第10节 抽样估计与样本量确定
临床医学研究对象样本量的估计
临床医学研究对象样本量的估计临床医学研究对象样本量的估计宁夏医学杂志副主编蒋兴国临床医学研究没有绝对的样本量标准,不同的研究⽅法、研究⽬的,研究要求和研究资料决定了样本量。
⼀般⽽⾔,样本越⼩,结果的估计越精确。
但样本过⼤或过⼩均可影响研究的可⾏性。
因此,科学地确定样本量可增加研究的可靠性,得到可信的研究结果。
1.估计样本量的决定因素[1]1.1 资料性质计量资料如果设计均衡,误差控制得好,样本可以⼩于30例; 计数资料即使误差控制严格,设计均衡, 样本需要⼤⼀些,需要30-100例。
1.2 研究事件的发⽣率研究事件预期结局出现的结局(疾病或死亡),疾病发⽣率越⾼,所需的样本量越⼩,反之就要越⼤。
1.3 研究因素的有效率有效率越⾼,即实验组和对照组⽐较数值差异越⼤,样本量就可以越⼩,⼩样本就可以达到统计学的显著性,反之就要越⼤。
1.4 显著性⽔平即假设检验第⼀类(α)错误出现的概率。
为假阳性错误出现的概率。
α越⼩,所需的样本量越⼤,反之就要越⼩。
α⽔平由研究者具情决定,通常α取0.05或0.01。
1.5 检验效能检验效能⼜称把握度,为1-β,即假设检验第⼆类错误出现的概率,为假阴性错误出现的概率。
即在特定的α⽔准下,若总体参数之间确实存在着差别,此时该次实验能发现此差别的概率。
检验效能即避免假阴性的能⼒,β越⼩,检验效能越⾼,所需的样本量越⼤,反之就要越⼩。
β⽔平由研究者具情决定,通常取β为0.2,0.1或0.05。
即1-β=0.8,0.1或0.95,也就是说把握度为80%,90%或95%。
1.6 容许的误差(δ)如果调查均数时,则先确定样本的均数( )和总体均数(m)之间最⼤的误差为多少。
容许误差越⼩,需要样本量越⼤。
⼀般取总体均数(1-α)可信限的⼀半。
1.7 总体标准差(s)⼀般因未知⽽⽤样本标准差s代替。
1.8 双侧检验与单侧检验采⽤统计学检验时,当研究结果⾼于和低于效应指标的界限均有意义时,应该选择双侧检验,所需样本量就⼤; 当研究结果仅⾼于或低于效应指标的界限有意义时,应该选择单侧检验,所需样本量就⼩。
抽样技术课件 (抽样技术与方法)
第三章 分层抽样(Stratified Sampling)
一. 基本问题
什么是分层随机抽样 ? N N1 N2 NL
n n1 n2 nl
作用:可以对各层的参数进行估计,有助于提高估计精度。
应用条件:各层差异较大, 有进行分层的辅助信息。
分层原则 • 层内方差尽可能小 • 层间方差尽可能大
n 1200
第一种 第二种 第三种 第四种
有几种分配方案
n1 100, n2 1100 n1 240, n2 960 n1 400, n2 800
简单随机抽样
四种抽样方案各自方差:
分层抽样: V ( yst ) Wi2Si2 ni
简单抽样: V ( y) S 2 n
省略 (1 f )
总体方差: S (Y Y )2
N 1
样本方差: s ( y y)2
n 1
抽样方差(估计量方差) V ( y) (1 f ) S 2 n
抽样方差估计 v( y) (1 f ) s2 n
七、精度与费用
100%
精 95% .………….. 度
…….
60%
20%
40%
费用
第二章 简单随机抽样
S2 Var( y) (1 f )
n
f n (Sampling fraction 抽样比)
N
(1-f):finite population corrections——fpc
有限总体校正系数
Total
Yˆ Ny Var(Yˆ) Var(Ny) N 2Var( y)
proportion
1 Yi 0
L
七. 事后分层 什么是事后分层
抽取 n ,调查后得到 ni 和 yi, 又已知 Wi
样本容量的确定
都在此范围内 而通过简单随机样本对总体做的估计为实际总体平均值 2 倍标准误差范围 内的概率为 95 在实际总体平均值 3 倍标准误 差范围内的概率为 99.7 5.5.3 点估计和区间估计
当利用抽样要对总体平均值进行估计时 有两种估计方法 点估计和区间估计 点估计 是指把样本平均值作为总体平均数的估计值 观察图 5.3 的平均数抽样分布可知某一特定的 抽样结果 其平均数很可能相对更接近总体平均数 但是 样本平均数分布中的任一个值都 可能是这一特定样本的平均值 有一小部分的样本平均值与实际总体平均值有相当的差距 这种差距就叫抽样误差
在任何确定样本容量的问题中 都必须认真考虑所要分析并要据此做统计推断的总体样 本的各个子群的数目的预期容量 例如 从整体上看样本容量为 400 很符合要求 但若要分 别分析男性和女性被调查者 并且要求男性与女性的样本各占一半 那么每个子群的容量仅
1
广州方舟市场研究有限公司
统计学基础知识
为 200 这个数字是否符合要求 能使分析人员对两组的特征做出预期的统计推断呢 再如 要按年龄和性别分析调研结果 问题就变得更复杂了 假设要按以下方式将总体样本划分为 四组
5
广州方舟市场研究有限公司
统计学基础知识
5.5.2 根据单个样本做出推断 在实际操作中 人们往往不愿从总体中抽出所有可能的随机样本 画出像表 5.3 和图 5.4
那样的频率分布表和直方图来 人们希望进行简单的随机抽样 并据此对总体进行统计推断 问题出现了 通过任一简单的随机样本对总体均数进行的估计 其估计值在总体平均值 1 个标准误差内的概率究竟为多大 根据表 5.2 可知概率为 68 因为所有样本平均数有 68
