假设检验的步骤与t检验的理论PPT(16张)

合集下载

4 假设检验和t检验

4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检

第8 假设检验(共80张PPT)

第8 假设检验(共80张PPT)
第 8 章 假设检验
8.1 8.2 8.3 8.4
假设检验的根本问题 一个总体参数的检验 两个总体参数的检验 假设检验中的其他问题
我认为该企业生产的零件的平
均长度为4厘米!
什么是假设? 对总体 参数的一种看法
总体参数包括总 体均值、比例、方 差等
举例说明假设检验的根本思路
某单位职工上月平均收入为210元,这个 月的情况与上月没有大的变化,我们设想平均 收入还是210元.
样本均值的抽样分布
置信水平
拒绝域
1-
接受域
临界值
H0
样本统计量
如果备择假设具有符号“>〞,拒绝域位于抽样分 布的右侧,故称为右侧检验
样本均值的抽样分布
置信水平
1- 接受域
拒绝域
H0
样本统计量
临界值
请判断它们的拒绝域:
〔1〕假设检验的假设为H0:m=m0 ,H1: m≠m0,那么拒绝域为〔 〕。
〔2〕假设检验的假设为H0:m≥m0 ,H1: m < m0,那么拒绝域为〔 〕。
〔3〕假设检验的假设为H0:m≤m0 ,H1: m > m0,那么拒绝域为〔 〕。
检验统计量:Z > Z;
Z > Z/2 或Z <-Z/2 ;
Z <-Z
决策规那么
给定显著性水平 ,查表得出相应的临界 值 将检验统计量的值与 水平下的临界值进 行比较 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0 得出拒绝或不拒绝原假设的结论
H0:m=10 H1:m≠10
例 6.2
某品牌洗涤剂在它的产品说明书中声称:平均 净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设。

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

假设检验与t检验-卫生统计学_PPT幻灯片

假设检验与t检验-卫生统计学_PPT幻灯片
S/ n 5.08/ 36
n136135
第二节 t检验
• 单样本设计的t检验 • 配对设计的t检验 • 完全随机设计(成组设计)的t检验
第二节 t检验
每种不同设计类型的t检验均主要从以下四个方面介绍:
1. 设计类型 2. 可解决的问题 3. 假设检验步骤 4. 适用条件
一.单样本设计t检验(one-sample t-test)
2.080 2.074 2.069 2.064 2.060
2.518 2.508 2.500 2.492 2.485
2.831 2.819 2.807 2.797 2.787
3.135 3.119 3.104 3.091 3.078
3.527 3.505 3.485 3.467 3.450
3.819 3.792 3.768 3.745 3.725
– P> α,不能拒绝H0 (在H0成立的前提下,一次随机抽样没有发生小概率事件,没有
充足的理由拒绝H0 )
第一节 假设检验的原理与步骤
二、假设检验的基本步骤
1. 建立假设(H0和H1) ,确定检验水准α 2. 选择检验方法,计算检验统计量 3. 确定 P 值,作出推断结论
第一节 假设检验的原理与步骤
6
0.718
7
0.711
8
0.706
9
0.703
10
0.700
21
0.686
22
0.686
23
0.685
24
0.685
25
0.684
0.20 0.40
1.376 1.061 0.978 0.941 0.920
0.906 0.896 0.889 0.883 0.879

5.假设检验,t检验

5.假设检验,t检验

μ 0 = 140g/L

问题归纳:样本
未知总体 + 抽样误差
μ=μ 0?
问题: X (130.83g/L)所在总体的均数是否=140g/L?

