薄膜成分分析方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面分析方法的特征
注:输入箭头表示探测粒子或手段, 输出箭头表示发射粒子或波
薄膜成分分析方法介绍
按探测“粒子” 分类,表1列出一些薄膜成分分析方法。
探测粒子 e e e 发射粒子 e e e 名称 俄歇电子 谱 扫描俄歇 微探针 电离损失 谱 英文简 称 AES SAM ILS 基本过程 俄歇退激 发 俄歇退激 发 测量 电子产额对能量 的一次微商谱 表面微区的俄歇 电子谱 电子产额对能量 的一次微商谱 主要用途 表面成分 表面成分 分布 成分 信息深度 单层或几 层原子层 单层或几 层原子层
4. 可进行成分的深度剖析或薄膜及界面分析;
5. 不能分析氢和氦元素; 6. 定量分析的准确度不高; 7. 对多数元素的探测灵敏度为原子摩尔分数0.1%~1.0%; 8. 电子束轰击损伤和电荷积累问题限制其在有机材料、 生物样品和某些陶瓷材料中的应用; 9. 对样品要求高,表面必须清洁(最好光滑)等。
X射线作为探测束的成分分析技术
X射线与和物质的相互作用
俄歇电子能谱(AES)
机理:俄歇电子的产生 • 俄歇电子能谱的原理比较复杂,涉及到三个原子轨道上二 个电子的跃迁过程。
• 当具有足够能量的粒子(光子、电子或离子)与一个原子 碰撞时,原子内层轨道上的电子被激发出后,在原子的内 层轨道上产生一个空穴,形成了激发态正离子。 • 激发态正离子是不稳定的,必须通过退激发而回到稳定态。 在退激发过程中,外层轨道的电子可以向该空穴跃迁并释 放出能量,并激发同一轨道层或更外层轨道的电子使之电 离而逃离样品表面,这种出射电子就是俄歇电子。
特点: 1. 一种无损分析方法(样品不被X射线分解); 2. 一种超微量分析技术(分析时所需样品量少); 3. 一种痕量分析方法(绝对灵敏度高)。
但X射线光电子能谱分析相对灵敏度不高,只能检测
出样品中含量在0.1%以上的组分。X射线光电子谱仪价 格昂贵,不便于普及。
X射线荧光光谱分析(XRF)
机理:在光电吸收过程中, 原子内某些电子吸收了特 定能量后被逐出,在轨道 中形成空穴。此时,其外 层轨道电子会发生跃迁来 填补这些空穴。跃迁电子 产生的空穴再由外一层电 子通过跃迁填补„„ 如此继续,直至自由 电子进入轨道为止。 每一次的跃迁都伴随有能量的释放,从而形成受激原子的二 次X射 线。 该X射线可被探测,并以谱的形式记录下 来。其中的峰,即谱线原子的特征,表明样品中含有 相应的元素。
e
e


能量弥散X 射线谱
软X射线出 现电势谱
EDXS
SXAPS 辐射退激 发 软X射线产额对 电子能量的一次 微商谱
成分
表面成分 几层原子 层
e
e
e
e
消隐电势 谱
俄歇电子 出现电势 谱
DAPS
AEAPS 俄歇退激 发 样品电流对入射 电子能量的一次 微商谱
成分
表面成分 几层原子 层
e
I
电子感生 脱附谱
X-射线光电子能谱(XPS)
光:Incident X-ray 发射出的光电子Ejected Photoelectron
Free Electron Level Fermi Level
Conduction Band
Valence Band 2p 2s 1s L2,L3 L1 K
机理 : 电磁波使内层电子激发,并逸出表面成为光电子, 测量被激发的电子能量就得到XPS, 不同元素种类、 不同元素价态、不同电子层(1s, 2s, 2p等)所产生的 XPS不同
俄 歇 电 子 的 产 生
Y X W
俄歇电子
EY EX
出射电子
激发源
填充电子 俄歇电子 激发源
EW
图2 俄歇电子的跃迁过程能级图
图1 俄歇电子的跃迁过程
特点:
1. 作为固体表面分析法,其信息深度取决于俄歇电子逸 出深度(电子平均自由程)。对于能量为50eV-2keV范围 内的俄歇电子,逸出深度为0.4-2nm。深度分辨率约为 1nm,横向分辨率取决于入射束斑大小; 2. 可分析除H、He以外的各种元素; 3. 对于轻元素C、O、N、S、P等有较高的分析灵敏度;
ESD
吸附键断 裂
脱附粒子的质谱
表面吸 附成分及 其状态
单层
探测粒子
发射粒子
