八年级数学上学期第一次月考试题及答案

合集下载

八年级上册数学第一次月考试卷(含答案)

八年级上册数学第一次月考试卷(含答案)

八年级上册数学第一次月考试卷一、选择题(每小题3分,共30分)1.下列图形中具有稳定性的是( )A.三角形 B.四边形 C.五边形 D.六边形2.下列长度的三条线段能组成三角形的是( )A.1,2,3 B.4,5,10 C.8,15,20D.5,8,153.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE的度数为( ) A.100°B.120°C.135°D.150°,第3题)(第6题)4.已知等腰三角形的两边长分别是5和11,则是这个等腰三角形的周长为( ) A.21 B.16 C.27 D.21或275.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等6.,如图,小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块7.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B.C D.8.如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管多少根()根(第8题),(第9题)A.4 B.5 C.6 D.79.如图,在△ABC中,∠A=60°,BD,CD分别平分∠ABC,∠ACB,M,N,Q分别在射线DB,DC,BC上,BE,CE分别平分∠MBC,∠BCN,BF,CF分别平分∠EBC,∠ECQ ,则∠F =( )A .30°B .35°C .15°D .25°10.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D.若AC =9,AB =15,且S △ABC =54,则△ABD 的面积是( )A.3105B.4135C .45D .35二.填空题(每小题3分,共18分)11.若一个n 边形的内角和是外角和的2倍,则边数n =12. 已知AD 是△ABC 的一条中线,AB =9,AC =7,则AD 的取值范围是 13.如图:作∠AOB 的角平分线OP 的依据是 .(填全等三角形的一种判定方法)(第13题图)(第15题图)14.△ABC 是三边都不相等的三角形,以B ,C 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出 个.15.如图,AD 是△ABC 的高,∠BAD =40°,∠CAD =65°,若AB =5,BD =3,则BC 的长为 .16.已知点A(-4,4),一个以A 为顶点的45°角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于点E ,F ,连接EF.当△AEF 是直角三角形时,点E 的坐标是三.解答题(8小题,共72分)17.(8分)一个正多边形每一个内角比外角多90°,求这个多边形所有对角线的条数。

八年级上学期第一次月考(数学)试题含答案

八年级上学期第一次月考(数学)试题含答案

八年级上学期第一次月考(数学)(考试总分:120 分)一、单选题(本题共计6小题,总分18分)1.(3分)下列图形中,具有不稳定性的是()A. 钝角三角形B. 锐角三角形C. 直角三角形D. 长方形2.(3分)下列长度的三条线段能组成三角形的是()A.1,2,1B.2,2,4C.3,4,5 D.3,4,8 3.(3分)若一个三角形三个内角度数的比为3:4:7,则这个三角形的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.无法确定4.(3分)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360度B.540度C.180或360度D.540或360或180度5.(3分)如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,S△ABC=4平方厘米,则S△BEF的值为()A.2平方厘米B.1平方厘米C.平方厘米D.平方厘米6.(3分)如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68二、 填空题 (本题共计6小题,总分18分)7.(3分)等腰三角形的两边长分别为3cm 和6cm ,则周长为 .8.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于 .9.(3分)如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于 .10.(3分)将一副三角板按如图所示的位置摆放,则图中∠1= °.11.(3分)如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线,2CA 是1ACD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________12.(3分)在平面直角坐标系中,已知点A(1,2),B(3,3),C(3,2),若存在一点E,使△ACE和△ACB全等,请写出所有满足条件的点E的坐标:.三、解答题(本题共计11小题,总分84分)13.(6分)已知一个多边形,过一个顶点处可以引6条对角线,问(1)这是一个几边形?(2)这个多边形的内角和是多少?14.(6分)已知:如图,点B,D在线段AE上,AD=BE,AC//EF,∠C=∠F,求证:△ABC≌△EDF.15.(6分)如图,在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.16.(6分)(1)在图1中,沿图中的虚线画线,把下面的图形划分为两个全等的图形.(2)图2为边长为1个单位长度的小正方形组成的网格在△ABC的下方画出与△ABC全等的△EBC.图1图217.(6分)如图,AB=CB,AD=CD.AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE= OF.18.(8分)证明命题:全等三角形对应边上的中线相等,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证。

八年级上学期数学第一次月考试卷(含答案)

八年级上学期数学第一次月考试卷(含答案)

八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。

(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。

(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。

2023-2024学年八年级数学上学期第一次月考【北师大版】(附解析)

2023-2024学年八年级数学上学期第一次月考【北师大版】(附解析)

2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .52.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2 B .﹣2与√−83 C .﹣2与−12 D .2与|﹣2|3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 24.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0 B .x ≥﹣1 C .x <﹣1 D .x >﹣1且x ≠05.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .256.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C 到旗杆底部B 的距离为5米,则旗杆的高度为( )米.A.5B.12C.13D.177.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:58.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√139.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤1610.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为,面积为.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为米.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.18.计算:(1)2√3(√12−√75+13√108)(2)(√a3b−√ab3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法;(填“正确”或“错误”)(2)已知△ABC的其中两边长分别为1,√7,若△ABC为“类勾股三角形”,则另一边长为;(3)如果Rt△ABC是“类勾股三角形”,它的三边长分别为x,y,z(x,y为直角边长且x<y,z为斜边长),用只含有x的式子表示其周长和面积.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .5 【答案】D【分析】直接利用算术平方根的定义得出答案.【解答】解:25的算术平方根是:5.故选:D .【点评】此题主要考查了算术平方根,正确把握定义是解题关键.2.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2B .﹣2与√−83C .﹣2与−12D .2与|﹣2| 【答案】A【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A 、√(−2)2=2,﹣2与√(−2)2是互为相反数,故本选项正确; B 、√−83=−2,﹣2与√−83相等,不是互为相反数,故本选项错误;C 、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D 、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A .【点评】本题考查了实数的性质,对各项准确计算是解题的关键.3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 2 【答案】C【分析】A 选项的被开方数中含有分母;B 、D 选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C 选项符合最简二次根式的要求.【解答】解:因为:A 、√0.2b =√5b 5; B 、√12a −12b =2√3a −3b ;D 、√5ab 2=√5a |b |;所以这三项都可化简,不是最简二次根式.故选:C .【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.4.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0B .x ≥﹣1C .x <﹣1D .x >﹣1且x ≠0【答案】A【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意,得{x +1≥0x ≠0, 解得:x ≥﹣1且x ≠0.故选:A .【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值后,应排除在取值范围内使分母为0的x 的值.5.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .25【答案】C【分析】先根据勾股定理求出AB的长,再由正方形的面积公式即可得出结论.【解答】解:∵∠C=90°,AC=3,BC=2,∴AB=√AC2+BC2=√32+22=√13,∴正方形的面积=(√13)2=13.故选:C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.6.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,则旗杆的高度为()米.A.5B.12C.13D.17【答案】B【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【解答】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12.答:旗杆的高度为12米.故选:B.【点评】此题考查了勾股定理的应用,熟知勾股定理是解题关键.7.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【答案】C【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√13【答案】C【分析】先估算√13的大小,再估算9−√13的大小,进而确定a、b的值,最后代入计算即可.【解答】解:∵3<√13<4,∴﹣4<−√13<−3,∴5<9−√13<6,又∵9−√13的整数部分为a,小数部分为b,∴a=5,b=9−√13−5=4−√13,∴2a+b=10+(4−√13)=14−√13,故选:C.【点评】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.9.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤16【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB=√AD2+BD2=17,∴此时h=24﹣17=7,所以h的取值范围是7≤h≤16.故选:D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.10.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个【答案】A【分析】利用面积法证明勾股定理即可解决问题.【解答】解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×12ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×12ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=12(a+b)(a+b)=2×12×ab+12c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b−b−a2)(a+b−a2)=12ab+12c⋅12c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.【点评】本题考查了勾股定理的证明、正方形的性质、直角三角形面积的计算;熟练掌握正方形的性质,运用面积法得出等式是解决问题的关键.二.填空题(共6小题)11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=1.【答案】见试题解答内容【分析】先把√8化为最简二次根式2√2,再根据同类二次根式得到m+1=2,然后解方程即可.【解答】解:∵√8=2√2,∴m+1=2,∴m=1.故答案为1.【点评】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为2√3cm,面积为√5cm2.【答案】见试题解答内容【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长=√(√2)2+(√10)2=2√3cm;直角三角形的面积=12×√2×√10=√5cm2.故填2√3cm,√5cm2.【点评】此题主要考查勾股定理及三角形的面积.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈249.3.【答案】249.3.【分析】根据“被开方数的小数点向右或向左移动2位,它们的算术平方根的小数点就相应地向右或向左移动1位”解答即可.【解答】解:∵被开方数62130可由6.213的小数点向右移动4位得到,∴√62130可由√6.123的算术平方根2.493的小数点向右移动2位得到,即√62130≈249.3.故答案为:249.3.【点评】本题考查算术平方根的规律,熟悉被开方数小数点移动与其算术平方根小数点移动的规律是解题的关键.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=4√2.【答案】见试题解答内容【分析】根据二次根式的运算法则即可求出答案.【解答】解:∵a=3+2√2,b=3﹣2√2,∴ab=9﹣8=1,a﹣b=4√2,∴原式=ab(a﹣b)=4√2,故答案为:4√2【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【答案】见试题解答内容【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=√5,OC=√6,OD=√7∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为600√3米.【答案】见试题解答内容【分析】过点C作CO⊥AB,垂足为O,由图可看出,三角形OAC为一直角三角形,已知一直角边和一角,则可求斜边.【解答】解:过点C作CO⊥AB,垂足为O,∵BD=900,∴OC=900,∵∠EAC=30°,∴∠ACO=30°.在Rt△AOC中,∵AC=2OA,设OA=x,则AC=2x,(2x)2﹣x2=OC2=9002,∴x2=270000,∴x=300√3∴AC=600√3米.故答案为600√3.【点评】本题考查了直角三角形的性质和勾股定理.三.解答题(共7小题)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.【答案】见试题解答内容【分析】(1)根据题意,可以分别求得BC 、AC 、AB 的长,然后利用勾股定理的逆定理,即可判断△ABC 的形状;(2)根据等积法,可以求得AB 边上的高.【解答】解:(1)△ABC 为直角三角形, 理由:由图可知,AC =√22+42=2√5,BC =√12+22=√5,AB =√32+42=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形;(2)设AB 边上的高为h , 由(1)知,AC =2√5,BC =√5,AB =5,△ABC 是直角三角形,∴12BC ⋅AC =12AB ⋅ℎ, 即12×√5×2√5=12×5h ,解得,h =2, 即AB 边上的高为2.【点评】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.18.计算: (1)2√3(√12−√75+13√108)(2)(√a 3b −√ab 3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.【答案】见试题解答内容【分析】(1)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(2)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(3)先把各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(4)先进行二次根式的乘法运算,然后合并即可;(5)利用平方差公式计算;(6)利用积的乘方进行计算.【解答】解:(1)原式=2√3(2√3−5√3+2√3)=2√3×(−√3)=﹣6;(2)原式=(a√ab−b√ab)•√ab=(a﹣b)√ab•√ab=ab(a﹣b)=a2b﹣ab2;(3)原式=(√2−2√3)(3√2+4√3)=6+4√6−6√6−24=﹣2√6−18;(4)原式=54√12×8+5√12×23−32√32×8−6√32×23=52+5√33−3√3−6=−72−4√33;(5)原式=(5√2)2﹣(2√7)2=50﹣28=22;(6)原式=[(√3+√2)(√3−√2)]2012•(√3+√2)=√3+√2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【答案】见试题解答内容【分析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.【点评】此题不但考查了勾股定理,还考查了学生折叠的知识,折叠中学生一定要弄清其中的等量关系.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.【答案】见试题解答内容【分析】(1)根据立方根、算术平方根、无理数的估算即可求出a、b、c的值;(2)求出代数式2a﹣b+92c的值,再求这个数的平方根.【解答】解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵√36<√43<√49,∴6<√43<7,∴√43的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+92c=−6﹣5+92×6=16,2a﹣b+92c的平方根为±√16=±4.【点评】本题考查算术平方根、立方根、无理数的估算,掌握算术平方根、立方根和无理数的估算是正确解答的前提.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=14﹣x;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.【答案】见试题解答内容【分析】(1)直接利用BC的长表示出DC的长;(2)直接利用勾股定理进而得出x的值;(3)利用三角形面积求法得出答案.【解答】解:(1)∵BC=14,BD=x,∴DC=14﹣x,故答案为:14﹣x;(2)∵AD⊥BC,∴AD2=AC2﹣CD2,AD2=AB2﹣BD2,∴132﹣(14﹣x)2=152﹣x2,解得:x=9;(3)由(2)得:AD=√AB2−BD2=√152−92=12,∴S△ABC=12•BC•AD=12×14×12=84.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出AD的长是解题关键.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法 正确 ;(填“正确”或“错误”)(2)已知△ABC 的其中两边长分别为1,√7,若△ABC 为“类勾股三角形”,则另一边长为 2或√13 ; (3)如果Rt △ABC 是“类勾股三角形”,它的三边长分别为x ,y ,z (x ,y 为直角边长且x <y ,z 为斜边长),用只含有x 的式子表示其周长和面积.【答案】(1)正确;(2)2或√13;(3)周长为(1+√2+√3)x ,面积为√22x 2. 【分析】(1)根据“类勾股三角形”的定义进行判断即可;(2)设出第三边,利用“类勾股三角形”的定义分三种情况讨论求解并进行验证即可;(3)根据勾股定理和类勾股三角形的性质将b 、c 用a 表示,即可求出结果.【解答】解:(1)设等边三角形三边长分别是a ,b ,c ,则a =b =c ,∴a 2+b 2=2c 2,∴等边三角形是“类勾股三角形”,∴小璐的说法正确.故答案为:正确;(2)设另一边长为x ,①12+(√7)2=2x 2,解得x =2,符合题意;②12+x 2=2(√7)2,解得x =√13,符合题意;③x 2+(√7)2=2×12,x 无解;故答案为:2或√13;(3)∵Rt △ABC 是“类勾股三角形”且x <y ,z 为斜边长,∴x 2+z 2=2y 2,由勾股定理得x 2+y 2=z 2,整理得x 2+x 2+y 2=2y 2,即2x 2=y 2,∴y =√2x , ∴z 2=3x 2,∴z =√3x ,∴Rt △ABC 的周长为x +y +z =(1+√2+√3)x ,Rt △ABC 的面积为12xy =12x •√2x =√22x 2. 【点评】本题考查勾股定理,理解题目中的新定义及掌握勾股定理是解题关键.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【答案】(1)7;(2)答案见解答.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD=√AB2−BD2=√132−52=12,Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH在△CHB和△AEF中,∵{BH=EF∠CBH=∠AFE=45°BC=AF,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.。