假定铅作业工人的血红蛋白服从正态分布,假如 0 ,则 t X - 0 服从t 分布。 S / n 根据 t 分布能够计算出有如此差异的概率P , 如果P 值很小,即计算出的t值超出了给定的界 限,则倾向于拒绝两总体均数相等。
检验水准
– 确定后,相对应的界值也就确定
对于单侧t检验, 对于双侧t检验, 单双侧检验,
是t分布曲线下一侧尾部的面积 是t分布曲线下两侧尾部面积的和
大小相同位置不同
[说明] :备择假设有双侧和单侧两种情况。双侧
检验指不论正方向还是负方向的值,若显著地超出检
H 1 : μd 0 即为双侧检验;单 验水准,则拒绝 H0 ;
侧检验指仅在出现正方向或负方向误差超出规定的水
准时则拒绝 H0,如治疗后血清甘油三酯下降的假设 可表示为 H 1 : μd 0(或 H 1 : μd 0 ) 双侧检验和单侧检验应如何选择,需根据研究目的和 专业知识而定。一般情况下,双侧检验更为稳妥,因 为对相同的样本,双侧检验得出有显著性差别的结论
差值 -0.02 -0.01 -0.03 -0.01 0.01 0.01 -0.02 0.00 0.00 0.01 0.00 0.02
检验假设 H0:μ d= 0, H1:μ d≠0 α =0.05 d 0.0033 d 2 0.026 n =12 d 0.04

s
d
( d ) 2 d n 0.01497 n 1
2)统计上依据小概率原理 只小概率事件(P<0.01或P<0.05)在一次试 验中几乎不可能发生 小概率事件一旦发生我们就有理由拒绝原假设 小概率由研究者事先确定

第5章t检验

第5章t检验

3.5
12.25
10
15.0
8.0
7.0
49.20
Байду номын сангаас
11
13.0
6.5
6.5
42.25
12
10.5
合计
9.5
1.0
1.00
39(d)
195(d2)
H0:d=0, H1:d0, 0.05。
自由度计算为 ν=n-1=n-1=12-1=11,
查附表2,得t0.05(11) = 2.201,
t0.01(11) = 3.106,本例t > t0.01(11), P < 0.01,差别有统计学意义,拒绝H0,接受H1,
应的总体方差相等(方差齐性) u 检验:1.大样本
2.样本小,但总体标准差已知
➢t检验 样本均数与总体均数比较的t检验 配对设计资料比较的t检验 两独立样本均数比较的t检验
➢样本均数与总体均数的比较的t检验,亦 称单样本t检验(one sample t test) 。
➢用于从正态总体中获得含量为n的样本, 算得均数和标准差,判断其总体均数μ 是否与某个已知总体均数μ0相同。
可认为两种方法皮肤浸润反应结果的差别有 统计学意义。
查表,t与自由度为9(10-1)时的t界值进行比 较,得到0.01<p<0.05。
P=2*[1-CDF.T(2.434,9)]
CDF.T(quant, df)。数值。返回 t 分布(指定自由度为 df)中的 值将小于 quant 的累积概率。
SPSS软件操作
• 第一步:以“血尿素氮” 为变量名,建立变量
t
df
Sig. (2-tailed) Difference Lower

《假设检验》PPT课件-(2)

《假设检验》PPT课件-(2)
t检验的正确应用
资料的代表性与可比性 所谓代表性是指该样本从相应总体中经随机抽样获得,能够代表总体的特征; 所谓可比性是指各对比组间除了要比较的主要因素外,其它影响结果的因素应尽可能相同或相近 为了保证资料的可比性,必须要有严密的实验设计,保证样本随机抽取于同质总体,这是假设检验得以正确应用的前提 。
在两个样本均数比较时,若两组样本含量都很大,可用u检验,其计算公式为:
u为标准正态离差,按正态和1993抽查部分12岁男童对其发育情况进行评估,其中身高的有关资料如下,试比较这两个年度12岁男童身高均数有无差别。
1973 年:n1=120 =139.9cm s1=7.5cm; 1993 年:n2=153 =143.7cm s2=6.3cm。 H0 :1=2,即该市两个年度12岁男童平均身高相等; H1 :1≠2,即该市两个年度12岁男童平均身高不等。 双侧 =0.05。
-t
t
0
-2.064
2.064
0
=24
0.025
0.025
t0.05,24=2.064 P =P ( |t| ≥2.064 )=0.05
P=P(|t|≥5.4545)<0.05
结论(根据小概率原理作出推断)
在H0成立的前提下出现现有差别或更大差别的可能性P(| t | ≥5.4545)小于0.05,是小概率事件,即现有样本信息不支持H0。 抉择的标准为: 当P≤ 时,拒绝H0,接受H1 当P> 时,不拒绝H0 本例P<0.05,按 =0.05的水准,拒绝H0,接受H1,差别有统计学意义。认为该病女性患者的Hb含量高于正常女性的Hb含量。
根据抽样误差理论,在H0假设前提下,统计量t服从自由度为n-1的t分布,即t值在0的附近的可能性大,远离0的可能性小,离0越远可能性越小。 t值越小,越利于H0假设 t值越大,越不利于H0假设

