积分运算法则
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分运算法则
集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]
不定积分的运算法则,包含如下两个性质(注意性质适用条件):
1、设函数f(x)的原函数存在(即f(x)可积,下同),k是常数,则:
(1)
(k≠0)
(2)
(k=0)
2、设f(x),g(x)两个函数存在原函数,则:
3、常见积分几种运算法
换元积分法:
①设f(u)具有原函数F(u) ,如果u是中间变量:u=
(x),且
(x)可微,那么,根据复合函数微分法,有
dF=[
(x)]=f[
(x)]
'(x)dx,从而根据不定积分的定义就得:
若要求
,若
可化为
的形式,那么:
这种方法称为第一类换元法。
②利用第二类换元法化简不定积分的关键仍然是选择适当的变换公式 x =
φ(t)。此方法主要是求无理函数(带有根号的函数)的不定积分。由于含有根式的积分比较困难,因此我们设法作代换消去根式,使之变成容易计算的积分。下面简单介绍第二类换元法中常用的方法:
(1)根式代换:被积函数中带有根式
,可直接令 t =
(2)三角代换:利用三角函数代换,变根式积分为有理函数积分,有三种类型:被积函数含根式
,令
被积函数含根式
,令
;被积函数含根式
,令
。
注:记住三角形示意图可为变量还原提供方便。
(3)倒代换(即令
):设m,n 分别为被积函数的分子、分母关于x 的最高次数,当 n-m>1时,用倒代换可望成功
(4)指数代换:适用于被积函数由指数
所构成的代数式;
(5)万能代换(半角代换):被积函数是三角函数有理式,可令
,则:
分部积分法:
设函数u=u(x)及v=v(x)具有连续导数,则其乘积的导数为:
,移项得:
对两边求不定积分,得:
也可写为:
如果求
有困难,而求
比较容易时,分部积分公式就可以发挥作用了。