八年级上第一次月考数学试卷(有答案)

八年级上第一次月考数学试卷(有答案)

八年级上第一次月考数学试卷(有答案)一、选择题(每题3分,共30分)1.(3分)下列各数:0,3.14,﹣π,π﹣|1﹣π|,之间每次增加一个2),其中无理数的个数是()A.1B.2C.3D.4,,0.121221222122221…(每两个12.(3分)A.8的算术平方根是()D.±B.±8C.3.(3分)下列说法正确的有()(1)有理数包括整数、分数和零;(2)不带根号的数都是有理数;(3)带根号的数都是无理数;(4)无理数都是无限小数;(5)无限小数都是无理数.A.1B.2C.3D.4﹣1之值介于下列哪两个整数之间?()C.5,6D.6,7等于()D.﹣2某4.(3分)判断2A.3,4B.4,55.(3分)若某<0,则A.某B.2某C.06.(3分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CC.a2=c2﹣b2B.∠A:∠B:∠C=1:2:3D.a:b:c=3:4:67.(3分)和数轴上的点成一一对应关系的数是()A.自然数B.有理数C.无理数D.实数8.(3分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或379.(3分)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+第1页共15页10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=的面积为1,则它的周长为(),如果Rt△ABCA.B.+1C.+2D.+3二、填空题(每空3分,共24分)11.(3分)的相反数是,绝对值是,倒数是.12.(3分)如图,若圆柱的底面周长是30cm,高是40cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处做装饰,则这条丝线的最小长度是.13.(3分)若一个正数的平方根是2a+1和﹣a+2,则a=,这个正数是.14.(3分)若+=0,则某=.15.(3分)已知一个Rt△的两边长分别为3和4,则第三边长是.16.4cm,3cm的木箱中,(3分)有一根7cm木棒,要放在长,宽,高分别为5cm,(填“能”或“不能”)放进去.17.(3分)要使代数式有意义,则某的取值范围是.18.(3分)如图所示,分别以直角三角形的三边为直径作三个半圆,S1=25,S2=144,则S3等于.第2页共15页三、解答题(共66分)19.(12分)计算题(1)(2)(3)(4)20.(8分)解方程(1)3(某﹣2)2﹣=0.(2)(2某﹣1)3﹣8=0.21.(8分)若+(b﹣3)2+|c﹣2|=0,求(a﹣b+c)3的值.,AD=1,且∠B=90°.试求:22.(10分)已知:如图,四边形ABCD中,AB=BC=1,CD=(1)∠BAD的度数.(2)四边形ABCD的面积.(结果保留根号)23.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,(1)求BF长度;(2)求CE的长度.24.(8分)某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,第3页共15页其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?25.(12分)阅读下面计算过程:1;.请解决下列问题(1)根据上面的规律,请直接写出(2)利用上面的解法,请化简:(3)你能根据上面的知识化简﹣﹣2=..吗?若能,请写出化简过程.第4页共15页八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列各数:0,3.14,﹣π,π﹣|1﹣π|,,,0.121221222122221…(每两个1之间每次增加一个2),其中无理数的个数是()A.1B.2C.3D.4【解答】解:0是有理数,3.14是有理数,﹣π是无理数,π﹣|1﹣π|=π﹣(π﹣1)=1是有理数;=3是有理数;=2是有理数;0.121221222122221…是无理数.故选:B.2.(3分)A.8的算术平方根是()D.±=8,.B.±8C.【解答】解:∵∴的算术平方根是:故选:C.3.(3分)下列说法正确的有()(1)有理数包括整数、分数和零;(2)不带根号的数都是有理数;(3)带根号的数都是无理数;(4)无理数都是无限小数;(5)无限小数都是无理数.A.1B.2C.3D.4【解答】解:(1)有理数包括整数、分数,原来的说法是错误的;(2)π是无理数,原来的说法是错误的;第5页共15页。

八年级上第一次月考试题含答案

八年级上第一次月考试题含答案

八年级数学上学期第一次月考试题考试方式:闭卷 考试时间:90分钟 满分:100分一、选一选(每题3分,共24分) 1.下列图形中,不是..轴对称图形的是(★)2.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整的碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是(★)A .带其中的任意两块去都可以B . 带1、2或2、3去就可以了C .带1、4或3、4去就可以了D .带1、4或2、4或3、4去均可 3.如图,AC =AD ,BC =BD ,则一定有(★)A .AB 垂直平分CD ; B .CD 垂直平分AB ;C .AB 与CD 互相垂直平分;D .CD 平分∠ACB。

4. 下列不能推得△ABC 和△A′B ′C ′全等的条件是( ★ )A .AB=A ′B ′,∠A=∠A ′, ∠C=∠C ′B .AB= A ′B ′,AC=A ′C ′,BC=B ′C ′C .AB=A ′B ′,AC=A ′C ′,∠B=∠B ′D .AB=A ′B ′,∠A=∠A ′,∠B=∠B ′5.如图,在Rt△ABC 中,∠ACB=90°,E 是AB 上一点,且BE=BC ,过E 作DE⊥AB 交AC 于点D ,如果AC=5 cm ,则AD+DE= ( ★ ) A .3 cm B .4 cm C .5 cm D .6 cm6. 请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是( ★ ) A .SAS B .ASA C .AAS D .SSS7.如图的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC 成轴对称的格点三角形一共有(★) A . 2个 B . 3个 C .4个 D .5个A .B .C .D .ABCD(第2题图) (第3题图)(第5题图)8.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 长是(★)A .3B .4C .6D .5二、填一填(每空2分,共20分)9.如果△ABC≌△DEF,且△ABC的周长是90cm ,AB=30cm ,DF=20cm ,那么BC 的长等于★cm . 10.如图,镜子中号码的实际号码是__★ ___.11.木工师傅在做完门框后,为防止变形,常常像图中那样钉上两条斜拉的木板条(即图中 AB 、CD 两个木条).这样做,根据的数学道理是 ★ .12.如图,若AB =DE ,__★___,BE =CF ,则根据“SSS ”可得△ABC ≌△DEF .13.如图,△ABE 和△ACF分别是以△ABC的AB 、AC 为边的等边三角形,CE 、BF 相交于O ,则∠EOB =★ °.14. 已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠DEC = ★ °15.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一.个.,使整个图案构成一个轴对称图形的方法共有★ 种. 16.如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE = ★ 度.17.如图,∠MON 内有一点P ,P 点关于OM 的轴对称点是G ,P 点关于ON 的轴对称点是H ,GH 分别交OM 、ON 于A 、B 点,若GH 的长为10cm ,求△PAB 的周长为 ★ .(第7题图)(第10题图)(第8题图)(第6题图)(第18题图)(第15题图)(第16题图)(第17题图)(第13题图)(第12题图)(第11题图)EOABCD(第14题图)E18.如图,AE⊥AB,且AE=AB ,BC⊥CD,且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是 ★ . 三、解答题(共56分) 19. (6分)在图示的网格中①作出△ABC 关于MN 对称的图形△A 1B 1C 1;②说明△A 2B 2C 2是由△A 1B 1C 1经过怎样的平移得到的?答:__________________________________________。

人教版八年级上册数学《第一次月考》考试(含答案)

人教版八年级上册数学《第一次月考》考试(含答案)

人教版八年级上册数学《第一次月考》考试(含答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=6.估计( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,3),则点C的坐标为()A.(-3,1) B.(-1,3) C.(3,1) D.(-3,-1) 10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2 C.52D.3二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:()()22322323a a b ab a a b ---,其中a ,b 满足()2130a b a b +-+--=3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA=PB ,PC=PD ,∠APB=∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、A6、B7、D8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥2、直角3、32或424、72°5、26、82.︒三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、483、(1)见解析;(2)经过,理由见解析4、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)A 型号家用净水器每台进价为1000元,B 型号家用净水器每台进价为1800元;(2)则商家购进A 型号家用净水器12台,购进B 型号家用净水器8台;购进A 型号家用净水器13台,购进B 型号家用净水器7台;购进A 型号家用净水器14台,购进B 型号家用净水器6台;购进A 型号家用净水器15台,购进B 型号家用净水器5台.。

八年级(上)第一次月考数学试卷(含答案) (1)

八年级(上)第一次月考数学试卷(含答案) (1)

八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。

人教版八年级上册数学第一次月考测试卷及答案【完整版】

人教版八年级上册数学第一次月考测试卷及答案【完整版】

人教版八年级上册数学第一次月考测试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.下列说法中错误的是( )A .12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .39.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.若m+1m =3,则m 2+21m=________. 4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F是边CD上一动点,连接BE、EF,则BE EF+的最小值是____________.6.如图,四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.3.已知关于x的一元二次方程22240x x k++-=有两个不相等的实数根(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.4.如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、D5、D6、A7、C8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、22()1y x =-+3、74156、3三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、1a b-+,-1 3、(1)k <52(2)24、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

江西2024-2025学年八年级上学期第一次月考数学试题(解析版)

江西2024-2025学年八年级上学期第一次月考数学试题(解析版)

