 1 n 0 2s n 2 2 i0 n
第2章 光学薄膜膜系设计及其应用
2.6(7) 偏振分光膜和 消偏振薄膜
1
2-6 偏振和偏振薄膜 1. 薄膜的偏振效应
(1). AR coating GHLA
λmin 00 550nm 300 520nm 450 480nm 600 440nm
Rmin/% 0.99 0.999 1.1 2.28
RS/% 0.99 0.81 0.39 0.08
②实现偏振分光的条件:
nG sinG
nHnL
n
2 H
+n
2 L
12
6
立方棱镜偏振分光镜的设计方法有两种:
在给定nH和nL的情况下,就可以确定出膜层内的折射角θH和θL,
1. 选定棱镜的折射率ns,根据上式计算棱镜应有的角 度θs; 2.选定棱镜的角度(θs=45°),然后计算棱镜应有的折 射率。
14
2.7.1 单波长消偏振
由于①多层膜系的偏振效应来源于光学导纳的偏振分离,
②多层膜系的光学导纳是膜层厚度的复函数, ③多层膜系的光学导纳色散非常严重,所以多层膜系
的光学导纳的偏振分离量很难用一个显函数表达。 也就很难在宽波段实现消偏振设计。
目前,大多数消偏振设计都是针对光学导纳能够明 确用显函数表达的特殊波长进行的。
H:ZnS, L:MgF2, M:Al2O3 G:K9
16
2.7.2 宽波段消偏振
2. 受抑全反射棱镜
如图示,位于棱镜胶合面的单层介质膜,当折射率满
足 n1n0n2 ,且光线以等于或大于全反射临界角入射
时,通过调整膜层的厚度,由于膜层的作用,就会使全反射受
到抑制,得到没有偏振效应的各种透反比的分光效果。