实数的混合运算含答案
初一数学实数的运算试题答案及解析
初一数学实数的运算试题答案及解析1.计算:= .【答案】﹣14【解析】先把二次根式、三次根式化简,再作乘法运算.解:原式=10×(﹣2)×0.7=﹣14.故答案为:﹣14.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式的运算.2.不用计算器,计算:= .【答案】5【解析】根据立方运算法则,分别相乘,直接得出答案.解:()3=××=5.故答案为:5.点评:此题主要考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式乘法运算.3.有一个数值转换器,原理如下:当输入x为4时,输出的y的值是.【答案】y=【解析】本题有x=4很容易解出它的算术平方根,在判断它的算术平方根是什么数,最后即可求出y的值.解:∵x=4时,它的算术平方根是2又∵2是有理数∴取2的算术平方根是∴y=点评:本题主要考查了算术平方根的计算和有理数、无理数的概念,解题时要掌握数的转换方法.4.= ;= .【答案】5,2【解析】根据幂的乘方法则进行计算即可.解:()2==5;()2==2.故答案为:5,2.点评:本题考查的是实数的运算,熟知幂的乘方法则是解法此题的关键.5.在下面算式的两个方框内,分别填入两个绝对值不相等的无理数,使得它们的积恰好为有理数,并写出它们的积.【答案】()()=2【解析】只要满足两个绝对值不相等的无理数,使得它们的积恰好为有理数即可,可以任意列举出两个不相等的无理数,如:和,()(+1)=3﹣1=2满足题意.解:和+1是两个绝对值不相等无理数,那么,()()=3﹣1=2,即:这两个数满足是两个绝对值不相等的无理数,且它们的积恰好为有理数,所以空白处应填:()()=2,答案不唯一.点评:本题主要考查写出两个绝对值不相等的无理数,使得它们的积恰好为有理数的能力,可以任意取两个绝对值不相等的无理数,使它们相乘,如满足乘积是有理数则可取,如不满足舍去即可,本题属于开放性类型.6.长方形的长为厘米,面积为平方厘米,则长方形的宽约为厘米.(,结果保留三个有效数字)【答案】5.66【解析】根据长方形面积公式,代入即可得出答案.解:长方形的面积=长×宽,∴长方形的宽为=4≈5.66.故答案为5.66.点评:本题主要考查了长方形面积公式,比较简单.7.是20a+2b的平方根,是﹣2a﹣b的立方根,则+= .【答案】6【解析】根据平方根与立方根的定义得到,解得,则原式=+,然后进行开方运算,再进行减法运算.解:根据题意得,解得,则原式=+=8﹣2=6.故答案为6.点评:本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了平方根与立方根.8.计算:(1)(2).【答案】(1)﹣2(2)0【解析】(1)先算乘方、开方和除法化为乘法得到原式=﹣16﹣6+4×(﹣)×(﹣2),再进行乘法运算,然后进行加减运算;(2)利用乘法的分配律进行计算.解:(1)原式=﹣16﹣6+4×(﹣)×(﹣2)=﹣16﹣6+20=﹣22+20=﹣2;(2)原式=﹣×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.9.计算:.【答案】2【解析】本题涉及立方根、乘方、二次根式及绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:=1﹣4+3+2=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、立方根、二次根式、绝对值等考点的运算.10.在算式□的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号【答案】D【解析】将加减乘除符号放入计算,比较即可得到结果.解:+=,﹣=0,×=,÷=1,则这个运算符号是除号.故选D.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.已知:≈5.196,计算:,保留3个有效数字,运算的结果是()A.1.73B.1.732C.1.74D.1.733【答案】A【解析】首先化简得3,再计算的值,可得,又由≈1.732,即可求得结果.解:=×3=≈1.732≈1.73.故选A.点评:此题考查了实数的计算.注意首先将二次根式化为最简二次根式,再进行计算.12.计算:的结果为()A.7B.﹣3C.