江西省2024-2025学年八年级上学期第一次月考数学试题一、单选题1. 在ABC 中,已知3AC =,4BC =,则AB 的取值范围是( )A. 68AB <<B. 17AB <<C. 214AB <<D. 114AB <<【答案】B【解析】【分析】根据三角形三边关系求解.【详解】解: 在ABC 中,3AC =,4BC =, ∴BC AC AB BC AC −<<+,∴4343AB −<<+,即17AB <<.故选B .【点睛】本题考查三角形三边关系的应用,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.2. 如图,△ABC ≌△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A. 30°B. 100°C. 50°D. 80°【答案】C【解析】 【分析】根据全等三角形的性质得到∠C 的度数,然后利用三角形内角和定理计算即可.【详解】解:∵△ABC ≌△ABD ,∴∠C =∠ADB =100°,∴∠BAC =180°-100°-30°=50°,故选C.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知全等三角形的对应边相等,对应角相等是解题关键.3. 如图,在ABC 中,AB AC =,AE AF =,AD BC ⊥,垂足为D .则全等三角形有( )A. 2组B. 3组C. 4组D. 5组【答案】C【解析】 【分析】本题主要考查了全等三角形的性质和判定,先根据HL 证明Rt ADE ≌Rt ADF ,可得DE DF =,进而得出Rt ABD △≌Rt ACD △,可得BD CD =,即可得出BE CF =,再根据SSS 证明ABE ≌ACF △,ACE △≌ABF △,可得答案.【详解】∵AE AF =,AD AD =,∴Rt ADE ≌Rt ADF ,∴DE DF =.∵AB AC =,AD AD =,∴Rt ADB △≌Rt ADC ,∴BD CD =,∴B D D E C D D F −=−,即BE CF =.∵AB AC =,AE AF =,∴ABE ≌ACF △.∵B D D F C D D E +=+,即BF CE =.∵AB AC =,AE AF =,∴ABF △≌ACE △.全等三角形有4组.故选:C .4. 如图,在ABC 中,,ABC ACB ∠∠的平分线交于点O ,连接AO ,过点O 作,,OD BC OE AB ABC ⊥⊥△的面积是16,周长是8,则OD 的长是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】本题主要考查了角平分线的性质,先过点O 作OF AC ⊥于点F ,然后根据角平分线的性质,证明OE OF OD ==,然后根据ABC 的面积AOB =△的面积BOC +△的面积AOC +△的面积,求出答案即可.【详解】如图所示:过点O 作OF AC ⊥于点F ,OB ,OC 分别是ABC ∠和ACB ∠角平分线,OD BC ⊥,OE AB ⊥,OF AC ⊥,OE OD OF ∴==,16ABC AOB BOC AOC S S S S =++= , ∴11116222AB OE BC OD AC OF ⋅+⋅+⋅=, 11116222AB OD BC OD AC OD ⋅+⋅+⋅=, 1()162OD AB BC AC ++=, 8++= AB BC AC ,4OD ∴=,故选:D .5. 如图,ABC ∆中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则( )的A. 3180αβ+°B. 2180αβ+°C. 390αβ−=°D. 290αβ−=°【答案】D【解析】 【分析】根据三角形外角等于不相邻两个内角的和,直角三角形两锐互余解答【详解】解:AB BC = ,A C ∴∠=∠,A αβ−∠= ,90C α+∠=°,290αβ∴=°+,290αβ∴−=°,故选:D .【点睛】本题考查了三角形外角,直角三角形,熟练掌握三角形外角性质,直角三角形两锐角性质,是解决此类问题的关键6. 下列条件,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一个锐角和斜边对应相等C. 两条直角边对应相等D. 一条直角边和斜边对应相等【答案】A【解析】【分析】本题主要考查全等的判定方法,熟练掌握判定方法是解题的关键.根据判定方法依次进行判断即可.【详解】解:A 、两个锐角对应相等,不能判定两个直角三角形全等,故A 符合题意;B 、一个锐角和斜边对应相等,利用AAS 可以判定两个直角三角形全等,故B 不符合题意;C 、两条直角边对应相等,利用SAS 可以判定两个直角三角形全等,故C 不符合题意;D 、一条直角边和斜边对应相等,利用HL 可以判定两个直角三角形全等,故D 不符合题意;故选:A .7. 如图,在ACD 和BCE 中,,,,,AC BC AD BE CD CE ACE m BCD n ===∠=∠= ,AD 与BE 相交于点P ,则BPA ∠的度数为( )A. n m −B. 2n m −C. 12n m −D. 1()2n m − 【答案】D【解析】 【分析】由条件可证明△ACD ≌△BCE ,根据全等三角形的性质得到∠ACB 的度数,利用三角形内角和可求得∠APB=∠ACB ,即可解答.【详解】在△ACD 和△BCE 中AC BC AD BE CD CE===∴△ACD ≌△BCE (SSS ),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(n-m ) ∵∠B+∠ACB=∠A+∠BPA ,∴BPA ∠=∠ACB=1()2n m −. 故选D .【点睛】此题考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.8. 如图,EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,90E F ∠=∠=°,B C ∠=∠,AE AF =,给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ≌;④CD DN =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】 【分析】根据90E F ∠=∠=°,B C ∠=∠,AE AF =,可得ABE ACF ≌,三角形全等的性质BE CF =;BAE CAF ∠=∠可得①12∠=∠;由ASA 可得ACN ABM ≌,④CD DN =不成立.【详解】解:∵90E F ∠=∠=°,B C ∠=∠,AE AF =,∴ABE ACF ≌,∴BE CF =;BAE CAF ∠=∠,故②符合题意;∵BAE BAC CAF BAC ∠−∠=∠−∠,∴12∠=∠;故①符合题意;∵ABE ACF ≌∴B C ∠=∠,AB AC =,又∵BAC CAB ∠=∠∴ACN ABM ≌,故③符合题意;∴AM AN =,∴MC BN =,∵,B C MDC BDN ∠=∠∠=∠, ∴MDC NDB ≌,∴CD DB =,∴CD DN =不能证明成立,故④不符合题意.故选:B .【点睛】本题考查三角形全等的判定方法和三角形全等的性质,难度适中.9. 已知AOB ∠,下面是“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹.该尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】 【分析】本题主要考查了尺规作图作一个角等于已知角、全等三角形判定等知识点,掌握尺规作图作一个角等于已知角的作法成为解题的关键.根据“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹,结合全等三角形的判定定理即可解答.【详解】解:由题意可知,“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图的依据是SSS .故选:B .10. 如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A. AB AD CB CD −>−B. AB AD CB CD −=−C. AB AD CB CD −<−D. AB AD −与CB CD −的大小关系不确定【答案】A【解析】 【分析】先通过在AB 上截取AE =AD ,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A 选项正确.【详解】解:如图,在AB 上取AE AD =,对角线AC 平分BAD ∠,BAC DAC ∴∠=∠,在ACD ∆和ACE ∆中,的AD AE BAC DAC AC AC = ∠=∠ =, ()ACD ACE SAS ∴∆≅∆,CD CE ∴=,BE CB CE >− ,AB AD CB CD ∴−>−.故选:A .【点睛】本题考查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等.二、填空题11. 若正多边形的一个外角为60°,则这个正多边形的边数是______.【答案】六##6【解析】【分析】本题考查了多边形的外角和,熟练掌握任意多边形的外角和都是360度是解答本题的关键.根据任意多边形的外角和都是360度求解即可.【详解】解:360606°÷°=.故答案为:六.12. 四条长度分别为2cm ,5cm ,8cm ,9cm 的线段,任选三条组成一个三角形,可以组成的三角形的个数是___________个.【答案】2【解析】【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:四条木棒的所有组合:2,5,8和2,5,9和5,8,9和2,8,9;∵2+5=7<8,∴2,5,8不能组成三角形;∵2+5=7<9,∴2,5,9不能组成三角形;∵5+8=13>9,∴5,8,9能组成三角形;∵2+8=10>9,∴2,8,9能组成三角形.∴ 5,8,9和2,8,9能组成三角形.只有2个三角形.故答案是:2.【点睛】此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.13. 如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,若140∠=°,230∠=°,则B ∠=______.【答案】40°##40度【解析】【分析】本题考查了三角形的角平分线,高线的定义;由AE 平分BAC ∠,可得角相等,由140∠=°,230∠=°,可求得EAD ∠的度数,在直角三角形ABD 在利用两锐角互余可求得答案.【详解】解:AE 平分BAC ∠12EAD ∴∠=∠+∠,12403010EAD ∴∠=∠−∠=°−°=°,Rt ABD 中,9090401040BBAD ∠=°−∠=°−°−°=°. 故答案为:40°.14. 如图,BE 平分∠ABC ,CE 平分外角∠ACD ,若∠A =52°,则∠E 的度数为_____.【答案】26°【解析】【分析】根据三角形的外角等于和它不相邻的两个内角的和即可得答案.【详解】∵BE 平分∠ABC ,CE 平分外角∠ACD ,∴∠EBC =12∠ABC ,∠ECD =12∠ACD , ∴∠E =∠ECD ﹣∠EBC =12(∠ACD ﹣∠ABC ) ∵∠ACD-∠ABC=∠A ,∴∠E =12∠A =12×52°=26° 故答案为26°【点睛】本题考查三角形外角性质,三角形的一个外角,等于和它不相邻的两个内角的和;熟练掌握外角性质是解题关键.15. 如图1,123456∠+∠+∠+∠+∠+∠为m 度,如图2,123456∠+∠+∠+∠+∠+∠为n 度,则m n −=__________.【答案】0【解析】【分析】将图1原六边形分成两个三角形和一个四边形可得到m 的值,将图2原六边形分成四个三角形可得到n 的值,从而得到答案.【详解】解:如图1,将原六边形分成两个三角形和一个四边形,,1234562180360720m ∴°=∠+∠+∠+∠+∠+∠=×°+°=°,如图2,将原六边形分成四个三角形,,∴°=∠+∠+∠+∠+∠+∠=×°=°,1234564180720n∴==,m n720∴−=,m n故答案为:0.【点睛】本题考查了多边形的内角和,此类问题通常连接多边形的顶点,将多边形分割成四边形和三角形,通过计算四边形和三角形的内角和,求得多边形的内角和.16. 如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③ ACN≌ ABM;④CD=DN.其中符合题意结论的序号是_____.【答案】①②③【解析】【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE-∠BAC,∠2=∠CAF-∠BAC,∴∠1=∠2,即结论①正确;∴△AEM ≌△AFN (ASA ),∴AM =AN ,∴CM =BN ,∵∠CDM =∠BDN ,∠C =∠B ,∴△CDM ≌△BDN ,∴CD =BD ,无法判断CD =DN ,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点睛】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.三、解答题17. 如图,已知点D ,E 分别AB ,AC 上,B C ∠=∠,DC BE =,求证:ABE ACD △△≌.【答案】见解析【解析】【分析】本题考查了全等三角形的判定,根据已知条件选择恰当的判定方法是解题的关键.【详解】解:在ABE 和ACD 中,B C A A BE DC ∠=∠ ∠=∠ =, ∴()AAS ABE ACD ≌.18. 如图,请你仅用无刻度直尺作图.在(1)在图①中,画出三角形AB 边上的中线CD ;(2)在图②中,找一格点D ,使得ABC CDA △△≌.【答案】(1)见解析 (2)见解析【解析】【分析】(1)如图,连接CD 即可;(2)按如图所示,找到点D ,连接AD CD ,即可.【小问1详解】【小问2详解】如图,CDA 即为所求;【点睛】本题考查了作图,三角形中线的性质、全等三角形的判定方法,掌握中线的性质及全等三角形判定的方法是关键.19. (1)在ABC 中,ABC ∠的角平分线和ACB ∠的角平分线交于点P ,如图1,试猜想P ∠与A ∠的关系,直接写出结论___________:(不必写过程)(2)在ABC 中,一个外角ACE ∠的角平分线和一个内角ABC ∠的角平分线交于点P ,如图2,试猜想P ∠与A ∠的关系,直接写出结论____________;(不必写过程) (3)在ABC 中,两个外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,如图3,试猜想P ∠与A ∠的关系,直接写出结论_________,并予以证明.【答案】(1)1902P A∠=°+∠;(2)12P A∠=∠;(3)1902P A∠=°−∠【解析】【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,再根据角平分线的定义可得∠PBC=12∠ABC,∠PCE=12∠ACE,然后整理即可得证;(3)根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PBC+∠PCB,然后利用三角形的内角和定理列式整理即可得解.【详解】解:(1)1902P A ∠=°+∠;理由:在△ABC中,∠ABC+∠ACB=180°-∠A,∵点P为角平分线的交点,∴1=2PBC ABC∠∠,1=2PCB ACB∠∠,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,在△PBC中,∠P=180°-(90°-12∠A)=90°+12∠A;故答案为:1902P A ∠=°+∠;(2)12P A ∠=∠.理由:由三角形的外角性质得,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵外角∠ACE的角平分线和内角∠ABC的角平分线交于点P,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∴12(∠A+∠ABC)=∠P+12∠ABC,∴∠P=12∠A;(3)1902P A ∠=°−∠; 证明: 外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,11()()22PBC PCB A ACB A ABC ∴∠+∠=∠+∠+∠+∠ 111()90222A A ABC ACB A =∠+∠+∠+∠=∠+° 在PBC ∆中,11180909022P A A ∠=°−∠+°=°−∠. 故答案为:1902P A ∠=°−∠; 【点睛】本题考查的是三角形内角和定理,角平分线的定义和三角形外角的性质,熟记性质与概念是解题的关键,要注意整体思想的利用.20. 如图,在ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时,若6AE =,ABC 的面积为30,求CD 的长;(2)当AD 为BAC ∠的角平分线时,若6636C B ∠=°∠=°,,求DAE ∠的度数.【答案】(1)5 (2)15°【解析】【分析】本题考查了用三角形中线求三角形面积、三角形外角性质、直角三角形性质.(1)利用三角形中线定义及三角形面积求出CD 长;(2)利用三角形内角和先求BAC ∠,再用外角性质和直角三角形性质求出DAE ∠.【小问1详解】∵AD 为边BC 上的中线, ∴1152ADC ABC S S == , ∵AE 为边BC 上的高, ∴1152DC AE ××=, ∴5CD =.【小问2详解】∵6636C B ∠=°∠=°,∴18078BAC B C =°−−=°∠∠∠,∵AD 为BAC ∠的角平分线,∴39BAD DAC ∠=∠=°,∴393675ADC BAD B ∠=∠+∠=°+°=°,∵AE BC ⊥,∴90AED ∠=°,∴9015DAE ADC ∠=°−∠=°21. 如图,点A ,D ,B ,E 在同一直线上,AC =DF ,AD =BE ,BC =EF .求证:AC ∥DF .【答案】详见解析【解析】【分析】根据等式的性质得出AB =DE ,利用SSS 证明△ABC 与△DEF 全等,进而解答即可.【详解】证明:∵AD =BE ,∴AD +DB =BE +DB ,∴AB =DE ,在△ABC 与△DEF 中,AB DE AC DF BC EF = = =,∴△ABC ≌△DEF (SSS ),∴∠A =∠FDE ,∴AC ∥DF .【点睛】此题主要考查了平行线的性质和判定,全等三角形的判定和性质,做题的关键是找出证三角形全等的条件.22. 如图,在ACB △中,90ACB ∠=°,CD AB ⊥于D .(1)求证:ACD B ∠=∠;(2)若AF 平分CAB ∠分别交CD 、BC 于E 、F ,求证:CEF CFE ∠=∠.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中. (1)由于ACD ∠与B ∠都是BCD ∠的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出9090CFA CAF AED DAE ∠=°−∠∠=°−∠,,再根据角平分线的定义得出CAF DAE ∠=∠,然后由对顶角相等的性质,等量代换即可证明CEF CFE ∠=∠.【小问1详解】证明:90ACB ∠=° ,CD AB ⊥于D ,90ACD BCD ∴∠+∠=°,90B BCD ∠+∠=°,ACD B ∴∠=∠;【小问2详解】证明:在Rt AFC △中,90CFA CAF ∠=°−∠,同理Rt AED △中,90AED DAE ∠=°−∠.又AF 平分CAB ∠,CAF DAE ∴∠=∠,AED CFE ∴∠=∠,又CEF AED ∠=∠ ,CEF CFE ∴∠=∠.23. 如图,AC ,BD 相交于点O ,OB OD =,A C ∠=∠,求证:△≌△AOB COD .在【答案】见解答【解析】【分析】本题主要考查全等三角形的判定,熟练掌握判定方法是解题的关键.根据全等三角形的判定方法证明即可.【详解】证明:AOB 和COD △中,A C AOB COD OB OD∠=∠ ∠=∠ = , (AAS)AOB COD ∴≌△△.24. 材料阅读:如图①所示的图形,像我们常见的学习用品—— 圆规.我们不妨把这样图形叫做 “规形图 ”.解决问题:(1)观察“规形图 ”,试探究BDC 与A B C ∠∠∠,,之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图② ,把一块三角尺 DEF 放置在ABC 上,使三角尺的两条直角边DE DF ,恰好经过点B C ,,若40A ∠=°,则ABD ACD +=∠∠ ° . Ⅱ.如图③ ,BD 平分ABP CD ∠,平分ACP ∠,若40130A BPC ∠=°∠=°,,求BDC ∠的度数.【答案】(1) BDC A B C ∠=∠+∠+∠,理由见解析(2)Ⅰ.50;Ⅱ. 85°【解析】【分析】本题考查的是三角形内角和定理,三角形外角性质以及角平分线的定义得运用.根据题意连接AD 并延长至点 F ,利用三角形外角性质即可得出答案.Ⅰ.由(1)可知BDC A B C ∠=∠+∠+∠,因为40A ∠=°,90D ∠=︒,所以904050ABD ACD ∠+∠=°−°=°;Ⅱ.由(1)的已知条件,由于BD 平分ABP CD ∠,平分ACP ∠,即可得出在1452ABD ACD ABP ACP ∠+∠=∠+∠=°(),因此4540=85BDC ∠=°+°°. 【小问1详解】 解:如图连接AD 并延长至点 F , 根据外角的性质,可得 BDF BAD B ∠=∠+∠, CDF C CAD ∠=∠+∠, 又∵BDC BDF CDF BAC BAD CAD ∠=∠+∠∠=∠+∠,, ∴BDC BAC B C ∠=∠+∠+∠;【小问2详解】解:Ⅰ. 由(1)可得,BDC ABD ACD A ∠=∠+∠+∠; 又∵4090A D ∠=°∠=°,, ∴9040=50ABD ACD ∠+∠=°−°°, 故答案为:50; Ⅱ.由(1),可得BPC ABP ACP BDC BAC ABD ACD ∠=∠+∠+∠∠=∠+∠+∠,, ∴1304090ABP ACP BPC BAC ∠+∠=∠−∠=°−°=°, 又∵BD 平分ABP CD ∠,平分ACP ∠, ∴1452ABD ACD ABP ACP ∠+∠=∠+∠=°(), ∴4540=85BDC ∠=°+°°.。