3.3-2-3.4样本量的确定
wh
Wh S h
ch
h
W S
h 1 h
L
ch
n
ch )( Wh S h /
h 1
ch ) (4)
V ( yst )
W
h 1
L
h
Sh 2
N
二、不同应用场合下的公式
(3)当按奈曼分配时,
n ( Wh S h )
h 1 L 2
wh
Wh S h
W S
h 1 h
L
Wh S h 2 N
h 1
(1)
若估计精度以误差限形式给出,则
n (
W
h 1
L
2
h Sh
2
wh
d 2 ) t
Wh Sh 2 N
h 1
L
W 2 h S h 2 wh
h 1
L
rYst 2 ( ) t
Wh S h 2 N
h 1
L
(2)
其中d为绝对误差限,r为相对误差限,t为标准正态分布的双侧
分位数。
二、不同应用场合下的公式
(1)当按比例分配时,wh=Wh,
n
W
h 1
L
h
Sh 2
h
V ( y st )
L
W
h 1
L
Sh 2
N
n0 1 n0 / N
(3)
其中n0
Wh S h 2
h 1
V ( y st )
(2)当按最优分配时,
( Wh S h
h 1 L L
没有考虑ch的差异对总费用的影响
一 样本量分配对精度与费用的影响
抽样调查期中习题(答案)重点讲义资料
《抽样调查 》期中习题一、 选择题1. ( B ) 是总体里最小的、不可再分的单元。
A.抽样单元B.基本单元C.初级单元D.次级单元 2. 抽样调查的根本功能是( C )A. 获取样本资料B. 计算样本资料C . 推断总体数量特征 D. 节约费用3. 概率抽样与非概率抽样的根本区别是( B )A.是否能保证总体中每个单位都有完全相同的概率被抽中B.是否能保证总体中每个单位都有事先已知或可以计算的非零概率被抽中C.是否能减少调查误差D.是否能计算和控制抽样误差4. 与简单随机抽样进行比较,样本设计效果系数Deff >1表明( A ) A.所考虑的抽样设计比简单随机抽样效率低 B.所考虑的抽样设计比简单随机抽样效率高 C.所考虑的抽样设计与简单随机抽样效率相同 D.以上皆错。
5. 优良估计量的标准是( B )A.无偏性、充分性和一致性B.无偏性、一致性和有效性C. 无误差性、一致性和有效性D. 无误差性、无偏性和有效性6.抽样标准误差的大小与下列哪个因素无关( C ) A .样本容量 B .抽样方式、方法 C .概率保证程度 D .估计量7. 抽样标准误差与抽样极限误差之间的关系是( B ) A.θθ)ˆ(SE =∆ B.)ˆ(θtSE =∆ C.θθ)ˆ(tSE =∆ D.tSE )ˆ(θ=∆8. 应用比率估计量能使估计精度有较大改进的前提条件是调查变量与辅助变量之间大致成( A )关系A.正比例B.反比例C.负相关D.以上皆是9. 能使)2(1)(222YX X Y lr S S S nf y V ββ-+-=达到极小值的β值为( B ) A.YX X Y S S S ⋅ B.2X YX S S C.2YYX S S D.X YX S S 210. 某县欲估计今年的小麦总产量,已知去年的总产量为12820吨,全县共123个村,抽取13个村调查今年的产量,得到63.118=y 吨,这些村去年的产量平均为21.104=x 吨。
抽样知识点
1. 抽样调查广义的抽样调查:是从研究对象的全体(总体) 中抽取一部分单位作为样本,根据对所抽取的样本进行调查,获得有关总体目标量的了解。
从总体中抽取样本的方法看,抽取方法可以分为两类:一类是非随机抽样(非概率抽样);一类是随机抽样(概率抽样),狭义上的抽样就是随机抽样。
2. 随机抽样(概率抽样)随机抽样是从总体中按随机原则抽取样本,并依据样本观察值对总体的数量特征取得具有一定可靠性的推断,从而达到对总体的认识。
随机抽样的特点:1.所谓随机原则就是在抽取样本时排除主观上有意识地抽取调查单元,使每个单元都以一个事先已知的非零概率有机会被抽中。
2.每个单元被抽中的概率是已知的,或是可以计算出来的,按照给定的入样概率通过一定的随机化程序进行抽样。
3.估计量不仅与样本单元的观测值有关,也与其入样概率有关。
随机抽样的主要优点是:随机抽样比非随机抽样更具有客观性,而且随机抽样可以依据调查结果计算抽样误差,从而得到对总体目标量进行推断的可靠程度。
3. 非随机抽样(非概率抽样)非随机抽样是相对于随机抽样而言的。
非随机抽样的共同特点是:抽取样本时,是依据主观判断有目的、有意识地进行,或根据方便的原则进行。
⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧滚雪球抽样判断抽样定额抽样便利抽样)随意调查非随机调查系统抽样不等概率抽样多阶抽样整群抽样分层抽样简单随机抽样随机调查非全面调查全面调查统计调查(4. 抽样调查的基本程序 一、确定调研问题——二、抽样调查设计(抽样设计、问卷设计)——三、实施调查过程——四、数据处理分析——五、撰写调查报告——六、总结评估5. 总体、目标总体与抽样总体、抽样框、样本(包含第十章抽样框误差定义)所要研究对象的全体称为总体,组成这个总体的每个个别对象就称为总体单元或总体单位。
总体又有目标总体与抽样总体之分。
目标总体就是抽样调查预先确定的所要认识的对象的全体,也就是从样本中得到信息对之进行说明的总体。