±7D.3【答案】A【解析】先根据算术平方根的意义求出的值,再根据立方根的定义求出的值,然后再相减.解:原式=5﹣(﹣2)=5+2=7.故选A.点评:本题考查了实数的运算,熟悉算术平方根的意义和立方根的意义是解题的关键,解答此题时要注意要注意,负数的立方根是负数.13.若|a|=5,=3,且a和b均为正数,则a+b的值为()A.8B.﹣2C.2D.﹣8【答案】A【解析】利用绝对值以及二次根式的化简公式求出a与b的值,即可求出a+b的值.解:根据题意得:a=±5,b=±3,∵a和b都为正数,∴a=5,b=3,则a+b=5+3=8.故选A.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.的平方根与的差等于()A.6B.6或﹣12C.﹣6或12D.0或﹣6【答案】D【解析】首先利用二次根式的性质化简,然后利用实数的运算法则计算即可求解.解:∵=9,∴的平方根为±3,而=3,∴的平方根与的差等于0或﹣6.故选D.点评:此题主要考查了实数的运算,同时也利用了二次根式的性质及平方根的定义,是比较容易出错的计算题.15.若实数x,y,使得这四个数中的三个数相等,则|y|﹣|x|的值等于()A.B.0C.D.【答案】C【解析】此题可以先根据分母不为0确定x+y与x﹣y不相等,再分类讨论即可.解:因为有意义,所以y不为0,故x+y和x﹣y不等(1)x+y=xy=解得y=﹣1,x=,(2)x﹣y=xy=解得y=﹣1,x=﹣,所以|y|﹣|x|=1﹣=.故选C.点评:解答本题的关键是确定x+y与x﹣y不相等,再进行分类讨论.16. m,n为实数,且,则mn=()A.B.C.D.不能确定【答案】B【解析】先根据非负数的性质求出m、n的值,再计算出mn的值即可.解:由题意得,m+3=0,n﹣=0,解得m=﹣3,n=,故mn=﹣3.故选B.点评:本题考查的是非负数的性质,根据题意列出关于m、n的方程,求出m、n的值是解答此题的关键.17.对于正实数x和y,定义,那么()A.“*”符合交换律,但不符合结合律B.“*”符合结合律,但不符合交换律C.“*”既不符合交换律,也不符合结合律D.“*”符合交换律和结合律【答案】D【解析】根据实数混合运算的法则进行计算验证即可.解:∵x*y=,y*x==∴x*y=y*x,故*符合交换律;∵x*y*z=*z==,x*(y*z)=x*()==∴x*y*z=x*(y*z),*故满足结合律.∴“*”既符合交换律,也符合结合律.故选D.点评:本题考查的是实数的运算,熟知交换律与结合律是解答此题的关键.18.如果,则(xy)3等于()A.3B.﹣3C.1D.﹣1【答案】D【解析】首先根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解:由题意得:,解得,∴(xy)3=(﹣×)3=(﹣1)3=﹣1.故选D.点评:本题考查了实数的运算和非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.下列运算中,错误的是()A.B.C.D.=3.14﹣π【答案】D【解析】A、根据二次根式的乘法法则即可判定;B、根据二次根式的除法法则即可判定;C、根据二次根式的加减法则计算即可判定;D、根据二次根式的性质即可判定.解:A、×==,故选项正确;B、==,故选项正确;C、2+3=5,故选项正确;D、=π﹣3.14,故选项错误.故选D.点评:此题主要考查了实数的运算,解题时根据二次根式的加减乘除的运算法则计算,要注意,二次根式的结果为非负数.20.下列各数与相乘,结果为有理数的是()A.B.C.D.【答案】A【解析】分别计算(+2)(2﹣)、(2﹣)(2﹣)、(﹣2+)(2﹣)、(2﹣),然后由计算的结果进行判断.解:A、(+2)(2﹣)=4﹣3=1,结果为有理,所以A选项正确;B、(2﹣)(2﹣)=7﹣4,结果为无理数的,所以B选项不正确;C、(﹣2+)(2﹣)=﹣7+4,结果为无理数的,所以,C选项不正确;D、(2﹣)=2﹣3,结果为无理数的,所以,D选项不正确.故选A.点评:本题考查了实数的运算:先算乘方或开方,再进行乘除运算,最后进行实数的加减运算;有括号或绝对值的,先计算括号或去绝对值.。
实数的运算及分数指数幂-教师版