2024-2025学年河南省信阳市八年级上学期第一次月考数学试题及答案

2024-2025学年河南省信阳市八年级上学期第一次月考数学试题及答案

八年级上期第一次月考一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列各组图形中是全等图形的是()A. B. C. D.2. 如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A. 两点之间线段最短B. 垂线段最短C. 两点确定一条直线D. 三角形具有稳定性3. 如图均表示三角形的分类,下列判断正确的是()A. ①对,②不对B. ①不对,②对C. ①、②都不对D. ①、②都对中BC边上的高的图形为()4. 下面四个图形中,表示线段AD是ABCA. B.C. D.5. 如图,一块三角形玻璃摔成了三部分,要去玻璃店再配一块同样大小玻璃,最省事的方法是( ).A. 只带①去B. 只带②去C. 只带③去D. 带①②去6. 下列说法正确的个数是( )①三角形角平分线可能在三角形的内部或外部②三角形三条高都在三角形内部③周长相等的两个三角形全等④全等三角形面积相等⑤三角形中最小的内角不能大于60°A 1个 B. 2个 C. 3个 D. 4个7. 如图,AD 是CAE ∠的平分线,35B ∠=°,60DAE ∠=°,则ACB =∠( )A. 25°B. 60°C. 85°D. 95°8. 一个正多边形的一个外角为30°,则这个正多边形的边数为( )A. 9B. 10C. 12D. 149. 如图是两个全等的三角形,则1∠的度数是( )A. 46°B. 55°C. 79°D. 不能确定的的.10. 在下列条件中,①∠A+∠B=∠C ; ②∠A :∠B :∠C=1:2:3; ③∠A=12∠B=13∠C ; ④∠A=∠B=2∠C ; ⑤∠A=2∠B=3∠C ,能确定△ABC 为直角三角形的条件有( )A. 2个B. 3个C. 4个D. 5个二、填空题:本题共5小题,每小题3分,共15分.11. 如图,AD 是ABC 的中线,BE 是ABD △的中线,已知22cm ABE S = ,则ABC 的面积是______2cm .12. 一个多边形内角和是外角和的2倍多180°,则这个多边形是_____边形.13. 已知ABC 的三边长为x ,3,6,DEF 的三边长为5,6,y .若ABC 与DEF 全等,则x y +的值为_______.14. 若x ,y 满足23(6)0x y −+−=,则以x ,y 的值为两边长的等腰三角形的周长为___________. 15. 如图,在ABC 中,ABC ∠,ACB ∠的平分线BO ,CO 交于点O ,CCCC 为ABC 的外角ACD ∠的平分线,BO 的延长线交CCCC 于点E ,160∠=°,则2∠的大小为______.三、解答题:本题共8小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16. 如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.(1)画出ABC 中边BC 上的高AD :(2)画出ABC 中边AC 上的中线BE ;的(3)求ABE 的面积.17. (1)在四边形ABCD 中,:::1:2:3:4A B C D ∠∠∠∠=,求D ∠的度数.(2)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.18. 已知:如图,AB=AD ,∠C=∠E ,∠BAE=∠DAC .求证:△ABC ≌△ADE .19. 在△ABC 中,已知AD 是角平分线,∠B=66°,∠C=54°.(1)求∠ADB ,∠ADC 的度数;(2)若DE ⊥AC 于点E ,求∠ADE 的度数.20. 已知等腰三角形的周长是18cm ,其中有一条边长是8cm ,则另两条边长是多少?21. 如图,ABC 中,角平分线,BF 相交于点O ,AD BC ⊥于D ,60BAC ∠=°,45C ∠=°,求DAE ∠和AOB ∠的度数.22. 如图,△ABC 中,AB =AC ,点E ,F 在边BC 上,BE =CF ,点D 在AF 的延长线上,AD =AC , (1)求证:△ABE ≌△ACF ;(2)若∠BAE =30°,则∠ADC =______°.23. 如图,在ABC 中,50BAC ∠=°.(1)如图①,若I 是ABC ∠,ACB ∠的平分线的交点,则BIC ∠=;° (2)如图②,若D 是ABC 外角平分线的交点,则BDC ∠=;° (3)如图③,点G 在BC 的延长线上,若E 是ABC ∠,ACG ∠的平分线的交点,探索BEC ∠与BAC ∠的数量关系,并说明理由;(4)在(3)的条件下,若CCCC ∥AAAA ,求ACB ∠的度数.的八年级上期第一次月考一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列各组图形中是全等图形的是()A. B. C. D.【答案】B【解析】【分析】根据全等图形是能够完全重合的两个图形进行分析判断.【详解】解:根据全等图形的定义可得:只有B选项符合题意.故选B.【点睛】本题考查的是全等图形的识别、全等图形的基本性质,属于较容易的基础题.2. 如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A. 两点之间线段最短B. 垂线段最短C. 两点确定一条直线D. 三角形具有稳定性【答案】D【解析】【分析】本题考查三角形的稳定性,根据三角形的稳定性,进行作答即可.【详解】解:由题意,所用的几何原理是三角形具有稳定性;故选D.3. 如图均表示三角形的分类,下列判断正确的是()A. ①对,②不对B. ①不对,②对C. ①、②都不对D. ①、②都对【答案】B【解析】 【分析】根据三角形的分类进行判断.【详解】解:等腰三角形包括等边三角形,故①的分类不正确;图②中的三角形的分类正确.故选:B .【点睛】考查了三角形的分类,解题关键是掌握分类方法.按边的相等关系分类:不等边三角形和等腰三角形,注:等腰三角形包括等边三角形.4. 下面四个图形中,表示线段AD 是ABC 中BC 边上的高的图形为( )A. B.C. D.【答案】D【解析】【分析】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.根据三角形高的画法知,过点A 作AD BC ⊥,垂足为D ,其中线段AD 是ABC 的高,再结合图形进行判断即可.【详解】解:线段AD 是ABC 中BC 边上的高的图是选项D .故选:D .5. 如图,一块三角形玻璃摔成了三部分,要去玻璃店再配一块同样大小的玻璃,最省事的方法是( ).A. 只带①去B. 只带②去C. 只带③去D. 带①②去【答案】C【解析】【分析】本题主要考查了全等三角形的判定,全等三角形的判定方法有SSS,SAS,ASA,AAS等.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【详解】解:A.带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项不符合题意;B.带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项不符合题意;C.带③去,不但保留了原三角形的两个角还保留了其中一条完整的边,符合ASA判定方法,故C选项符合题意;D.带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项不符合题意.故选:C.6. 下列说法正确的个数是()①三角形的角平分线可能在三角形的内部或外部②三角形三条高都在三角形内部③周长相等的两个三角形全等④全等三角形面积相等⑤三角形中最小的内角不能大于60°A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】本题考查三角形有关的线段和内角,全等三角形的判定与性质,根据相关知识点逐个判断即可.【详解】①三角形的三条角平分线只在三角形的内部,说法错误;②钝角三角形的高可能在三角形外部,说法错误;③周长相等的两个三角形不一定全等,说法错误;④全等三角形面积相等,说法正确;⑤三角形中最小的内角不能大于60°,说法正确;∴正确的有④⑤共2个,故选:B .7. 如图,AD 是CAE ∠的平分线,35B ∠=°,60DAE ∠=°,则ACB =∠( )A. 25°B. 60°C. 85°D. 95°【答案】C【解析】 【分析】首先根据AD 是CAE ∠的平分线,60DAE ∠=°,求出CAD ∠的度数,然后根据三角形的外角性质即可求得ACB ∠的度数.【详解】解:60DAE ∠=° ,120BAD ∴∠=°,AD 是CAE ∠的平分线,1602CAD BAD ∴∠=∠=°, 180********BAC CAE ∴∠=°−∠=°−°=°,35B ∠=° ,180()1801203525D BAC CAD B ∴∠=°−∠+∠−∠=°−°−°=°,602585ACB CAD D ∴∠=∠+∠=°+°=°.故选:C .【点睛】本题考查了三角形的外角性质,难度一般,解答本题的关键是熟练掌握三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.8. 一个正多边形的一个外角为30°,则这个正多边形的边数为( )A. 9B. 10C. 12D. 14【答案】C【解析】【分析】根据多边形的外角和为360°,即可求解.【详解】解:∵多边形的外角和为360°,∴该多边形的边数为3603012÷=,故选:C.【点睛】本题考查多边形的外角和,掌握多边形的外角和为360°是解题的关键.9. 如图是两个全等的三角形,则1∠的度数是()A. 46°B. 55°C. 79°D. 不能确定【答案】C【解析】【分析】本题考查全等三角形的性质,三角形内角和定理;三角形内角和定理求出2∠的度数,全等三角形的性质,得到12∠=∠,即可得解.【详解】解:如图,由三角形的内角和定理,得:2180554679∠=°−°−°=°,∵两个三角形全等,由图可知,1,2∠∠为对应角,∴1279∠=∠=°,故选:C.10. 在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=12∠B=13∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【详解】①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,符合题意;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30,∠C=30°×3=90°,符合题意;③因为∠A=12∠B=13∠C ,设∠A=x ,则x+2x+3x=180,x=30,∠C=30°×3=90°,符合题意; ④因为∠A=∠B=2∠C ,设∠C=x ,则x+2x+2x=180,x=36,∠B=∠A=36°×2=72°,不符合题意; ⑤因为∠A=2∠B=3∠C ,设∠A=6x ,则∠B=3x , ∠C=2 x ,6x+3x+2x=180 , 解得x=18011,∠A=108011 ,不符合题意;所以能确定△ABC 是直角三角形的有①②③共3个. 故选B .【点睛】本题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.二、填空题:本题共5小题,每小题3分,共15分.11. 如图,AD 是ABC 的中线,BE 是ABD △的中线,已知22cm ABE S = ,则ABC 的面积是______2cm .【答案】8 【解析】【分析】本题主要考查三角形的中线把三角形面积平分的性质.由于AD 是ABC 的中线,那么ABD △和ACD 的面积相等,又因为BE 是ABD △的中线,由此得到ABE 和DBE 面积相等,而22cm ABE S = ,由此即可求出ABC 的面积. 【详解】解:∵AD 是ABC 的中线, ∴ABD ACD S S , ∵BE 是ABD △的中线, ∴ABE DBE S S = , 而22cm ABE S = , ∴2428cm ABC S =×= . 故答案为:8.12. 一个多边形的内角和是外角和的2倍多180°,则这个多边形是_____边形. 【答案】七 【解析】【分析】本题考查多边形的内角和和外角和.