假设检验完整版PPT课件

假设检验完整版PPT课件
H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0

1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体

4. 假设检验和t检验

4. 假设检验和t检验
0g/L
假设检验的基本思想—利用小概率反证法的思想
利用小概率反证法思想,从问题的对立面(H0)出 发间接判断要解决的问题(H1)是否成立。然后在
H0成立的条件下计算检验统计量,最后获得P值来判 断。当P小于或等于预先规定的概率值α,就是小概
率事件。根据小概率事件的原理:小概率事件在一次 抽样中发生的可能性很小,如果他发生了,则有理由 怀疑原假设H0,认为其对立面H1成立
案例10-13
0 136.0g / L, n 25, X 121g / L, S 48.8g / L;
造成 X 0 的可能原因有二:
① 抽样误差造成的; ② 本质差异造成的。
假设检验目的——判断差别是由哪种原因造成的。
一种假设H0
炊事员血红蛋白总体均数
136.0g/L
抽样误差
X 121g/L
( 二)单样本 z 检验
样本来自正态分布的总体
样本含量较大( 100)或总体标准差已知
我们可以近似用z检验
公式如下:
z x u0 x u0 (n 100) sx s / n
z
x u0
x
x u0
0 / n
( 0已知时)
案例
大规模调查表明,健康成年男子血红蛋白的均 数为136.0g/L,今随机调查某单位食堂成年男 性炊事员100名,测得其血红蛋白均数121g/L, 标准差48.8g/L。
似用z检验。当样本含量较大时,t检验与z检验可 以等同使用。
一、样本均数与总体均数比较 ➢ 单样本t检验 ➢ 单样本z检验
二、配对t检验 三、完全随机设计两均数比较
➢ 两独立样本t检验 ➢ 两样本z检验
一、样本均数与总体均数比较
样本均数 X (代表未知总体均数)与已知 总体均数0(一般为理论值、标准值或经过大量

t检验 假设检验

t检验 假设检验
假设检验有三个基本步骤:
① 建立假设和确定检验水准,通常选
② 选择检验方法和计算检验统计量
③ 确定P 值和做出统计推断结论
所有的假设检验都按照这三个步骤进行,各种检验 方法的差别在于第②步计算的检验统计量不同。
练习
根据大量调查,已知健康成年男子脉搏 的均数为72次/分钟。某医生在一山区随 机调查了25名健康成年男子,求得其脉 搏均数为74.2次/分钟,标准差为6.0次/分 钟,能否据此认为该山区成年男子的脉 搏数高于一般?
n 1 25 1 24
(3) 确定p值,判断结果
以 24, t 1.833 查 t 界值表
0.025<P<0.05 按α=0.05水准,拒绝H0,接受H1,差异有
统计学意义。可认为该山区健康成年男子脉 搏数高于一般成年男子脉搏数。
第二节 配对样本均数t检验
• 配对样本均数t检验简称配对t检验(paired t test), 又称非独立两样本均数t检验,适用于配对设计计
量资料均数的比较,其比较目的是检验两相关样本 均数所代表的未知总体均数是否有差别。 • 配对设计(paired design)是将受试对象按某些重 要特征相近的原则配成对子,每对中的两个个体 随机地给予两种处理。
配对设计概述
• 应用配对设计可以减少实验的误差和控制非处理因素,提 高统计处理的效率。
单个样本t检验
• 又称单样本均数t检验(one sample t test),适用 于样本均数与已知总体均数μ0的比较,其比较目的 是检验样本均数所代表的总体均数μ是否与已知总 体均数μ0有差别。
• 已知总体均数μ0一般为标准值、理论值或经大量
观察得到的较稳定的指标值。
• 单样t检验的应用条件是总体标准未知的小样本 资料( 如n<50),且服从正态分布。