第十章 审计抽样201201
第十章审计抽样201202审计抽样方法的运用是审计工作理论和实践的重大突破。
在有限的审计资源条件下,极大地提高了审计工作的效率,降低了审计费用,收集到充分适当的审计证据。
审计抽样的方法由最初的判断抽样发展到统计抽样,而统计抽样比起判断抽样,一定程度上又大大提高了审计结论的可靠性,控制和降低了抽样风险。
一、审计抽样的概念审计抽样是指注册会计师对具有审计相关性的总体中低于百分之百的项目实施审计程序,使所有抽样单元都有被选取的机会,为注册会计师针对整个总体得出结论提供合理基础。
审计抽样的基本目标是在有限的审计资源条件下,收集充分适当的审计证据,以形成和支持审计结论。
审计抽样的应用,极大地提高了审计工作的效率,降低了审计费用。
审计抽样不同于详细审计。
详细审计是指对审计对象总体中的全部项目进行审计,并根据审计结果形成审计意见。
那种从审计对象总体中选取部分项目进行审计,并对所选项目本身发表审计意见的方法也不属于审计抽样。
审计抽样应当具备三个基本特征:(1)对某类交易或账户余额中低于百分之百的项目实施审计程序;(2)所有抽样单元都有被选取的机会;(3)审计测试的目的是为了评价该账户余额或交易类型的某一特征。
审计人员拟实施的审计程序将对运用审计抽样产生重要影响。
有些审计程序可以使用审计抽样,有些审计程序则不宜使用审计抽样。
现详细说明:(一)风险评估程序审计人员应当实施下列风险评估程序以了解被审计单位及其环境:①询问被审计单位管理层和内部其他相关人员;②分析程序;③观察和检查。
审计人员在实施上述风险评估程序时通常不涉及审计抽样。
原因是:一方面,审计人员实施风险评估程序的目的是了解被审计单位及其环境,识别和评估重大错报风险,而不需要对总体取得结论性证据;另一方面,风险评估程序实施的范围较为广泛,且所获取的信息具有较强的主观色彩,因此通常不涉及使用审计抽样方法。
但是,如果审计人员在了解控制的设计和确定其是否得到执行时,一并计划和实施控制测试,则会涉及审计抽样方法,但此时审计抽样仅适用于控制测试。
抽样样本量的确定
SSI
精品
第33页
7.回答率
所有的调查都会遇到无回答的困扰即: 由于某些原因,不能获得被抽中样本单位的信息
当一个被调查单位的所有或几乎所有的数据都缺 失时,我们就称之为完全无回答(或称单位无回答)
培训访员,等等),这样做可能更有效率
SSI
精品
第21页
4.总体的变异程度
调查总体中,我们所研究的项目或指标,对于不 同的个人、住户或企业,得到的估计结果可能会有很 大的不同。虽然我们不能控制这种变异性,但它的大 小却影响到了给定精度水平下,研究项目所必需的样 本容量。
SSI
精品
第22页
我们来看假设有一个首次开展的调查,试图估 计对某企业提供的服务持满意态度的顾客比例。对 “顾客满意”这一指标,设置两个可能的值:满意 或者不满意。
❖ 整群抽样得到的估计值,其精度通常低于使用同一估 计量进行估计时的简单随机抽样的估计值的精度
SSI
精品
第32页
设计效果因子
一般来说,当样本容量的计算公式假定为简单随机抽样SRS, 但使用的是更复杂的选样方式时,达到既定精度所需的样本容量应
该乘以设计效果因子。
设计效果=对于同样规模的样本容量,给定样本设计下 估计量的抽样方差对简单随机抽样估计量的 抽样方差的比率。
其中,总体方差S2是最不容易得到的,通常需要根 据过去对类似总体所做的研究作近似计算。
SSI
精品
第39页
求比例样本容量的确定
下面用一个例子,说明估计比例问题时样本容量的确定过程。
在这一例子中,所需的精度是根据误差界限确定的,所研究的指标 取两个值,即P和1-P。 在这种情况下,对于大总体,且估计量服从正态分布时, P的总体方差为:
满意度调查中样本数量的确定
满意度调查中样本数量的确定满意度调囊满意度调查中样本数量的确定中国人民大学六西格玛质量管理研究中心王作成高玉兰满意度调查中,使用范围很厂的是抽样调查万法.在实际的操作中,抽样调查又被划分为概率抽样和非概率抽样.概率抽样也称随机抽样,包括简单随机抽样,分层随机抽样,整群抽样,系统抽样,多阶段抽样等.它具有以下几个特点:每位顾客被抽中的概率是已知的.或是可以计算出来的:按一定的概率以随机原则抽取样本;当用样本对总体顾客满意度进行评估时,要考虑到该样本(或样本中的每位顾客)被抽中的概率.非概率抽样包括判断抽样,方便抽样和定额抽样等.这类抽样的共同点是抽取样本不是按照随机原则.而是根据主观判断,方便的原则.非概率抽样常常并不能代表顾客满意的整体情况,也无法运用适当的统计万法为调查结果提供适当的精确程度.但不同的非概率抽样万法都有各自的特点,如便于组织,节省费用,迅速快捷等.在顾客满意度调查中,非概率抽样方法也是不可缺少的.特别是在探索性研究中应用较多.在满意度抽样调查中.一个需要考虑的问题是样本量如何确定,这是满意度调查的基础.样本量是否合适,直接影响调查结果,同时也涉及调查成本,间接影响着调查质量.一,影响样本数量的主要因素确定调查所需样本量既有抽样调查的统计学原理做后盾,也要综合考虑要做的满意度调查项目的实际情况.影响满意度调查样本量的因素首先是调查估计值要求达到的精度.对精度影响的因素包括:总体指标的变异程度,总体大小,样本设计和所使用的估计量,回答率.除了估计值的精度以外,实际调查运作的限制也是影响样本量的主要因素.