根据多边形的内角和公式以及外角和为360°,列出方程求解即可.【详解】解:设多边形的边数为n ,由题意,得:()21802360180n −⋅°=×°+°, 解得:7n =;所以这个多边形为七边形; 故答案为:七.13. 已知ABC 三边长为x ,3,6,DEF 的三边长为5,6,y .若ABC 与DEF 全等,则x y +的值为_______. 【答案】8 【解析】【分析】根据全等三角形对应边相等即可求解. 【详解】∵ABC 与DEF 全等, ∴3x =,5y =, ∴358x y +=+=, 故答案为:8.【点睛】本题主要考查全等三角形的性质,代入求值,掌握全等三角形的对应边相等是解题的关键.14. 若x ,y 满足23(6)0x y −+−=,则以x ,y 的值为两边长的等腰三角形的周长为___________. 【答案】15 【解析】【分析】本题考查等腰三角形的性质、非负数的性质等知识.根据非负数的性质求出x ,y 的值,再根据等腰三角形的定义即可解决问题.【详解】解:∵23(6)0x y −+−=, 又∵30x −≥,2(6)0y −≥, ∴3x =,6y =,∵x ,y 为等腰三角形的两边,的当3x =为腰时,336+=,不满足三角形三边的关系,故舍去, ∴等腰三角形的三边分别为:6,6,3. ∴等腰三角形的周长为15, 故答案为:15.15. 如图,在ABC 中,ABC ∠,ACB ∠的平分线BO ,CO 交于点O ,CCCC 为ABC 的外角ACD ∠的平分线,BO 的延长线交CCCC 于点E ,160∠=°,则2∠的大小为______.【答案】30° 【解析】【分析】先证明12CBE ABC ∠=∠,12ACE DCE ACD ∠=∠=∠,再结合三角形的内角和定理可得答案. 本题考查的是角平分线的定义,三角形内角和定理,关键是证明12CBE ABC ∠=∠,12ACE DCE ACD ∠=∠=∠解答.【详解】解:ABC ∠ ,ACB ∠的平分线BO ,CO 交于点O ,12CBE ABC ∴∠=∠, CE 为ABC 外角ACD ∠的平分线,12ACE DCE ACD ∴∠=∠=∠, ()180********ACD ACB ABC ABC ∠=°−∠=°−°−∠+∠=∠+∠ ,()180********ECD ECB EBC EBC ∠=°−∠=°−°−∠+∠=∠+∠,()11213022ECD EBC ACD ABC ∴∠=∠−∠=∠−∠=∠=°; 故答案为:30°.三、解答题:本题共8小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. 如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.的(1)画出ABC 中边BC 上的高AD : (2)画出ABC 中边AC 上的中线BE ; (3)求ABE 的面积. 【答案】(1)画图见解析 (2)画图见解析 (3)4 【解析】【分析】本题主要考查了三角形高,中线作法,以及三角形面积求法,掌握概念是解本题的关键. (1)延长BC ,过A 作AD BC ⊥与D ,即可得到答案.(2)结合网格信息,根据中线的定义可得E 点,连接BE 即可得到答案. (3)根据三角形面积公式的求法,结合网格信息,即可得到答案.小问1详解】解:如下图,AD 即为所求:【小问2详解】如下图,BE 即为所求【小问3详解】1144822ABC S BC AD =×⋅=××= , ∴118422ABEABC S S ==×= . 17. (1)在四边形ABCD 中,:::1:2:3:4A B C D ∠∠∠∠=,求D ∠的度数. (2)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数. 【答案】(1)144º;(2)10的【【解析】【分析】(1)设每份数为xº,则∠A=xº,∠B=2xº,∠C=3xº,∠D=4xº,四边形∠A+∠B+∠C+∠D=360º (2)设这个多边形的边数为n,根据多边形的内角和定理和外角和定理列出方程,解方程即可.【详解】(1)设每份数为xº,则∠A=xº,∠B=2xº,∠C=3xº,∠D=4xº,由因为∠A+∠B+∠C+∠D=360º,则x+2x+3x+4x=360,10x=360,x=36,∠D=4xº=4×36º=144º,(2)设多边形为n边形,则(n-2)×180º=4×360,n=10,所以这个多边形的边数为10.【点睛】本题考查多边形某个角与边数问题,掌握多边形内角和与外角和公式,会构造方程解决问题.18. 已知:如图,AB=AD,∠C=∠E,∠BAE=∠DAC.求证:△ABC≌△ADE.【答案】见解析【解析】【详解】试题分析:先证出∠BAC=∠DAE,再由AAS证明△ABC≌△ADE即可.证明:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).考点:全等三角形的判定.19. 在△ABC中,已知AD是角平分线,∠B=66°,∠C=54°.(1)求∠ADB,∠ADC的度数;(2)若DE⊥AC于点E,求∠ADE的度数.【答案】(1)∠ADB=84°;∠ADC=96°;(2)60°.【解析】【分析】(1)根据三角形内角和定理可求∠BAC的度数,根据角平分线的定义可求∠BAD,∠DAC,再根据三角形的内角和得出∠ADB,利用邻补角得出∠ADC;(2)根据高线的定义和三角形内角和定理即可求解.【详解】解:(1)∵在△ABC中,∠B=66°,∠C=54°,∴∠BAC=60°,∵AD是△ABC角平分线,∴∠BAD=∠DAC=12∠BAC=30°,∴∠ADB=180°-∠B-∠BAD=84°∴∠ADC=96°;(2)∵DE⊥AC,∠CAD=30°∴∠DEA=90°,∴∠ADE=60°.故答案为(1)∠ADB=84°;∠ADC=96°;(2)60°.【点睛】本题考查了角平分线的定义,高线的定义和三角形内角和定理:三角形内角和等于180º.20. 已知等腰三角形的周长是18cm,其中有一条边长是8cm,则另两条边长是多少?【答案】5cm和5cm或8cm和2cm.【解析】【分析】题中只给出了三角形的周长和一边长,没有指出它是底边还是腰,所以应该分两种情况进行分析.【详解】若8cm长的边为底边,设腰长为xcm,则8+2x=18,解得x=5,若8cm 长的边为腰,设底边为xcm , 则2×8+x=18, 解得x=2.所以等腰三角形另外两条边长分别为5cm 和5cm 或8cm 和2cm .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21. 如图,ABC 中,角平分线AE ,BF 相交于点O ,AD BC ⊥于D ,60BAC ∠=°,45C ∠=°,求DAE ∠和AOB ∠的度数.【答案】15DAE ∠=°,112.5AOB ∠=° 【解析】【分析】根据直角三角形两锐角互余求出DAC ∠,根据角平分线定义求出CAE ∠,然后可得DAE ∠的度数;根据三角形内角和定理和角平分线定义求出CBF ∠,然后利用两次三角形外角的性质即可求出AOB ∠的度数.【详解】解:∵AD BC ⊥, ∴90ADC ∠=°,∴90904545DAC C ∠=°−∠=°−°=°, ∵60BAC ∠=°,AE 平分BAC ∠, ∴11603022CAE BAC ∠=∠=×°=°, ∴453015DAE DAC CAE ∠=∠−∠=°−°=°,∵180180456075ABC C BAC ∠=°−∠−∠=°−°−°=°,BF 平分ABC ∠,∴137.52CBF ABC ∠=∠=°, ∴4537.582.5AFB C CBF ∠=∠+∠=°+°=°, ∴82.530112.5AOB AFB CAE ∠=∠+∠=°+°=°.【点睛】本题考查了直角三角形两锐角互余,角平分线定义,三角形内角和定理,三角形外角的性质,准确识别各角之间的关系是解题的关键.22. 如图,△ABC 中,AB =AC ,点E ,F 在边BC 上,BE =CF ,点D 在AF 的延长线上,AD =AC , (1)求证:△ABE ≌△ACF ;(2)若∠BAE =30°,则∠ADC =______°.【答案】(1)证明见解析;(2)75. 【解析】【分析】(1)根据等边对等角可得∠B =∠ACF ,然后利用SAS 证明△ABE ≌△ACF 即可;(2)根据△ABE ≌△ACF ,可得∠CAF =∠BAE =30°,再根据AD =AC ,利用等腰三角形的性质即可求得∠ADC 的度数.【详解】证明:(1)∵AB =AC , ∴∠B =∠ACF , 在△ABE 和△ACF 中,AB AC B ACF BE CF =∠=∠ =, ∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE =30°, ∴∠CAF =∠BAE =30°, ∵AD =AC , ∴∠ADC =∠ACD , ∴∠ADC =280013°−°=75°, 故答案为:75【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质,熟练掌握相关性质与定理是解题的关键.23. 如图,在ABC 中,50BAC ∠=°.(1)如图①,若I 是ABC ∠,ACB ∠的平分线的交点,则BIC ∠= ;° (2)如图②,若D 是ABC 的外角平分线的交点,则BDC ∠=;° (3)如图③,点G 在BC 的延长线上,若E 是ABC ∠,ACG ∠的平分线的交点,探索BEC ∠与BAC ∠的数量关系,并说明理由;(4)在(3)的条件下,若CCCC ∥AAAA ,求ACB ∠的度数. 【答案】(1)115 (2)65(3)2BAC BEC ∠=∠,理由见解析 (4)80° 【解析】【分析】三角形的外角的性质、三角形内角和定理,牢记三角形的外角的性质(三角形的一个外角等于与其不相邻的两个内角的和)是解题的关键.(1)根据角平分线的定义可求得()12CBI BCIABC ACB ∠+∠=∠+∠,据此即可求得答案. (2)根据三角形的外角的性质可求得FBC MCB ∠+∠的值,根据角平分线的定义可求得()12CBD BCD FBC MCB ∠+∠=∠+∠,据此即可求得答案. (3)根据角平分线的定义和三角形的外角的性质可求得()111222ECG BAC ABC BAC ABC ∠=∠+∠=∠+∠,结合ECG CBE BEC ∠=∠+∠即可求得答案.(4)根据平行线的性质求出ACE ∠,再由角平分线的定义求出ACG ∠,则由平角的定义可得答案. 【小问1详解】解:∵180BAC ABC ACB ∠+∠+∠=°,50BAC ∠=°, ∴130ABC ACB ∠+∠=°. ∵BI 是ABC ∠的平分线,∴12∠=∠CBI ABC . ∵CI 是ACB ∠的平分线, ∴12∠=∠BCI ACB . ∴()111306522CBI BCI ABC ACB ∠+∠=∠+∠=×°=°. ∴()18018065115BIC CBI BCI ∠=°−∠+∠=°−°=°. 故答案为:115. 【小问2详解】解:∵FBC ∠是ABC 的外角, ∴FBC BAC ACB ∠=∠+∠. ∵MCB ∠是ABC 的外角, ∴MCB BAC ABC ∠=∠+∠.∴180********FBC MCB BAC ACB BAC ABC BAC ∠+∠=∠+∠+∠+∠=°+∠=°+°=°. ∵BD 是FBC ∠的平分线,∴12CBD FBC ∠=∠. ∵CD 是MCB ∠的平分线,∴12BCD MCB ∠=∠. ∴()1123011522CBD BCD FBC MCB ∠+∠=∠+∠=×°=°. ∴()18018011565BDC CBD BCD ∠=°−∠+∠=°−°=°. 故答案为:65.小问3详解】解:2BAC BEC ,理由如下: ∵BE 是ABC ∠的平分线, ∴12CBE ABC ∠=∠. ∵ACG ∠是ABC 的外角, ∴ACG BAC ABC ∠=∠+∠. ∵CE 是ACG ∠的平分线,【第16页/共16页 ∴()11112222ECG ACG BAC ABC BAC ABC ∠=∠=∠+∠=∠+∠. ∵ECG ∠是BCE 的外角,∴ECG CBE BEC ∠=∠+∠. ∴111222BAC ABC ABC BEC ∠+∠=∠+∠. ∴2BAC BEC .【小问4详解】解:∵CE AB ∥,50ACE A ∴∠=∠=°,2100ACG ACE ∴∠=∠=°,18080ACB ACG ∴∠=°−∠=°。