假设检验 PPT课件

假设检验 PPT课件

一、假设检验的概念 (Hypothesis test)
概念:假设检验是先对总体做出某种假定 (检验假设),然后根据样本信息来推 断其是否成立的一类统计方法的总称。 即我们要通过假设检验来判断样本与总 体、样本与样本之间的差异是由抽样误 差引起的,还是有本质的区别。
二、假设检验的基本思想
小概率思想
假设检验
Hypothesis Test


假设检验的概念与原理 假设检验的基本步骤 t检验 u检验或称Z检验 应用假设检验的注意事项
根据大量调查,一般健康成年男子的平均血红蛋 白含量为140.00g/L,现某医生在山区随机测定 了25名健康成年男子,其血红蛋白均数为 153.64g/L,标准差为24.82g/L,故认为该山区 成年男子的血红蛋白均数高于一般健康成年男子 血红蛋白均数。
0.005 0.01 63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 2.831 2.819 2.807 2.797 2.787
0.0025 0.001 0.005 0.002 127.321 318.309 14.089 22.327 7.453 10.215 5.598 7.173 4.773 5.893 4.317 4.029 3.833 3.690 3.581 3.135 3.119 3.104 3.091 3.078 5.208 4.785 4.501 4.297 4.144 3.527 3.505 3.485 3.467 3.450
H0时的最大允许误差。医学研究中一般 取=0.05 。 检验水准实际上确定了小概率事件的判 断标准。
单双侧的选择
已知条件 A和B 不知谁好谁坏 A不会比B差 A不会比B好 H0 A=B A=B A=B H1 A≠B A>B A<B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最后重复例3的操作
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、有时候,我们活得累,并非生活过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。 2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。 3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。 4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。 5、世上最美好的事是:我已经长大,父母还未老;我有能力报答,父母仍然健康。 6、没什么可怕的,大家都一样,在试探中不断前行。 7、时间就像一张网,你撒在哪里,你的收获就在哪里。纽扣第一颗就扣错了,可你扣到最后一颗才发现。有些事一开始就是错的,可只有到最后才不得不承认。 8、世上的事,只要肯用心去学,没有一件是太晚的。要始终保持敬畏之心,对阳光,对美,对痛楚。 9、别再去抱怨身边人善变,多懂一些道理,明白一些事理,毕竟每个人都是越活越现实。 10、山有封顶,还有彼岸,慢慢长途,终有回转,余味苦涩,终有回甘。 11、人生就像是一个马尔可夫链,你的未来取决于你当下正在做的事,而无关于过去做完的事。 12、女人,要么有美貌,要么有智慧,如果两者你都不占绝对优势,那你就选择善良。 13、时间,抓住了就是黄金,虚度了就是流水。理想,努力了才叫梦想,放弃了那只是妄想。努力,虽然未必会收获,但放弃,就一定一无所获。 14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。 1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。 2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。 3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力! 4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落,花谢花开,岂不自在,哪里来的尘埃! 5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。 6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。 7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。 8、有些事,不可避免地发生,阴晴圆缺皆有规律,我们只能坦然地接受;有些事,只要你愿意努力,矢志不渝地付出,就能慢慢改变它的轨迹。 9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。 10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。 11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。 12、有些压力总是得自己扛过去,说出来就成了充满负能量的抱怨。寻求安慰也无济于事,还徒增了别人的烦恼。 13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。 14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。 15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋! 16、人生在世:可以缺钱,但不能缺德;可以失言,但不能失信;可以倒下,但不能跪下;可以求名,但不能盗名;可以低落,但不能堕落;可以放松,但不能放纵;可以虚荣,但不能虚
Independent-Samples T Test过程:
Analyze Compare Means
Independent-Samples T Test
Test Variables框:X Grouping Variable 框:g 选中变量g:Define Groups: Group1:键入1 Group2:键入2 Continue OK
One-Sample T Test过程:
Analyze Compare Means
One-Samples T Test Test Variable(s)框:pluse Test Value框:键入72 OK
配对t检验
(paired-samples t test ):
例2:对24名儿童接种卡介苗,按同年龄、同性别 配成12对,每对中的2名儿童分别接种两种 结核菌素,一种为标准品,另一种为新制品 分别注射在儿童的前臂,72h后记录两种结 核菌素的皮肤反应平均直径,问儿童皮肤对 两种不同结核菌素的反应性有无差别?(数 据见教材P92例8.2)
独立样本t检验(independΒιβλιοθήκη nt-samples t test)
例4:为比较两种狂犬疫苗的效果,将120名患者 随机分为两组,分别注射精致苗和PVRV, 测定45天两组的狂犬病毒抗体滴度,结果见 教材P94例8.4,问两种狂犬疫苗的效果有无 差别?
Independent-Samples T Test过程:
t 检验
本次实习目的及要求:
熟悉SPSS进行各类t检验的操作。
掌握t检验结果的分析和解释。
理论课复习
一、假设检验的步骤
建立检验假设,确定检验水准 H 0 :零假设 H 1 :备择假设 :检验水准 2. 选定检验方法,计算检验统计量 3. 确定P值,作出统计推断 P ≤α ,按α水准,拒绝H0 ,接受H1 ,差别有统计学意义(统 计结论) ,可认为……不同或不等(专业结论) 。 P >α ,按α水准,不拒绝H0 ,差别无统计学意义,尚不能认 为……不同或不等。 注意:统计结论只说明有统计学意义或无统计学意义,而不 能说明专业上的差异大小。应注意统计学意义与专业 意义的区别。