样本量的确定包括对估计值的精度4a2005一市场研究.满意度调查要求与各种运作限制之间的平衡,这些运作限制包括可明.虽然各种抽样方法关于样本量的计算并不相同,但获得的预算,资源和时间.从满意度调查实际操作的角归纳起来,他们都包含了下面五个方面的因素:顾客群度看.影响样本量的因素具体可以归结为以下方面:体满意度的变化程度,即变异程度;要求和允许的满意预期统计精度要求.可以按统计意义对样本量进行度误差大小,即精度要求;要求推断的置信度,一般情定量的计算.在统计学上有一套严格的测量办法.这也况下,置信度取为95%;顾客总体的大小;满意度调查是样本量确定的科学基础.采用的抽样方法.测评目标的多少.测评目标越多,所需调查的顾客在简单随机抽样的样本量基础上判断.由于复杂的也越多.实际的满意度调查通常都不是单一目标的.抽样对应的计算公式也很复杂,往往是非专业人员望而问题的重要性.相对重要的问题,对决策影响也大,生畏,这种方法提供的是先根据简单随机抽样计算样本为保证对问题的客观而全面了解,一般要增加调查顾客量,然后利用设计效应来调整.设计效应是抽样调查理数目.论中一个很重要的概念,它是对于相等的样本量,给定调查表的回复率.在确定样本顾客量时,顾客回复样本设计估计量的抽样方差对简单随机抽样估计量的抽率是应考虑的一大因素.由于永远不可能从试图访问的顾样方差的比率.一般来说.当样本量采用简单随机抽样客中得到1.0{i;的合作,就需要调查更多的顾客,从超样的计算公式,而实际使用的是更复杂的抽样方式时.为本范围的顾客中补偿可能的不足.此时,决定调查的顾客达到给定精度所需的样本量,可以在根据简单随机抽样数=要求的样本量/预期的回复率.不同的调查方式,回复计算的样本量的基础上乘以设计效应.得到目前这种抽率是不同的.其他应考虑的因素还有产品或服务种类,样方式所需的样本量.设计效应的取值范围是:对于简是否采取提供赠品等激励方式,问卷内容,调查地点,单随机抽样设计,设计效应等于1;对于分层抽样设计,问卷等.采取适当的访问技巧,可以提高顾客回复率.设计效应一般小于等于1;对于整群或多阶段抽样设计,调查员的判断和以往经验.抽样调查一个重要的基设计效应一般大于等于1.础是对总体信息了解得多少,因此一个有经验的调查员如果过去相同或相似主题的调查所用的抽样设计与可以起到减少样本量的作用,当然前提是他的经验是可我们计划实施的抽样设计相同或相似,就可以利用过去信的.的数据得到当前调查主要变量设计效应的估计值.如果资源限制.调查顾客的多少受到财力,人力,物力过去没有做过相关主题的满意度调查,也可以利用试调的制约.在定量分析中,主要考虑费用函数.一般情况查的数据得到设计效应的估计值.下,调查单位顾客所需费用是相当的,所以调查的顾客数量越多,所需的费用也越高.三,给定精度水平样本量的判断最终样本量的确定需要在精度,费用,时限和操作的可行性等相互冲突的限制条件之间进行协调.它还可由于样本量是每次抽样都必须面对的问题.为了减能需要重新审查初始样本量,数据需求,精度水平,调少计算的麻烦,在不太影响精度的情况下,有人计算了查计划的要素和现场操作因素,并作必要的调整.可供不想把时间过多地花在抽样调查原理上的管理人员参考的数据.二,样本量的统计测量由于一个在统计上有效的样本量是由允许误差和置信水平决定的,不同的抽样调查方式,在允许误差和置使用统计学的方法确定适当的样本顾客人数,将所信水平相同的情况下,所需的样本量是接近的,因此,考虑的因素定量化,且能估计样本误差,从而使该方法可以根据这两个参数给出所需的样本量.下表是由美国更具说服力.市场研究专家A1anDutka给出的数据,他给出了一组直接根据抽样调查样本量计算公式计算.不同的抽满足各种置信水平和误差组合所需的样本量,可以看出.样方法,关于样本量的确定公式也不同,在一般抽样调在一个给定的置信水平上,样本量随着允许误差的增加查的教科书上都会给出各种抽样调查方式样本量的计算而减少,对一个给定的允许误差,样本量随置信水平的公式,对确定样本顾客数目的因素从定量的角度加以说增加而增加.@市场研究一2005~4满意Ii调I\置信\\冰平50茗75茗80茗85%90茗95茗99茗99.9茗允许误\1%11403307409651846766960416590197412%2858271024129616922401414849363%1273584565767521068184421944%72207256324423601103712345%461331642082713856647907-5%2159739312117129635110%12344152689716619815%61519243143748820%391113172542505O%2223347这里允许误差是指估计值的波动范围,置信水平反映的是估计范围的可靠性.对于不同的满意度调查项目来讲,对允许误差和置信水平的要求是不同的.值得注意的是,允许误差和置信水平是对整个样本而言,子级样本不会达到同样的水平;也就是说,上表中提供的样本的数量,是对一个不需要细分的顾客总体而言的,如果需要细分顾客,就需要对每一个细分总体分别计算.再者,样本量的计算是以一个反映估计比率的一般问题为基础的,当调研问题还涉及到比率估计值以外的因素时,这些只是粗略估计.四,更一般的经验数据在样本量确定过程中,总体所起的作用因它的大小而有所差异.