八年级数学上册第一次月考试题及答案

八年级数学上册第一次月考试题及答案

八级数学阶段质量分析与反馈2013010 A. (1), (2) B. (1), (4) C. (2), ( 3) D. (3), (4)2. 下列两个三角形中,一定全等的是().(A)有一个角是40 °,腰相等的两个等腰三角形(B)两个等边三角形(C)有一个角是100°,底相等的两个等腰三角形(D)有一条边相等,有一个内角相等的两个等腰三角形3. 如图,AB=AC , AC M BC , AH 丄BC 于H , BD 丄AC于D , CE 丄AB 于E , AH、BD CE交于O ,图中全等直角三角形的对数().A. 34. 如图,已知:△ ABE^A ACD Z仁/ 2, / B=Z C,不正确的是().第3题图第4题图第5题图6. 平面内点A (-1 , 2)和点B (-1, 6)的对称轴是( )A . x轴B. y轴C.直线y=4 D .直线x=-17. 如图所示,已知AB=AC PB=PC下面的结论:① BE=CE②AP I BC;③AE平分/ BEC④/ PEC=/ PCE其中正确结论的个数有( )答卷时间:100分钟、选择题:本大题共10小题,每题2分;共计20分A.AB=ACB. / BAE=/ CADC.BE=DCD.AD=DE5.已知:如图, AC是/ BAD和/BCD的角平分线,则△判定().A. AAAB. ASA或AASC. SSSD. SAS卷面分值:100分1.下图中的轴对称图形有( ).(!) <2) 433 <4>A . 1个B 2 个C 3个D 4 个&如图,已知/ 1 = / 2,AC=AD,增加下列条件:①AB=AE,②BC=ED,③/ C=Z D,④ / B= / E,其中能 使厶ABC A AED 的条件有( )个.A.4B.3C.2D.1 9 .如图,在△ ABC 中,AB=AC AD 是/ BAC 的平分线,DEI AB DF 丄AC,垂足分别为 E 、F ,则下列四个结论:①AD 上任意一点到点 C B 距离相等;②AD 上任意一点到边 AB AC 距离相等; ③BD=CD AD 丄BC;④/ BDE=/ CDF 其中正确的个数为( A.1B.2C.3D.4BC 的中点,DE 平分/ ADC 如图,则下列说法正确的有几个(大家一起热烈地讨论交流,小红第一个得出正确答案,是( (1) AE 平分/ DAB ( 2)^ EBA^A DCE (3) AB+CD=AD( 4) AE 丄 DE ( 5) AB//CD(A ) 2 个 (B ) 3 个 (C ) 4 个 (D ) 5 个 二、填空题:共10小题, 每小题3分,共计30分。

人教版八年级数学上册第一次月考测试题(含答案)

人教版八年级数学上册第一次月考测试题(含答案)

八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.208.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= .10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= .12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为cm.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 时,△ABC和△PQA全等.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90°.【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= 60°.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证△AEC≌△ADB,可得∠ABD=∠2,根据外角等于不相邻内角和即可求解.【解答】解:∵∠BAC=∠DAE,∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠CAE=∠1,∵在△AEC和△ADB中,,∴AEC≌△ADB,(SAS)∴∠ABD=∠2,∵∠3=∠ABD+∠1,∴∠3=∠2+∠1=60°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证AEC≌△ADB是解题的关键.12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 2 块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为20 cm.【考点】角平分线的性质;等腰直角三角形.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为20cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E,∴∠DEC=∠A=90°在△ACD与△ECD中,∵,∴△ACD≌△ECD(ASA),∴AC=EC,AD=ED,∵∠A=90°,AB=AC,∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm.故答案为:20.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有 4 个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= 135 °.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为12 cm.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求DE的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.【点评】本题主要考查了直角三角形全等的判定(HL)以及全等三角形的性质(全等三角形的对应边相等).连接BE是解决本题的关键.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 5或10 时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.都是所求的点.P和P1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定.【分析】①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断.【解答】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠CAF(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,即可解题;(2)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题;(3)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题.【解答】证明:(1)∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF;(2)①∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD;②∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAF=∠CAD+∠DAF=90°+∠CAD,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAF是解题的关键.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为10﹣4t cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°。

云南省曲靖市麒麟区第四中学2024--2025学年八年级上学期10月第一次月考数学试卷(含答案)

云南省曲靖市麒麟区第四中学2024--2025学年八年级上学期10月第一次月考数学试卷(含答案)

云南省曲靖市麒麟区第四中学2024-2025学年八年级上学期10月第一次月考数学试卷八年级 数学(人教版) 试卷范围:八上11.1~12.2(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.答题前请在答题卡指定位置填写学校、班级、姓名等信息。

答案书写在答题卡相应位置上,答在试题卷或草稿纸上的答案无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共15小题,每个小题只有一个正确选项,每小题2分,共30分)1.下列长度的三条线段能组成三角形的是( )A.3,8,4B.5,10,6C.4,4,8D.3,7,112.下列各组图形中,两个图形属于全等图形的是( )A. B. C. D.3.直角三角形的一个锐角是,则它的另一个锐角是( )A. B. C. D.或4.下列说法正确的是( )A.三角形的外角和为 B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.两条边及其一角相等的两个三角形全等5.如图,为了使自行车稳定停放,停放时常常放下它的脚架,这里所运用的几何原理是( )A.两点之间,线段最短B.三角形具有稳定性C.两点确定一条直线D.垂线段最短6.已知图中的两个三角形全等,则等于()60︒30︒60︒120︒30︒60︒360︒1∠A. B. C. D.7.如图,在中,,,则( )A. B. C. D.8.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )A.SASB.ASAC.AASD.SSS9.如图,的边上的高是( )A.线段B.线段C.线段D.线段10.如图,如果,那么下列结论不正确的是( )A. B. C. D.11.小刚要将一块如图所示的三角形纸板分成面积相同的两部分,则图中他所作的线段应该是的()50︒58︒60︒72︒ABC △55B ︒∠=40C ︒∠=DAC ∠=75︒85︒95︒100︒ABC △BC AF BD BF BEABC FED △≌△BD EC =//AB EF //AC FD BD DF=AD ABC△A.高线B.中线C.角平分线D.以上都不是12.如图,已知,下列所给条件不能证明的是( )A. B. C. D.13.多边形的每个内角均为,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形14.下列尺规作图的语句正确的是( )A.残长射线到点B.延长线段至点,使得C.作直线D.以为圆心,任意长为半径画弧15.如图,是的角平分线,,交于点,,交于点,若,则的度数为( )A. B. C. D.二、填空题(本大题共4小题,每小题2分,共8分)16.一个七边形的内角和度数为________.17.已知的三条边长均为整数,其中两边长分别是2和5,第三边长为奇数,则此三角形的周长为________.18.如图,,,若,则的度数为________.ABC DCB ∠=∠ABC DCB △≌△A D ∠=∠AB DC =AC DB =ACB DBC∠=∠120︒AB C AB C AC BC =3cmAB =O AD ABC △//DE AC AB E //DF AB AC F 150︒∠=2∠40︒45︒50︒60︒ABC △AB AC =BD CD =70B ︒∠=DAC ∠19.如图,先将两个全等的直角三角形、重叠在一起,再将三角形沿方向平移,、相交于点.若,,则阴影部分的面积为________.三、解答题(本大题共8小题,共62分)20.(6分)一个多边形的内角和是外角和的3倍,求这个多边形的边数.21.(6分)如图,,,求证:.22.(7分)如图,在与中,点、、、在一条直线上,,,.(1)求证::(2)若,,求线段的长.23.(7分)为了测量一栋6层楼的高度,在旗杆与楼之间选定一点,测得旗杆顶的视线与地面的夹角,测得楼顶的视线与地面的夹角,测各点到楼底的距离与旗仠的高度都等于12米,测得旗杆与楼之间的距离米.求这栋6层楼的高度.ABC DEF DEF CA 2cm AB EF G 8cm BC =3cm GE =2cm 90B D ︒∠=∠=AB AD =ABC ADC △≌△ABC △DEF △B E C F //AC DF AC DF =A D ∠=∠ABC DEF △≌△7BF =3CE =BE CD P C PC 33DPC ︒∠=A PA 57APB ︒∠=P PB CD 30BD =24.(8分)如图,是的高,、是的角平分线,且.(1)求的度数;(2)若,求的度数.25.(8分)如图,在中,,点是的中点,点在上.(1)找出图中所有全等的三角形:(2)任选一组你写出的全等三角形进行证明.26.(8分)如图,点是的平分线与的平分线的交点.(1)若,,则________;(2)探究与的数量关系,并说明理由.27.(12分)如图,与相交于点,,,,点从点出发,沿方向以的速度运动,点同时从点出发,沿方向以的速度运动,当点到达点时,、两点同时停止运动,设点的运动时间为.AD ABC △AE BF ABC △30CBF ︒∠=BAD ∠70AFB ︒∠=DAE ∠ABC △AB AC =D BC E AD D CBE ∠CAB ∠60BAC ︒∠=40D ︒∠=DBE ∠=︒C ∠D ∠AE BD C AC EC =BC DC =8cm AB =P A A B A →→2cm /s Q D D E →1cm /s P A P Q P s t(1)当点在运动时,________;(用含的代数式表示)(2)求证:;(3)当,,三点共线时,求的值.P A B →BP =t AB ED =P Q C t2点·教学评——质量跟踪练习题(一)八年级 数学(人教版) 参考答案一、选择题(本大题共15小题,每小题2分,共30分)题号123456789101112131415答案BDAABACBADBCCDC二、填空题(本大题共4小题,每小题2分,共8分)16.17.1218.19.13三、解答题(本大题共8小题,共62分)20.(6分)解:设这个多边形的边数为,则,解得:,这个多边形的边数是8....................................................................................................6分21.(6分)证明:,和都是直角三角形,在和中,,.........................................................................................6分22.(7分)(1)证明:,在和中,,;...........................................................................................4分(2),,,,,,...................................................................................................................7分23.(7分)解:由题意可得:,,,900︒20︒n (2)1803603n ︒︒-+=⨯8n =∴90B D ︒∠=∠= ABC ∴△ADC △Rt ABC ∴△Rt ADC △AB ADAC AC =⎧⎨=⎩Rt Rt (HL)ABC ADC ∴△≌△//AC DF ACB F∴∠=∠ABC △DEF △A DAC DF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ABC DEF ∴△≌△ABC DEF △≌△BC EF ∴=BE CE CF CE ∴+=+BE CF ∴=7BF = 3CE =2BE CF ∴==90CDP PBA ︒∠=∠⇒57APB ︒∠= 33PAB ︒∴∠=,米,米,米,在和中,,,米,这栋6层楼高18米.........................................................................................................7分24.(8分)解:(1)平分,,,是的高,,,...........................................................................................4分(2),,,,平分,,..............................................................8分25.(8分)解:(1),,;....3分(2),点是的中点,,在和中,,,,33PAB CPD ︒∴∠=∠=30BD = 12PB =18DP BD PB ∴=-=BAP △DPC △CDP PBA PAB CPD CD PB ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)BAP DPC ∴△≌△18AB DP ∴==∴BF ABC ∠30CBF ︒∠=260ABC CBF ︒∴∠=∠=AD ABC △90ADB ︒∴∠=906030BAD ︒︒︒∴∠=-=AFB FBC C ∠=∠+∠ 70AFB ︒∠=703040C ︒︒︒∴∠=-=18080BAC ABC C ︒︒∴∠=-∠-∠=AE BAC ∠40BAE ︒∴∠=403010DAE BAE BAD ︒︒︒∴∠=∠-∠=-=ABE ACE △≌△BDE CDE △≌△ABD ACD △≌△AB AC = D BC BD CD ∴=ABD △ACD △AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩(SSS)ABD ACD ∴△≌△BDE CDE ∴∠=∠在和中,,,,在和中,,.................................................................................................8分(答案不唯一,推理正确即可得分)26.(8分)解:(1)70;..................................................................................................3分(2),理由如下:,平分,平分,,,,,,......................................................................................................................8分27.(12分)解:(1);........................................................................................3分(2)在和中,,,;.....................................................................................................................7分(2)根据题意得:,,则,,,在和中,BDE △CDE △BD CD BDE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩(SAS)BDE CDE ∴△≌△BE CE ∴=ABE △ACE △AB AC AE AE BE CE =⎧⎪=⎨⎪=⎩(SSS)ABE ACE ∴△≌△2C D ∠=∠CBE CAB C ∠=∠+∠ AD CAB ∠BD CBE ∠12CBD CBF ∴∠=∠12CAD CAB ∠=∠12CBD CAD C ∴∠=∠+∠CBD D CAD C ∠+∠=∠+∠ 12CAD C D CAD C ∴∠+∠+∠=∠+∠2C D ∴∠=∠82t -ABC △EDC △AC EC ACB ECD BC DC =⎧⎪∠=∠⎨⎪=⎩(SAS)ABC EDC ∴△≌△AB ED ∴=DQ t =2AP t =8EQ t =-ABC EDC △≌△A E ∴∠=∠8cmDE AB ==ACP △ECQ △,,,当时,,解得:,当时,,,解得:,综上所述,当、、三点共线时,的值为或.......................................12分A E AC ECACP ECQ ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ACP ECQ ∴△≌△AP EQ ∴=∴04t ……28t t =-83t =48t <…162AP t =-1628t t ∴-=-8t =∴P C Q t 8s 8s 3。