名称
次级离子质 谱 离子探针
英文简称
SIMS
基本过程
离子溅射
测量
次级离子的荷质 比 表面微区次级离 子质 谱 散射离子产额与 能量 的关系 散射离子产额与 能 量的关系 脱附粒子的质谱
主要用途
表面成分
信息深度
单层原子 层 单层或数 层原子层 单层原子 层 单层-1微 米 单层原子 层 单层-1微 米 单层-数 层
俄歇电子能谱(AES) X-射线光电子能谱(XPS)
X射线荧光光谱分析(XRF)
: X射线能谱仪成分分析(EDS)
离子作为探测束的表面分析方法
离子散射谱分析
以离子作为探测束,与靶原子进行弹性碰撞。根据 弹性散射理论,分析散射或背散射所携带的有关靶原 子的信息,得到最表层的信息。离子散射谱一般分为 两种:
ISS 分 析 的 原 理 示 意 图
特点: 1、入射离子的质量越轻,碰撞后运动状态的改变越大。 因此,ISS最常选用的离子是 He+, 但它不易分辨重 元素; 2、ISS信息来自最表面层,且能探测表面的结构,因而 成为研究最表层的成分和结构的有效手段,并常用于 吸附/解吸和发射等表面过程的研究; 3、ISS对不同元素的灵敏度的变化范围在3-10倍之间,
RBS
TDS
I
质子(或离 子)感生 X射线谱
PIX,IIX
X射线强度与波长 的关系 发射电子的能谱

e
e
X射线光电 子谱 X射线能谱
XPS
EDS
特征X射线能谱

荧光
X射线荧光 光谱
XRF
成分
探测粒 子
发射粒 子
名称 辉光放电 质 谱仪
英文简 称 GD-MS
基本过程
测量
主要用 途 成分
信息深度
电感耦合 离 子体发射 光谱仪
电子束作为探测束的成分分析技术
X射线能谱仪成分分析(EDS)
机理:能谱仪是用来对材料微区成分元素种类与含量 分析,配合扫描电子显微镜使用。 其基本原理是通 过电子束与样品相互作用后激发产生的特征X射线能 谱来鉴定组成元素。 一般情况下原子处于基态,当电子束对其进行轰击, 驱逐一个内层电子而出现一个空穴,使整个原子体系 处于不稳定的激发态, 激发态原子自发地由能量高的 状态跃迁到能量低的状态。当较外层的电子跃入内层 空穴所释放的能量以辐射形式放出,便产生特征X射 线,其能量等于两能级之间的能量差。
a.离子散射谱(ISS):低能离子散射谱; b.Rutherford背散射谱(RBS):高能离子散射谱。
离子散射谱(ISS)分析
机理:用低能(0.2-2 keV) 的 惰性气体离子与固体相 互作用时,可发生弹性散射 和非弹性散射两种情况。选 择入射离子的能量,使之低 于某一数值后可以使其与表 面主要发生弹性散射。 通过对散射离子能量进行分 析就可以得到表面单层元素 组分及表面结构的信息。由 于信息来自最表层,因而ISS 成为研究表面及表面过程的 强有力的分析手段。
电感耦合等离子体发射光谱法( ICP -AES)
机理:当氩气通过等离子体火炬时, 经射频发生器所产 生的交变电磁场使其电离、加速并与其他氩离子碰撞。 这种链锁反应使更多的氩原子电离, 形成原子、离子、 电子的粒子混合气体, 即等离子体。等离子体火炬可达 6000 ~8000K的高温。过滤或消解处理过的样品经雾化 后由氩载气带入等离子体火炬中, 气化后的样品分子在 等离子体火炬的高温下被原子化、电离、激发。不同元 素的原子在激发或电离时可发射出特征光谱, 特征光谱 的强弱与样品中原子浓度有关, 与标准溶液比较, 即可 定量测定样品中各元素的含量。
特点: 电感耦合等离子体发射光谱法适用范围广, 可 分析的元素较多( 70 多种元素) , 精密度好 (015%~2%RSD) , 动态线性范围好( 4~6个数量
级) , 可多元素同时分析, 分析速度较快。但电感
耦合等离子体发射光谱仪仪器成本较高, 有些元素 检出限有限, 未知和复杂基体的光谱干扰是该方法 最严重的限制。
原子吸收 光谱仪
ICP
特征光谱
成分
AAS
成分
常用成分分析方法介绍
重点介绍如下:
离子散射谱
离子散射谱分析
离子作为探测束 的成分分析方法
卢瑟福背散射来自百度文库
二次离子质谱分析(SIMS) 通过分析中性粒子和离子碰撞引起 的光辐射研究表面成分(如ICP-AES)