在其他条件一定的情况下,即误差,置信度一定,样本量随总体的大小而变化.但是,总体越大. 其变化越不明显;总体较小时,变化明显.即对于小规模总体,总体的大小对样本量起着重要作用;对于中等规模的总体,其作用中等;而大总体对样本量影响的作用很小.二者之间的变化并非是线性关系.所以,样本量并不是越大越好.对于满意度调查而言,通常顾客总体都很大,这时,可以认为调查样本量的多少和顾客的总数已经没有必然的联系了,或者说其联系可以忽略了. 从统计学的中心极限定理知道,不管总体呈现什么分布,只要样本量超过30个顾客,样本均值将服从正态分布.一般情况下,50个顾客可以作为单一目标满意度调查的最少顾客数,为安全起见,100个顾客最好.也正是因为这个原因,样本大小的决定因素,起关键作用的并不是公司顾客的多少,而是样本的实际大小.这就意味着,同一项调查,一个拥有28000个客户的公司调查所需样本量不一定比一个拥有3000个客户的公司所需样本量多.大多数顾客满意度单一目标调查的样本在l00--200人这个范围之内.当然,样本人数越多,抽样推断的结果就越精确,但成本也就越大,一般认为,精确度提高两倍,样本量就需要扩大四倍.但如果考虑到调查过程中的非抽样误差,就会看到,过多的样本量有时是一件事倍不会功倍甚至是事倍功半的事,对一小部分精挑细选的顾客样本进行细致的调查好过散发成千上万的问卷以期收回足够的样本的做法.这一推荐的经验数据在需要对细分市场也给出满意度时需要重新计算,比如,在一项汽车市场的满意度调查中,你如果需要分别计算5个销售区域的满意度,对每个区域你就要抽50一l00个顾客.这样样本的总量也就要相应地扩大五倍.4~2005-市场研究0。
抽样估计
人生得意须尽欢,莫使金樽空对月。0 1:45:29 01:45:2 901:45 11/17/2 020 1:45:29 AM
做一枚螺丝钉,那里需要那里上。20. 11.1701 :45:290 1:45No v-2017 -Nov-2 0
日复一日的努力只为成就美好的明天 。01:45:2901:4 5:2901:45Tues day , November 17, 2020
2
x ( R r ),
x r R 1
2
P(Rr) P r R 1
2
2 x
(xi x)
R
,
2 P
(
pi
R
p)2
注:整群抽样是对中选 群进行全面调查,所以 只存在群间抽样误差不 存在群内抽样误差
抽样方案的检查:
主要有(1)准确性检查(以方案所要求的 允许误差范围为标准)
(2)代表性检查(方案中的样本指
二、抽样推断的内容
(一)参数估计。特点是不知道总体的数 量特征,依据所获得的样本观察资料,对所研究 现象总体的水平、规模等数量特征进行估计
(二)假设检验。特点是对总体的变化情 况不了解,不妨对总体的状况作某种假设,然后 再根据抽样推断的原理,根据样本观察资料对所 作假设进行检验,来判断着种假设的 真伪,以决 定行动的取舍。
l估计值
x x
l估计值的误差范围
t
x
x
注意:t=1 F(t)-68.27%
t=2 F(t)=95.45% t=3 F(t)=99.73% 需要熟记
区间估计:
x x X x x
p p P p p
区间估计的步骤:
(x
t ) X
(p
t ) p
样本容量估计
样本容量估计在统计学中,样本容量估计是研究中至关重要的一个环节。
在进行数据分析或实验设计时,确定适当的样本容量可以确保研究结果的可靠性和准确性。
本文将从什么是样本容量、样本容量估计的重要性、常用的样本容量估计方法,以及如何进行样本容量估计等方面展开讨论。
什么是样本容量?首先,我们先来了解一下什么是样本容量。
样本容量是指从总体中抽取的样本的大小,即研究中实际观测到的样本数量。
在统计学中,样本容量通常用字母n表示,其大小直接影响到研究结果的可靠性和精确度。
样本容量估计的重要性样本容量估计是统计研究中非常重要的一环,它直接影响到研究结论的可靠性和泛化能力。
一个过小的样本容量可能导致结果不具备统计学意义,无法支持假设的推断;而一个过大的样本容量则可能浪费资源和时间。
因此,合理地估计样本容量对于研究的设计和结果的解释至关重要。
常用的样本容量估计方法在实际研究中,常用的样本容量估计方法包括基于效应大小的样本容量估计、基于置信区间的样本容量估计和基于统计检验的样本容量估计。
基于效应大小的样本容量估计是根据研究中预期效应的大小来确定样本容量的方法;基于置信区间的样本容量估计是根据期望的置信水平和置信区间的宽度来确定样本容量的方法;基于统计检验的样本容量估计是根据研究假设检验的类型和显著性水平来确定样本容量的方法。
如何进行样本容量估计进行样本容量估计时,需要首先确定研究的目的和假设,明确研究中所要得出的结论。
然后,根据具体的研究设计和统计方法,选择合适的样本容量估计方法进行计算。
在计算过程中,需要考虑到实际问题中的不确定性因素,如总体方差、预期效应大小等。
最后,根据计算结果确定最终的样本容量,并制定合理的抽样方案进行研究数据的采集和分析。
结语综上所述,样本容量估计在统计研究中扮演着至关重要的角色,它直接影响到研究结果的可靠性和准确性。
合理地估计样本容量不仅可以提高研究的科学性,还可以减少资源的浪费和时间的消耗。
因此,研究者在进行实验设计和数据分析时务必重视样本容量的估计,确保研究结果的有效性和可信度。
简单随机抽样的抽样估计
间 及 优 质 产 品 的 数 量 ?