人教版八年级(上)第一次月考数学试卷及答案

人教版八年级(上)第一次月考数学试卷及答案

人教版八年级(上)第一次月考数学试卷一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是(A.带①去B.带②去C.带③去D.带①和②去3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C 都可以4.下面四个图形中,线段BE 是△ABC 的高的图是()A.B.C.D.5.适合条件∠A= ∠B= ∠C 的△ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.一个多边形的内角和比它的外角和的2 倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.87.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,E,∠B=40°,∠BAC=82°,则∠DAE=()A.7 B.8° C.9° D.10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()A.67° B.46° C.23° D.不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BFC.∠A=∠DD.AB=BC12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是15.三角形的三边长分别为5,1+2x,8,则x的取值范围是16.十边形的外角和是度;如果十边形的各个内角都相等,那么它的一个内角是度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于度.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=.cm,∠C=度.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=度.17题19题18题20题三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?24.如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于E点.求证:∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.人教版八年级(上)第一次月考数学试卷答案一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+2>4,能组成三角形;B中,1+2<4,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,2+3<6,不能组成三角形.故选A.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.4.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.5.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选B.6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.7.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半【考点】命题与定理.【分析】根据三角形的中线、高、角平分线的概念,知:不同形状的三角形的中线、角平分线总在三角形的内部;不同形状的三角形的高不一定总在三角形的内部;三角形的内角和是180°;直角三角形的斜边上的中线等于斜边的一半.【解答】解:A、钝角三角形的高在三角形的外部.故错误;B、根据内角和定理,可知三角形中至少有一个内角不小于60°.故正确;C、直角三角形有3 条高,其中2 条在它的直角边上.故错误;D、直角三角形斜边上的中线等于斜边的一半,故错误.故选B.8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,【分析】由于AB=AC,∠BAD=∠CAD,利用等边对等角,等腰三角形三线合一定理,可知AD⊥BD,BD=CD,∠B=∠C,从而易证△ABD≌△ACD.【解答】解:∵在△ABC 中,AB=AC,∠BAD=∠CAD,∴AD⊥BD,BD=CD,∠B=∠C,∴△ABD≌△ACD(SSS).故选D.9.如图,在△ABC 中,AD 平分∠BAC 交BC 于D,AE⊥BC 于E,∠B=40°,∠BAC=82°,则∠DAE=()【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理可求得∠BAE 的度数,再根据角平分线的定义可求得∠BAD 的度数,从而不难求解.【解答】解:∵AE⊥BC 于E,∠B=40°,∴∠BAE=180°﹣90°﹣40°=50°,∵AD 平分∠BAC 交BC 于D,∠BAC=82°,∴∠BAD=41°,∴∠DAE=∠BAE﹣∠BAD=9°.故选C.10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=(A.67° B.46° C.23° D.不能确定【考点】全等三角形的判定与性质.【分析】此题可先连接AC,由已知AB=CD,BC=AD,又AC=AC 证△ABC≌△ACD,得∠D=∠B=23°.【解答】解:连接AC,∵AB=CD,BC=AD(已知),AC=AC,∴△ABC≌△ACD,∴∠D=∠B=23°.故选:C.11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠DD.AB=BC【考点】全等三角形的判定.【分析】四项分别一试即可,要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选A.12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是11cm或13cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当三边是3,3,5时,能构成三角形,则周长是11;当三边是3,5,5时,能构成三角形,则周长是13.所以等腰三角形的周长为11cm或13cm.故填11cm或13cm.15.三角形的三边长分别为5,1+2x,8,则x的取值范围是1<x<6.【考点】三角形三边关系.【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【解答】解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.16.十边形的外角和是360度;如果十边形的各个内角都相等,那么它的一个内角是144度.【考点】多边形内角与外角.【分析】任何凸多边形的外角和都是360度.因而每个外角的度数是360°÷边数,内角与外角互为邻补角,即可求得它的一个内角.【解答】解:∵任何多边形的外角和都等于360度,∴十边形的外角和是360度;∵每个外角的度数是360°÷10=36°,∴它的一个内角是180°﹣36°=144度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于360度.【考点】三角形内角和定理.【分析】由题意知,这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可知.【解答】解:∵∠A+∠E+∠C=180°,∠D+∠B+∠F=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是AE=BF(此题答案不唯一).【考点】全等三角形的判定.【分析】要使△ADE≌△BCF,现有条件为二角分别对应相等,只要再添加一边对应相等即可,任意一边都可.【解答】解:∵AE∥BF,∴∠A=∠B,又∵∠E=∠F,AE=BF,∴△ADE≌△BCF(ASA).故填AE=BF(此题答案不唯一).19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=5cm,∠C= 40度.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等,全等三角形的对应角相等即可解决.【解答】解:∵△ABE≌△ACD,∴AE=AD=5cm;∠C=∠B=40°.故分别填5,40.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=70度.【考点】全等三角形的判定与性质.【分析】由SSS先证明△ABD≌△CDB,得出∠CBD=∠ADB=30°,再由SAS证明△ABE≌△CDF,得出∠DFC=∠AEB=100°,利用三角形的外角的性质得∠BCF=∠DFC﹣∠CBF=70°【解答】解:∵AB=DC,AD=BC,又BD=DB,∴△ABD≌△CDB,∴∠CBD=∠ADB=30°,∠ABD=∠CDB,又AB=CD,BE=DF,∴△ABE≌△CDF(SAS),∴∠DFC=∠AEB=100°,∴∠BCF=∠DFC﹣∠CBF=100°﹣30°=70°.故填空答案:70°.三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.【考点】全等三角形的判定与性质.【分析】根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.【解答】证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠BAC=∠DCA,∠DAC=∠BCA,根据ASA推出△BAC≌△DCA,根据全等三角形的性质得出即可.【解答】证明:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△BAC和△DCA中∴△BAC≌△DCA,∴AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【考点】平行线的判定与性质.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.,∴△ADF≌△【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵,∴△ADF≌△BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.。

2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)

2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)

2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。

八年级(上)数学第一次月考试卷(附答案)

八年级(上)数学第一次月考试卷(附答案)