例题解析【例1】一个正数的平方是3,这个数的准确数_________;近似数(精确到千分之一位)是_______;近似数的有效数字有_______位,有效数字是_______.【难度】★【答案】3; 1.732;四;1、7、3、2.【解析】3 1.732≈,所以有效数字是四位,有效数字是1、7、3、2.【总结】本题主要考查了准确度、近似数和有效数字的概念.【例2】写出下列各数的有效数字,并指出精确到哪一位?1)2000;2)4.523亿;3)5⨯;4)0.00125.7.3310【难度】★【答案】1)有效数字:2、0、0、0,精确到个位;2)有效数字:4、5、2、3,精确到十万位;3)有效数字:7、3、3,精确到千位;4)有效数字:1、2、5,精确到十万分位.【解析】对于一个近似数,从左边第一个不是零的数字起,往右到末位数字为止的所有数字,叫做这个近似数的有效数字.【总结】解答此题的关键在于掌握近似数、有效数字与科学记数法的知识点.【例3】用四舍五入法,按括号内的要求对下列数取近似值.(1)0.008435(保留三个有效数字) ≈_________;(2)12.975(精确到百分位) ≈_________;(3)548203(精确到千位) ≈_________;(4)5365573(保留四个有效数字) ≈_________.【难度】★【答案】(1)0.00844;(2)12.98;(3)5⨯.⨯;(4)65.366105.4810【解析】(1)0.00844;(2)12.98;(3)5⨯.5.48105.36610⨯;(4)6【总结】解答本题的关键是理解有效数字的含义,利用科学记数法进行表示.π=,按四舍五入法取近似值.【例4】已知 3.1415926(1)π≈__________(保留五个有效数字);(2)π≈_________(保留三个有效数字);(3)0.045267≈_________(保留三个有效数字).【难度】★★【答案】(1)3.1416; (2)3.14; (3)0.0453或24.5310-⨯. 【解析】(1)3.1416; (2)3.14; (3)0.0453或24.5310-⨯. 【总结】本题主要考查的是有效数字的含义,利用科学记数法进行表示.【例5】 用四舍五入法得到:小智身高1.8米与小智身高1.80米,两者有什么区别? 【难度】★★【答案】精确度不同,1.8精确到十分位,1.80精确到百分位.【解析】根据末尾数字所在的数位解答,精确度不同,1.8精确到十分位,1.80精确到百分位. 【总结】本题主要考查了精确度的概念.【例6】 下列近似数各精确到哪一位?各有几个有效数字? (1)3.201; (2)0.0010; (3)2.35亿; (4)107.6010⨯.【难度】★★【答案】(1)精确到千分位,有四个有效数字; (2)精确到万分位,有两个有效数字; (3)精确到百万位,有三个有效数字; (4)精确到亿位,有三个有效数字. 【解析】(1)精确到千分位,有四个有效数字; (2)精确到万分位,有两个有效数字; (3)精确到百万位,有三个有效数字; (4)精确到亿位,有三个有效数字. 【总结】本题主要考查了近似数和有效数字的概念.【例7】 废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水量用科学记数法表示为________立方米. 【难度】★★ 【答案】4310⨯.【解析】45060030000310⨯==⨯.【总结】本题主要考查了科学记数法的表示方法.【例8】 把下列方根化为幂的形式:(1; (2) (3;(4)(5;(6.【难度】★【答案】(1)132; (2)1310-; (3)145; (4)137; (5)13a -; (6)12()a -.【解析】(1132=; (2)1310-;(3)218455===; (4)137=;(513a ==-; (612()a -.【总结】本题主要考查的是将方根化为分数指数幂的运算. 【例9】 把下列分数指数幂化为方根形式: (1)131()27-;(2)238()27;(3)121()16-;(4)1132(64).【难度】★【答案】(1) (2 (3); (4【解析】(1)13127⎛⎫-= ⎪⎝⎭; (2)23827⎛⎫= ⎪⎝⎭(3)12116⎛⎫-= ⎪⎝⎭(4)111362(64)64==【总结】本题考查了分数指数幂与根式之间的互换.【例10】 化简:(1)111362a a a ÷⋅; (2)8【难度】★【答案】(1)13a ; (2)71338x y . 【解析】(1)11111113623632a a a aa -+÷==;(2)121111117144233333366338888xy xy x y x y x y x y ===.