15
总体方差的区间估计
大样本情况下,样本标准差S的分布近似于正 态分布:
其均值为总体标准差,其标准差为 ,
2n
所以标准标准差置信度1的置信区间为:
(SZ2
S 2n,SZ2
S) 2n
18
抽样数目的确定 (大样本)
必要的抽样数目:指为了使抽样误差不超过 给定的允许范围至少应抽取的样本单位数 目。 一般根据抽样极限误差与抽样数目关系来 确定必要的抽样数目。
19
采用重复抽样,则抽样极限误差为
x Z 2x Z 2( n)
若规定在一定概率保证程度下允许误差为 , x
则由 x
Z
2x
Z
651(件)
不重复抽样:
n
Z2 2 P(1 P)N
2 p
N
Z2
2 P (1
P)
32 0.93 0.07 5000 0.032 5000 32 0.93 0.07
576(件)
25
确定抽样单位数目应注意的问题
1. 以上四个计算公式只适用于简单随机抽样。 2. 在同样条件下,不重复抽样比重复抽样要求 的抽样单位数目少。 3. 同一总体往往同时需要计算抽样平均数和抽 样成数,由于它们的方差和允许误差要求不同, 因此,对于抽样单位数目多少的要求也不一样, 为了防止抽样单位数目的不足,而扩大抽样误 差,在实际工作中,往往根据抽样单位数目比 较大的一个数目进行抽样,以满足共同要求。
9
设待估计的总体参数为,L,U为样本 确定的两个统计量,对于给定的(0 1),
有:
P(L U ) 1 则称(L,U )为参数的置信度(1)的置信 区间.该区间的两个端点L,U分别称为置 信下限和置信上限,统称为置信限.为显 著性水平,(1)为置信度.
抽样调查习题集答案
抽样调查习题集答案篇一:2015年《统计学》第七章抽样调查习题及满分答案2015年《统计学》第七章抽样调查习题及满分答案一、单选题1. 反映样本指标与总体指标之间抽样误差可能范围的指标是(B)。
A、样本平均误差B、抽样极限误差C、可靠程度D、概率度2.在其它条件不变的情况下,抽样单位数目和抽样误差的关系是( B )。
A.抽样单位数目越大,抽样误差越大B.抽样单位数目越大,抽样误差越小C.抽样单位数目的变化与抽样误差的数值无关D.抽样误差变化程度是抽样单位数变动程度的1/23.事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织形式,被称为(D)。
A、分层抽样B、简单随机抽样C、整群抽样D、等距抽样4.在同样条件下,不重置抽样的抽样平均误差与重置抽样的抽样平均误差相比(A)。
A、前者小于后者B、前者大于后者C、两者相等D、无法判断5.如果总体成数方差未知,计算必要抽样数目时,可用总体方差的最大值,最大值为( B )。
A、0.24B、0.25C、0.50D、1 6.抽样估计的置信度是(C )A.概率度B.区间范围的大小C.概率保证程度或置信概率D.与概率度无关的量7.随机抽样的基本要求是严格遵守(B)A、准确性原则B、随机性原则C、代表性原则D、可靠性原则8.抽样调查的主要目的是(D)A.广泛运用数学方法 B.计算和控制抽样误差 C.修正普查资料D.用样本指标推算总体指标9. 抽样调查中(A )A、既有登记性误差,也有代表性误差B、只有登记性误差,没有代表性误差C、没有登记性误差,只有代表性误差D、既没有登记性误差,也没有代表性误差10.要使抽样误差减少一半(在其它条件不变的情况下),则抽样单位数必须( D )。
A、增加2倍B、增加到2倍C、增加4倍D、增加到4倍11.抽样平均误差反映了样本指标与总体指标之间的(C )A、实际误差B、实际误差的绝对值C、平均误差程度D、可能误差范围12.在实际工作中,不重复抽样的抽样平均误差的计算,采用重复抽样的公式的场合是( A )A、抽样单位数占总体单位数的比重很小时B、抽样单位数占总体单位数的比重很大时C、抽样单位数目很少时D、抽样单位数目很多时13.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将( C )。
样本量的确定范文
样本量的确定范文1.研究目的和研究问题:确定样本量前,首先要明确研究目的和研究问题。
不同的研究目的和问题需要不同样本量的支持。
例如,如果是进行描述性研究,样本量可以较小;如果是进行推断性研究,样本量则需要更大。
2.效应大小:效应大小是指研究中所关注的变量之间的差异或相关性的大小。
一般来说,效应越大,需要的样本量就越小。
3.α水平和β水平:α水平是指犯第一类错误的概率,即在实际上无差异的情况下,错误地拒绝了零假设。
β水平是指犯第二类错误的概率,即在实际上存在差异的情况下,错误地接受了零假设。
一般来说,α水平设定为0.05,β水平设定为0.2、样本量的确定需要考虑α水平和β水平的要求。
4.效应检验的统计方法:样本量的确定还与所采用的统计方法有关。
不同的统计方法要求不同的样本量。
例如,如果采用参数检验方法,需要的样本量一般较多;如果采用非参数检验方法,需要的样本量可以相对较少。
在确定样本量时,通常可以通过统计学中的样本量计算方法来进行估算。
常用的样本量计算方法包括:1.Z检验的样本量计算方法:用于比较两个独立样本的平均值差异。
2.t检验的样本量计算方法:用于比较两个相关样本或配对样本的平均值差异。
3.方差分析的样本量计算方法:用于比较多个样本的平均值差异。
4.相关分析的样本量计算方法:用于评估两个变量之间的相关性。
以上提到的方法都可以在各种统计软件中找到相应的样本量计算工具,根据研究设计和数据分析方法进行计算。
最后,还需要注意的是,样本量的确定是一种平衡考虑。
过小的样本量可能导致统计检验结果不可靠,过大的样本量则会浪费资源和时间。
因此,在确定样本量时,需要综合考虑以上多个因素,并在可行的范围内选择一个合适的样本量。
第10节 抽样估计与样本量确定
步骤1:计算设计权数。
入样概率p为:P=n/N=25/100=1/4
故,每个样本单元的设计权数为4。
步骤2:计算无回答调整因子。
由于在n=25人中只有nr=20人提供了
所需的信息,最终样本量应为20。假定回
答单元不仅能代表回答单元且能代表无回
答单元,计算无回答调整因子为:
n / nr = 25/20 = 1.25
总体大小 N1=1000
样本量 n1=200
回答者数量 nr,1=150
回答者的权数是多少?