(第6小题)(第3小题)CBA2020-2021学年度(上)八年级数学第一次月考试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1、下列各数是无理数的是( )A 、73 B 、4 C 、5 D 、••10.2 2、下列说法错误的是( )A 、1的平方根是1B 、-1的立方根是-1C 、2是2的算术平方根D 、0是0的平方根3、如图,在Rt △ABC 中,∠B=90°,以AC 为直径的圆恰好过点B .若AB=8,BC=6,则 阴影部分的面积是( ) A 、24-100πB 、48-100πC 、24-25πD 、48-25π4、如图,一圆柱高8㎝,底面半径2㎝,一只蚂蚁从A 点爬到点B 处 吃食,要爬行的最短路程(π取3)是( ) A 、20㎝ B 、10㎝ C 、14㎝ D 、无法确定5、已知实数086=-+-y x y x 满足、,那么以y x 、的值为两边长作直角三角形, 它的第三边长为( )A 、10B 、72C 、10或72D 、以上均不对 6、如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1、l 2、l 3上,且相邻两平行线之间的距离均为1,则AC 的长是( )A 、5B 、6C 、3D 、10二、填空题(本大题共6小题,每小题3分,共18分) 7、6的相反数是 .8、81的平方根是 .9、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2= . 10、若n 20是整数,则正整数n 的最小值为 .11、如图,数轴上有三点A 、B 、C,其中点A 表示的数是2-,点B 表示的数是1,且AB=BC,则点C表示的数是 .12、锐角等腰三角形的腰长为10㎝,一边上的高为8㎝,则这个锐角等腰三角形的底边长是㎝.三、(本大题共5小题,每小题6分,共30分)13、(1)计算: 331327+-(2)如图,已知Rt ∆ABC,∠ACB=90︒,AC=15和BC=20,求斜边上的高CD 的长.14、计算: 22832--15、计算 :()()()2323522-+--16、求等式 ()1612=-x 中x 的值.17、如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请按要求作三角形(要求三角形各顶点落在小正方形的顶点上): (1)在图1中作ABC Rt ∆,使三边长都为有理数;(第4小题)BAADCB0 B C-2 1 3 42•••2-A(2)在图2中作ABC ∆,使得三边边长分别是5、10、17.四、(本大题共3小题,每小题8分,共24分)18、若12+x 的平方根是±5,52-+y x 的立方根是3,求22y x +的平方根.19、已知10的整数部分是a,小数部分是b ,求31a ()310+b 的值.20、两张同样大小的长方形纸片,每张分成7个大小相同的小长方形,且每个小长方形的宽均为a(如图),如图放置,重合的顶点记作A ,顶点C 在另一张纸的其中一条分隔线DE 上,若 262=CD ,求AB 的长是多少?五、(本大题共2小题,每小题9分,共18分)21、如图,在长方形ABCD 中,AD =8,CD =6,将长方形ABCD 沿CE 折叠后,使点D 恰好落 在对角线AC 上的点F 处. (1)求EF 的长; (2)求梯形ABCE 的面积.22、观察下列一组式子的变形过程,然后回答问题:①()1212121212)12)(12()12(11212-=--=--=-+-⨯=+;②()()();2323232323)23)(23(23123122-=--=--=-+-⨯=+③()()()4545454545)45)(45(45145122-=--=--=-+-⨯=+.(1)561+= ;991001+= ;(2)请你用含n (n 为正整数)的关系式表示上述各式子的变形规律;(3)利用上面的结论,求下列式子的值.99100198991341231121++++++++++六、(本大题共1小题,共12分)23.已知:如图,在Rt △ABC 中,∠C=90°,AB=5cm ,AC=3cm ,动点P 从点B 出发沿射线BC 以1cm/s 的速度移动,设运动的时间为t 秒. (1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值; (3)当△ABP 为等腰三角形时,求t 的值.图2DEa aa a a a a图12020-2021学年度(上)八年级数学第一次月考参考答案一.选择题1.C2.A3.C4.B5.C6.D 二.填空题7. 6- 8. 3± 9. 8 10. 5 11. 22+ 12. 12或 5413.(1) ………3分(2)解:,625201522222=+=+=∆BC AC AB ABC Rt 中,在25=∴AB CD CD AB BC AC SABC2521201521,2121⨯=⨯⨯⋅=⋅=∴∆即 )(12cm CD =∴ ………6分 14. 0………6分 15. 548-………6分16. 35-==x x 或 ………6分(写对1个得3分) 17.………3分………6分18. 解:由题意得32352,)5(12=+-±=+y x x4,12==∴y x………4分1044122222±=+±=+±∴y x ………8分19. 解:由题意得310,3-==b a………4分1910)310)(310(331)310(31=-=-+⨯=+∴b a………8分 20. 解:由题意得AD=6a,AC=7a26)6(7,22222=-=-∆a a CD AD AC ACD )即(中,在2=∴a 6分 277==∴a AB ………8分21. 解:设DE=x ,则AE=8-x ,由折叠性质得,EF=DE=x ,CF=CD=6,则AE=8-x 在Rt ACD ∆中,1006822222=+=+=CD AD AC 10=∴AC 4610=-=∴AF 在RT AEF ∆,222)8(4x x -=+ 533==∴=∴AE EF x ,………6分396)85(21=⨯+=∴ABCE S 梯形 ………9分22. (1)99100;56--………2分 (2)n n nn -+=++111………5分(3)99-10098-993-42-31-2+++++=解:原式1001-+= 9101-=+= ………9分23.(1)在Rt △ABC 中,BC 2=AB 2-AC 2=52-32=16,∴BC=4(cm );………3分(2)由题意知BP=tcm ,①如图①,当∠APB 为直角时,点P 与点C 重合,BP=BC=4cm ,即t=4s ; ②如图②,当∠BAP 为直角时,BP=tcm ,CP=(t-4)cm ,AC=3cm , 在Rt △ACP 、Rt △BAP 中,由勾股定理得AP 2=32+(t-4)2225-=t ,解得:t=425故当△ABP 为直角三角形时,t=4s 或t=s425………7分32图1B C A图2ABC(3)①如图③,当AB=BP时,t=5s;………8分②如图④,当AB=AP时,BP=2BC=8cm, t=8s;………9分③如图⑤,当BP=AP时,AP=BP=tcm,CP=(4-t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,即t2=32+(4-t)2,25解得:t=825………12分综上所述:当△ABP为等腰三角形时,t=5s或t=8s或t=s8。

人教版八年级上册数学《第一次月考》试卷及答案【完美版】

人教版八年级上册数学《第一次月考》试卷及答案【完美版】

人教版八年级上册数学《第一次月考》试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.(-9)2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或73.式子12aa+-有意义,则实数a的取值范围是()A.a≥-1 B.a≠2 C.a≥-1且a≠2 D.a>24.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.75.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁6.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°751-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米10.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.21a+8a=__________.3x2-x的取值范围是________.4.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B 恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.5.如图,∠1,∠2,∠3的大小关系是________.6.如图,已知OA OB=,数轴上点A对应的数是__________。

八年级数学上册第一次月考试卷【含答案】

八年级数学上册第一次月考试卷【含答案】

八年级数学上册第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. -3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。

()2. 0是最小的自然数。

()3. 1是最大的质数。

()4. 两条对角线相等的四边形一定是矩形。

()5. 任何两个奇数相加的和都是偶数。

()三、填空题(每题1分,共5分)1. 一个数的平方是9,这个数是______。

2. 两个质数相乘的积是35,这两个质数是______和______。

3. 如果一个等腰三角形的底边长是8,腰长是10,那么这个三角形的周长是______。

4. 下列各数中,最大的合数是______。

5. 下列各数中,最小的负整数是______。

四、简答题(每题2分,共10分)1. 请写出2的所有因数。

2. 请写出3的所有倍数,不超过20。

3. 请写出5的所有质因数。

4. 请解释什么是等腰三角形。

5. 请解释什么是因数分解。

五、应用题(每题2分,共10分)1. 一个长方形的长是10,宽是5,请计算这个长方形的面积。

2. 一个正方形的边长是6,请计算这个正方形的周长。

3. 如果一个数的平方是16,请计算这个数的立方。

4. 请计算下列各数的和:2 + 3 + 4 + 5 + 6。

5. 请计算下列各数的差:10 3 2 1。

六、分析题(每题5分,共10分)1. 请分析下列各数中,哪些是偶数,哪些是奇数:1, 2, 3, 4, 5, 6, 7, 8, 9, 10。

2. 请分析下列各数中,哪些是质数,哪些是合数:2, 3, 4, 5, 6, 7, 8, 9, 10, 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学月考试卷 班级 姓名 分数
一、选择题 (每题3分)
1. 如图1,在①AB=AC ②AD=AE ③∠B=∠C ④BD=CE 四个条件中,能证明△ABD 与△ACE 全等的条件顺序是( )
A. ① ② ③
B. ② ③ ④
C. ① ② ④
D. ③ ② ④
D
C
B A
E
(3图)
2. 下列条件中,能让△ABC ≌△DFE 的条件是( )
A. AB=DE ,∠A=∠D ,
BC=EF; B. AB=BC ,∠B=∠E ,
BE=EF; C. AB=EF ,∠A=∠D , AC=DF; D. BC=EF ,∠C=∠F , AC=DF.
3. 如图,CD ⊥AB,BE ⊥AC,垂足为D 、E ,BE 、CD 相交于O 点,∠1=∠2,图中全等的三角形共有( )
A.1对
B.2对
C. 3对
D.4对
4. 两个直角三角形全等的条件是( )
A.一个锐角对应相等 ;
B.一条对边对应相等;C .两直角边对应相等;D.两个角对应相等
5. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处
D.4处
(7图)
(5图)
6. 在△ABC 和△A ′B ′C ′中,AB=A ′B ′,∠B=∠B ′,补充条件后仍不一定能保证△ABC ≌△A ′B ′C ′,
则补充的这个条件是:( )
A 、BC=
B ′
C ′ B 、∠A=∠A ′ C 、AC=A ′C ′
D 、∠C=∠C ′
D
C B A
2
1O
E
A
7. 如图,OA=OC ,OB=OD ,则图中全等三角形共有( )
A 、2对
B 、3对
C 、4对
D 、5对
8. 两个三角形有两个角对应相等,正确的说法是( )
A 、两个三角形全等
B 、如果一对等角的角平分线相等,两三角形就全等
C 、两个三角形一定不全等
D 、如果还有一个角相等,两三角形就全等
9. 已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y 轴对称,那么点A 的对应
点A'的坐标为( ).
A .(-4,2)
B .(-4,-2)
C .(4,-2)
D .(4,2)
10. 在△ABC 中,∠B 的平分线与∠C 的平分线相交于O ,且∠BOC=130°,则∠A=[ ]
A 50°
B 60°
C 80°
D 100°
二、填空题 (每题3分)
11. 如图,已知AB =AD ,需要条件_________可得△ABC ≌△ADC ,根据是
________.
12. 已知线段AB ,直线CD ⊥AB 于O ,AO =OB ,若点M 在直线CD 上,则MA =______,若NA =NB ,则N 在___________上.
13. 如图,已知∠CAB=∠DBA 要使△ABC ≌△BAD,只要增加的一个条件是________ (只写一
个)。

D
C
B
A
(14图)
14. 如图,AE=AD, ∠B=∠C,BE=6,AD=4,则AC=______ .
15. 如图,已知∠DCE=∠A=90°,BE ⊥AC 于B,且DC=EC,BE=8cm,则AD+AB=_____ .
A
B
D
C
B A
E
D
C
B
A
E
16. 在ABC
△中∠BAC和∠ABC的平分线相交于P,若P到AB的距离为10,则它到边AC和BC的距离和为.
17. 如图,已知AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是__________.
18. 在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离等于_______________。

19. 若P关于x轴的对称点为()1
,
2
1
+
-
+a
b
a
P,关于y轴对称的点为()2
,
4
2
+
-b
b
P,则P点的坐标为。

20. 如图,在ABC和△FDE中,AD=FC,AB=EF,当添加条件时,就可得到△ABC≌△FED。

(只需填写一个正确条件即可)
三、证明题(21—22每题6分,23—26每题7分)
F
E
21. 如图,已知AB CD =,AE DF =,CE BF =.
求证:AF DE =.
22. 如图,已知12∠=∠,34∠=∠. 求证:BE CD =.
23. 如图,已知A F E B ,,,四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =. 求证:ACF BDE △≌△.
B
24. 如图,在ABC △中,点E 在BC 上,点D 在AE 上. 已知ABD ACD BDE CDE ∠=∠∠=∠,.求证:BD CD =.
25. 如图,AB=AC,AD=AG,AE ⊥BG 交BG 的延长线于E ,AF ⊥CD 交CD 的延长线于F.求证:
AE=AF.
B E
C
A F D
E B
C
D
F C
A E G
26. 如图,给出五个等量关系:①
AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤
DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出
一种情况),并加以证明.
A B
答案:
一、选择题
1. C
2. D ;
3. D
4. C
5. D
6. C
7. C
8. B
9. D 10. C
二、填空题
11. BC =DC ,SSS . 12. MB , 直线CD 13. AC=BD(答案不唯一) 14. 10
15. 8cm 16. 20, 17. AD=BC 18. 4,提示利用角平分线的性质。

19. ( -9,-3) 提示:()1,21+-+a b a P 与 ()2,42+-b b P 两坐标互为相反数。

20. BC=ED 或∠A ∠F 或AB ∥EF 或∠B=∠E=RT ∠等
三、证明题
21.
BF CE =BF EF CE EF ∴+=+BE CF ∴=又AB CD =,AE DF =,根据“SSS ”证ABE DCF △≌△.B C ∴∠=∠,又AB CD =,BF CE =,根据SAS 证ABF DCE △≌△AF DE ∴=.
22. 34∠=∠,AD AE ∴=, 又1324∠+∠=∠+∠ 即ADC AEB ∠=∠,
又A A ∠=∠根据ASA 证ABE ACD △≌△, BE CD ∴=.
23. 证明:AC CE ⊥,BD DF ⊥(已知)
90ACE BDF ∴∠=∠=(垂直的定义)
在Rt ACE △和Rt BDF △中,
()
()AE BF AC BD =⎧⎨
=⎩
已知已知 Rt HL ACE Rt BDF ∴△≌△()
A B ∴∠=∠(全等三角形的对应角相等)
()AE BF =已知
AE EF BF EF ∴-=-(等式性质) 即AF BE =
()()()AF BE ACF BDE A B AC BD =⎧⎪
∠=∠⎨⎪=⎩已证在和中已证已知△△,
SAS ACF BDE ∴△≌△().
24. 提示:证明:ABD ACD △≌△.
25. Rt △ABE ≌ Rt △ECD(AAS)
26. 情况一:已知:AD BC AC BD ==,
求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠) 情况二:已知:D C DAB CBA ∠=∠∠=∠,
求证:AD BC =(或AC BD =或CE DE =)。

相关文档
最新文档