X射线作为探测束 的成分分析技术 电子束作为探测束 的成分分析技术
薄膜材料成分分析方法
到目前为止,对薄膜结构 和成分分析的研究方法已达一 百多种。但它们具有共同的特 征:利用一种探测束——如电 子束、 离子束、光子束、中性 粒子束等,从样品中发射或散 射粒子波,他们可以是电子、 离子、中性粒子、光子或声波, 检测这些粒子的能量、动量、 荷质比、束流强度等特性,或 波的频率、方向、强度、偏振 等情况,来分析材料化学组成、 原子结构、原子状态、电子状 态等方面的信息。
二次离子质谱分析(SIMS)
利用质谱法分析初级离子 入射靶面后,溅射产生的 二次离子而获取材料表面 信息的一种方法。
特点: 1. 一种“软电离”技术,适于不挥发的热不稳定的有 机大分子; 2. 得到样品表层真实信息; 3. 分析全部元素(同位素); 4. 实现微区面成分分析和深度剖析灵敏度很高,动态 范围很宽; 5. 样品成分复杂时识谱困难; 6. 易受基体效应影响; 7. 定量分析困难











特点:
1. RBS 分析方法简便,分析速度快,结果定量、可靠,不必依赖于标样, 不破坏样品宏观结构,能给出表面下不同种类原子的深度分析,并 能进行定量分析; 2. RBS的典型深度分辨率为10-20nm; 3. RBS探测重元素的灵敏度很高,但对轻元素的探测则受到严重的限 制; 4. C, N, O是普遍存在且对固体的近表面区很重要的元素,但RBS对 于痕量的上述元素很不灵敏; 5. RBS分析中的信号缺乏特征性,所有的背散射粒子仅仅是能量不 同,因此,质量相 近的两种元素就可能分不开。 6. RBS分析所用的样品在分析区域内严格要求横向均匀。如果存在一 定量的刻痕、空洞、灰尘以及任何其它的表面不均匀性,那怕只 有亚维米尺寸,也会严重地影响能谱。
特点 :
1、分析元素范围广:可测定元素周期表中从O到U的80多种元素; 2、测定元素的含量范围宽:可测定元素含量在ppm级到100%的样 品; 3、样品前处理简单:分析的样品可以是未经处理的固体直接测 定,也可以是粉末或液体; 4、分析速度快:对一个未知样品可在10多分钟内测出各元素的半 定量数据; 5、可进行无损分析:测定时可不损害样品,如金银首饰的检测、 珠宝玉石和文物的鉴定等;分析精度高、结果重现性好; 6、但与现代的其他多元素分析技术,如电感耦合等离子体光谱 (ICP-AEC)、电感耦合等离子体质谱(ICP-MS)和仪器中子活化 分析(INAA)相比,XRF最明显的缺点就是灵敏度低、取样量大
I I I I
热能
I I I I n
IMSIMMA
离子溅射
表面成 分分布 表面成分、 表面结构 成分的深 度分布 表面吸 附成分 和吸附状态 表面成分 的深度分布 表面成分及 其化学状态 成分
离子散 射谱 卢瑟福背 散射谱 热脱附谱
ISS
非弹性背 散射 非弹性背 散射 吸附键断 裂 辐射退激 发 光电子发 射
离子质谱分析
离子质谱按照物质电离后质量与电荷的比值(即荷质比 m/ e) 大小进行分离,可以测定离子的质量和离子流的强度。 能快速连续地进行未知样品中包括氢在内的全元素分析和杂 质同位素分析、微区微量分析和杂质纵向分布的深度剖析。 按离子源分类,可以有火花源质谱仪,辉光放电质谱仪, 等离子体质谱仪、二次离子质谱仪等
辉光放电质谱分析
GDMS 已广泛应用于固体样品的常规分析。 作为一种成分分析的工具, GDMS 对不同元素的 检测灵敏度的差异较小, 离子产额受基体的影响 也不大。大多数元素的相对灵敏度因子在0. 2~ 3 之间(铁的灵敏度因子为1) 。GDMS 具备很宽 的检测动态范围, 从基体浓度到痕量浓度的元素 都可以很好地检测。
分析时对表面的损伤很小。但定量分析有一定的困
难,谱峰较宽,质量分辨本领不高,检测灵敏度为 10-3。
卢瑟福背散射(RBS)分析
机理:一束MeV能量的离子(通常用4He 离子) 入射到靶样品 上,与靶原子(原子核) 发生弹性碰撞(见图1a) ,其中有部分 离子从背向散射出来。用半导体探测器测量这些背散射离子 的能量,就可确定靶原子的质量,以及发生碰撞的靶原子在样 品中所处的深度位置;从散射离子计数可确定靶原子浓度。
相关文档
最新文档