农村
N2=100
n2=50
nr,2=40
步骤1:各层的设计权数为: 城市层 wd,1=N1/n1==5 农村层 wd,2=N2/n2==2
步骤2:调整以弥补无回答。各层的无回答调整因子计算如下: 城市层:n1 / nr,1==200/150==1.33 农村层:n2 / nr,2==50/40==1.25
内容。同时,样本量的确定与样本估计值的精 度密不可分。
2
10.2 加权及权数调整
• 设计权数
– 设计权数是指每个样本单元所代表的调查总体的单元 数,它是由抽样设计所决定的,通常以wd表示。确定 设计权数是估计的第一步。
• 加权估计
– 设计权数其实就是样本单元的入样概率的倒数。假如 入样概率是1/10,那么每个入选样本代表总体中的10 个单元,此时设计权数即为10。
步骤3:无回答的调整权数等于设计权数与无回答调整因子的乘积:
城市层:
w nr,1
w d,1
n1 n r,1
51.33
6.67
农村层:
w nr,2
w 2.5
9
使用辅助信息调整权数
2019主管药师 专业知识 生物药剂学与药动学—第十节 药物制剂的生物等效性与生物利用度
生物药剂学与药动学——第十节药物制剂的生物等效性与生物利用度一、基本概念(一)生物利用度生物利用度是指活性物质从药物制剂中释放并被吸收后,在作用部位可利用的速度和程度,通常用血浆浓度-时间曲线来评估。
根据参比标准的不同,生物利用度可分为绝对生物利用度和相对生物利用度。
(1)绝对生物利用度:以同一药物的静脉注射剂为参比制剂,试验制剂与参比制剂的血药浓度-时间曲线下面积之比称为绝对生物利用度。
(2)相对生物利用度:以同一药物的非血管内给药制剂为参比制剂,试验制剂与参比制剂的血药浓度-时间曲线下面积之比称为相对生物利用度。
(二)生物等效性如果含有相同活性物质的两种药品药剂学等效或药剂学可替代,并且它们在相同的摩尔剂量下给药后,生物利用度(速度和程度)落在预定的可接受限度内,则被认为生物等效。
设置这些限度以保证不同制剂中药物的体内行为相当,即两种制剂具有相似的安全性和有效性。
在生物等效性试验中,一般通过比较受试药品和参比药品的相对生物利用度,根据选定的药动学参数和预设的接受限,对两者的生物等效性作出判定。
血浆浓度-时间曲线下面积AUC反映暴露的程度,最大血浆浓度C max以及达到最大血浆浓度的时间t max是受到吸收速度影响的参数。
(三)药学等效性两制剂含等量的相同活性成分,具有相同的剂型,符合同样的或可比较的质量标准,则互为药学等效。
具有药学等效性的药物制剂间互称为药学等效剂。
(四)主要的生物用度参数1.t max即达峰时间,指血管外给药后达到最高血药浓度所对应的时间。
t max可以作为药物吸收速度的近似指标,当药物吸收速度增大时,t max值减小。
2.C max即达峰浓度,系指血管外给药后达到的最高血药浓度。
对于许多药物,其药理作用和血药浓度之间存在一定的关系,C max是药物吸收能否产生疗效的指标,也是评判出现药物中毒的指标。
3.AUC即血药浓度-时间曲线下面积,是药物生物利用度高低的指标,反映活性药物进入体循环的总量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步骤1:计算设计权数。 入样概率p为:P=n/N=25/100=1/4 故,每个样本单元的设计权数为4。
步骤2:计算无回答调整因子。 由于在n=25人中只有nr=20人提供了
所需的信息,最终样本量应为20。假定回 答单元不仅能代表回答单元且能代表无回 答单元,计算无回答调整因子为:
n / nr = 25/20 = 1.25 步骤3:计算无回答的调整权数。
– 不同样本单元的设计权数可能不同,这取决于抽样设 计。因此,加权估计应区分等概率抽样的加权和不等 概率抽样的加权。
3
等概率抽样的加权
• 当每个单元都有相同的入样概率时,所有样 本单元的设计权数都相同,这种抽样就是自 加权设计。
– SRS抽样和SYS抽样都属于自加权设计,比例分层 抽样也是自加权设计。
步骤3:无回答的调整权数等于设计权数与无回答调整因子的乘积:
城市层:
wnr,1 wd,
n1 1nr,
51.336.67
1
农村层:
wnr, 2 wd,2nnr2,221.252.5
9
使用辅助信息调整权数
• 为什么要使用辅助信息来调整权数呢?