先求血清滴度的对数值:
Transform Comput variable Target Variable框:lgx Numberic Expression框:lg10(x)

再用频数对记录赋以权重:
Data Weight cases 选择 Weight cases by 将变量f选入Frequency框中


独立样本t检验 (independent-samples t test): 两组独立样本均数的比较
单样本t检验( one-sample t test ):
例1:根据调查,某地成年男子脉搏均数为72次/ 分,现在在该地邻近的山区随机调查了20名 健康成年男子,测得其脉搏值(次/分)如 下,请据此推断山区成年男子的脉搏是否与 该地成年男子有所不同? 测量值: 75 74 72 74 79 78 76 69 77 76 70 73 76 71 78 77 76 74 79 77
1.
理论课复习
二、t分布(t检验的理论基础)
X X t SX S/ n
n1
几种常用的t检验:

单样本t检验(one-sample t test): 进行样本均数与已知总体均数的比较 配对t检验 (paired-samples t test): 配对设计差值均数与总体均数0比较的t检 验
方法一:Paired-Samples T Test过程
Analyze Compare Means
Paired-Samples T Test Paired Variables框:x 、y OK
方法二:
先求两变量差值: Transform Comput variable

Target Variable框:d Numberic Expression框:x-y 再依次选择: Analyze Compare means

One-Sample T test
独立样本t检验(independent-samples t test)
例3:某克山病区测得11例克山病患者与13名健康人的血 磷值(mmol/L)如下,问该地急性克山病患者与健康 人的血磷值是否不同? 患者: 0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11 健康人: 0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
相关文档
最新文档