【总结】本题主要考查根式与分数指数幂的互化及其化简运算.【例11】 计算下列各值: (1(2)201713(4aa+.【难度】★★【答案】(1)565; (2)1-. 【解析】(1151362555⨯=;(2)因为3030a a -≥-≥,,所以3a =, 所以3a =或3-, 因为30a -≠,所以3a =-. 故当3a =-时,原式()2017133143⎛⎫⨯- ⎪==- ⎪- ⎪ ⎪⎝⎭.【总结】本题考查了平方根有意义的条件及混合运算.【例12】 计算下列各值:(1)1225232---+ (2)11222[(23)(2]-++. 【难度】★★【答案】(1)12-; (2)16. 【解析】(1)1225232---4923=---+12=-;(2)()()2112222-⎡⎤+⎢⎥⎢⎥⎣⎦=16=. 【总结】本题主要考查了实数的运算,注意利用公式进行.【例13】 计算: (1;(2)1112444111()()()242a a a -⋅++;(3)1521216636333(2)(4)x y x y x y ÷-⨯. 【难度】★★【答案】(1)a ; (2)144116a ⎛⎫- ⎪⎝⎭; (3)166x y -.【解析】(111113342341211121212aa aaa a aaa++===;(2)1114442111242a a a ⎛⎫⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1114442241114416a a a ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)231521166363324x y x y x y ⎛⎫⎛⎫÷-⨯ ⎪ ⎪⎝⎭⎝⎭1225111633663666x y x y -+-+=-=-.【例14】4249a b==,,求1222ba -的值.【难度】★★★ . 【解析】()112222242b a b a -=÷==【总结】本题主要考查了有理数指数幂的运算性质.【例15】 已知13x x -+=,求下列各式的值:(1)1122x x -+;(2)3322x x -+.【难度】★★★【答案】(1; (2) 【解析】(1)13x x -+=, 21112225x x x x --⎛⎫∴+=++= ⎪⎝⎭,又11220x x-+>,1122x x-∴+(2)()3311122221x xx x x x ---⎛⎫+=++-= ⎪⎝⎭【总结】本题主要考查有理数指数幂的化简求值.【例16】 若11112333342133a a a a ---=⨯⨯++,求的值. 【难度】★★★【答案】198.【解析】()111133334214212a =⨯⨯=⨯⨯=,1231111933332488a a a ---∴++=⨯+⨯+=.【总结】本题主要考查了积的乘方的逆运算及分数指数幂和负指数幂的综合运算.【例17】化简:a b c【难度】★★★ 【答案】0或1.【解析】当0x =时,原式0=; 当0x ≠时,b c c a a bb ca c a bxx----++()()()()()()b ca c ab a bc a a b b c b c c a xxx+++------=⋅⋅2222220()()()1b c c a a b a b b c c a xx -+-+----===.【总结】本题主要考查了含根式的化简,注意要分类讨论.【例18】 已知122a =,132b =,123c=,133d =,试用a bc d 、、、的代数式表示下列各数值. (1; (2; (3 (4【难度】★★★【答案】(1)20a ; (2)10d; (3)23b ;(4) 【解析】(11220220a =⨯=; (213131010d=⨯=;(312112333334323223b =⨯=⨯=⨯⨯=;(411114222232(3)22c c =⨯=⨯==. 【总结】本题考查了根式与分数指数幂的相互转化问题.【例19】 已知:210(0)x x xx xa a a a a a --+=>-,求的值. 【难度】★★★【答案】119.【解析】222112121021010x x x x a a a a --+=++=++=(), 又0x x a a -+>, x x a a -∴+=, 222181 21021010x x x x a a a a ---=+-=+-=(),又0xxa a -->, x xa a -∴-=, 119x x x x a a a a --+∴==-.