– 首先,使调查的估计值与已知总体总值相匹配。例如, 使用最新的人口普查数据来调整估计值,以确保这些 估计值(如年龄、性别分布等)的一致性。
无回答的调整权数wnr等于设计权数与 无回答调整因子的乘积:
wnrwdnnr 41.255
8
对无回答的权数调整(STR)
• [例10.4] 对于一项公共交通
系统调查,总体由1100人组成, 层 并按城乡分为两个层。分层及 样本数据如表10-2所示。那么, 城市
回答者的权数是多少?
农村烟习惯信息时,收集 了每个回答者的年龄和性别情况, 且100人都做出了回答,由此得到
样本数据的分布如表10-3所示:
• 当所采用的抽样设计不是等概率时,正确地使用设计权 数就显得尤为重要。
• [例10.2] 有关各层总体数和样本数资料见表10-1。对 于这项调查,被调查者的设计权数是多少呢?
收入层次 高收入层 中收入层 低收入层
各层单位数 2000 12000 6000
样本数量 33.3 133.3 33.3
设计权数 wd,1=N1/n1=2000/33.3=60.1 wd,2=N2/n2=12000/133.3=90.0 wd,3=N3/n3=6000/33.3=180.2
– 另外, PPS等也可以设计为一个自加权抽样。
• 对于自加权抽样设计,如果无需对权数调整, 则在计算比例、均值等估计量时可将其忽略, 对总值估计也仅需将样本总值乘上某个倍数。 (例P215)
4
不等概率抽样的加权
• 自加权设计并不总是可行的。如,在使用分层抽样进行 一个全国调查时,可能需要采用纽曼分层。
– 设计权数×无回答调整因子=无回答的调整权数
• 无回答调整因子是原样本单元的权数和与给出回答的 单元的权数和的比值。对于自加权设计,该比值可用 原样本的单元数与给出回答的单元数的比值来表示。
• 无回答权数调整应区分两种不同情况:
– 等概率抽样 – 不等概率抽样
7
对无回答的权数调整(SRS)
• [例10.3] 从一个 N=100人的总体 中抽取一个n=25 人的简单随机样本。 记回答单元的数量 为nr,结果显示只 有20个人提供了所 需的信息。那么, 此时无回答的调整 权数是多少?
总体大小 样本量
回答者数量
N1=1000 N2=100
n1=200 n2=50
nr,1=150 nr,2=40
步骤1:各层的设计权数为: 城市层 wd,1=N1/n1==5 农村层 wd,2=N2/n2==2
步骤2:调整以弥补无回答。各层的无回答调整因子计算如下: 城市层:n1 / nr,1==200/150==1.33 农村层:n2 / nr,2==50/40==1.25
开篇案例
“百脑汇”调研中的样本计划问题
• “百脑汇”在中国华北几个省市经营连锁电脑超市,它希 望获得更多关于其现有客户特点方面的信息。接受调研委 托的李文博士指派班上的王洪同学为样本计划小组的负责 人。
• 通过与“百脑汇”的市场部经理乔兰的初次会谈,王洪了 解到调研的一个主要目的是分别按人口和心理因素来估计 “百脑汇”的客户构成和比例。此外,确认总体估计值不 超过实际值的±5.0%,可靠度为95%。
5
设计权数的调整
• 上述等概率抽样的加权和不等概率抽样的 加权都是加权的基本形式。
• 权数估计常会遇到更真实和复杂的情况:
– 考虑无回答的情况,然后对权数做出调整; – 考虑来自其他渠道的、更具权威性的某些辅助
信息,将它们合并到权数中。
6
对无回答的权数调整
• 单元无回答是指一个样本单元几乎所有的数据都缺失。 简单的处理办法是忽略它。然而,如果发现忽略单元 无回答是不适当的,则应该对权数进行调整。即,
• 为了达到这些要求,王洪和他的小组正努力寻找计算所需 样本容量的方法。
1
10.1 引言
• 估计就是根据从样本中收集的信息对 总体未知量进行推断的过程。
• 抽样估计涉及的重要问题:
– 一个样本单元的设计权数问题。 – 抽样估计,包括总体总量、均值和比例以及抽
样误差的估计。 – 样本量的确定构成抽样设计程序的重要步骤和
– 二是为了提高估计值的精度。将辅助信息与抽样设计 相结合,将有助于提高估计的精度。
• 要想在调查设计阶段使用辅助信息,抽样框中的所有单元都 必须具备这个辅助信息。否则,就只能在数据收集上来后, 在估计阶段利用辅助信息提高估计值的精度。
10
使用辅助信息调整权数
• [例10.5] 为得到某公司职员是否 有吸烟习惯的信息,进行了一项调 查。从N=780人的名录中抽出了 一个n=100人的简单随机样本。
内容。同时,样本量的确定与样本估计值的精 度密不可分。
2
10.2 加权及权数调整
• 设计权数
– 设计权数是指每个样本单元所代表的调查总体的单元 数,它是由抽样设计所决定的,通常以wd表示。确定 设计权数是估计的第一步。
• 加权估计
– 设计权数其实就是样本单元的入样概率的倒数。假如 入样概率是1/10,那么每个入选样本代表总体中的10 个单元,此时设计权数即为10。