【总结】本题主要考查了负整数指数幂及乘法公式的综合应用.【例20】 材料:一般地,n 个相同的因数a 相乘:n a aa 个记为n a .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若n a b =(0a >且 1a ≠,0b >),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4);(1)计算以下各对数的值:log 24=______,log 216=______,log 264=______;(2)观察(1)中三数4、16、64之间满足怎样的关系式,log 24、log 216、log 264之间又 满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗? log log a a M N +=______;(且1a ≠,M >0,N >0). 【难度】★★★【答案】(1)2,4,6; (2)416=64⨯,222log 4log 16log 64+=;(3)log ()a MN . 【解析】(1)2log 42=,2log 16=4,2log 646=;(2)416=64⨯,222log 4log 16log 64+=; (3)log log log ()a a a M N MN +=.【总结】本题考查学生对新概念的理解及运用.【例21】 的整数部分为a ,小数部分为b ,则a b =_________.【难度】★【答案】9-【解析】253<<,2a ∴=,5b =-22)9a b ∴==-. 【总结】本题主要考查了无理数的估算及完全平方公式的运用.【例22】 计算:(1)1230.1)3(2)-⎡⨯---+⎣;(2)20152014;(3)3.【难度】★★【答案】(1)19; (2 (3)【解析】(1)1233(2)-⎡⨯---⎣)221410982(6)1339=-÷-⨯++=-÷-⨯=()(-);(2)2015201420152014=()201476=-(3)3=⎤⎤-⎦⎦22⎡⎤-⎢⎥⎣⎦()235=-+=.【总结】本题主要考查了实数的混合运算,注意能简算时要简算.【例23】 计-.【难度】★★【答案】2=-==【总结】本题主要考查了实数的运算,注意利用因式分解的思想去化简.【例24】 计算:(1)11032238[1(0.2]4271000π--+--⨯-(2112133211127883---⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎝⎭⎝⎭⎝⎭.【难度】★★【答案】(1)7208-; (2)32.【解析】(1)原式2111111()3125125167⎡⎤=+--⨯-÷⎢⎥⎣⎦11723721201688=⨯-⨯=-=-;(2)原式()9382296922=----=+-=. 【总结】本题主要考查了实数的混合运算.【例25】 设:73121(3)(3)(1)8433M =÷-⨯-÷-,42211(2)(2)5(0.25326N =-÷+⨯--试比较113M 与1N -的大小. 【难度】★★【答案】1113M N >-.【解析】∵73121(3(3(1)8433M =÷-⨯-÷-15151051541031843381535=-÷⨯÷=-⨯⨯⨯=-, 42211(2)(2)5()0.25326N =-÷+⨯--42211(2)(2)5()0.2532664111116()9264=-÷+⨯--=÷+⨯--91114124=-- 1312=, ∴11=1313M -,131111212N -=-=-, ∴1113M N >-.【总结】本题主要考查了有理数的综合运算及大小比较.【例26】 已知实数x 、y 满足1142(3)(5)0x y x y -+++-=,求51238x y -+的值. 【难度】★★ 【答案】5.【解析】14(3)0x y -+≥,12(5)0x y +-≥, 3050x y x y -+=⎧∴⎨+-=⎩,解得14x y =⎧⎨=⎩, 51238325x y -∴+=+=.【总结】本题主要考查了对算术平方根的理解及非负性的综合运用.【例27】 已知实数a 、b 、x 、y 满足21y a =-,231x y b -=--,求22x y a b +++的值. 【难度】★★★ 【答案】17.【解析】21y x a +-=-,21y a ∴=-,231x y b -=--,2222311x a b a b ∴-=---=--,223+0x a b ∴-=,0a ∴=,0b =,3x =, 1y ∴=,40222+217x y a b ++∴+==.【总结】本题主要考查了学生对实数非负性的应用.【例28】 先阅读下列的解答过程,然后再解答:a 、b ,使a b m +=,ab n =,使得22m +==()a b >,这里7m =,12n =,由于4+3=7,4312⨯=即227+=2=(12;(3. 【难度】★★★【答案】(1; (2)3; (3).【解析】(113m =,42n =,6713+=,6742⨯=,即2213+==(211m =,24n =,3811+=,3824⨯=,即2211+==3;(3=59m =,864n =,322759+=,3227864⨯=,即2259+=== 【总结】本题主要考查了利用新概念对复合平方根进行化简求值.【例29】 已知111333421a =++,求12333a a a ---++的值. 【难度】★★★【答案】1.【解析】设132b =,则3211111b a b b b b -=++==--, 11a b -∴=-, 11b a -∴=+,3131231=33+1b a a a a ----∴=+++(),12333211a a a ---∴++=-=.【总结】本题主要考查了实数的运算和立方和公式的综合运用.一、填空题:【习题1】 下列根式与分数指数幂的互化中,正确的是()A .12()(0)x x x -=-> B .1263(0)y y y =< C .33441()(0)xx x-=>D .133(0)xx x -=-≠【难度】★ 【答案】C【解析】12(0)x x x -=->,故选项A 错误; 1263(0)y y y =-<,故选项B 错误;133xx-=,故选项D 错误.【总结】本题考查了根式与分数指数幂的互化.【习题2】 下列近似数各精确到哪一个数位?各有几个有效数字? (1)2015;(2)0.6180;(3)7.20万;(4)55.1010⨯.【难度】★【答案】(1)精确到个位,有四个有效数字; (2)精确到万分位,有四个有效数字;(3)精确到百位,有三个有效数字; (4)精确到千位,有三个有效数字.【解析】(1)精确到个位,有四个有效数字为2、0、1、5;(2)精确到万分位,有四个有效数字为6、1、8、0; (3)精确到百位,有三个有效数字为7、2、0; (4)精确到千位,有三个有效数字为5、1、0.【总结】本题主要考查了近似数和有效数字的概念.【习题3】 把下列带根号的数写成幂的形式,分数指数幂化为带根号的形式:()432,3-,()754,536, 322-,343,324-,237.【难度】★随堂检测【答案】432;123--;754;356.【解析】4432=;1212133-=-=-;7754=;356;3232122-==;343=3232144-==;237=【总结】本题主要考查了根式与分数指数幂的互化.【习题4】 比较大小: (1)与;(22+【难度】★★【答案】(1 (22>【解析】(1)22- 8=-0=,(2)22(2+- 1110=+-10=>, 2>+ 【总结】本题主要考查了利用平方法比较两个无理数的大小.【习题5】 把下列方根化为幂的形式. (1(2(3)a .【难度】★★【答案】(1)582; (2)5766a b ; (3)111144a b . 【解析】(1582==;(25766a b ===; (3)311111124444aaaa ab a b ==⋅=.【总结】本题主要考查了根式与分数指数幂的互化.【习题6】 计算:62+53+(1)2334(9);(2)113339⨯;(3)1442(35)÷;(4)11632(32)-⨯;(5)833324(25)⨯;(6)7511266323(2)x y x y÷.【难度】★★【答案】(1)3;(2)3;(3)925;(4)98;(5)400;(6)116634x y.【解析】(1)231342(9)93==;(2)1112333339333⨯=⨯=;(3)1442229 (35)3525÷=÷=;(4)11623329 (32)328--⨯=⨯=;(5)83342324(25)251625400⨯=⨯=⨯=;(6)751752111266366366233(2)344x y x y x y xy x y ÷=÷=.【总结】本题主要考查了分数指数幂的运算,注意法则的准确运用.【习题7】利用幂的性质运算:(1)111222133()(()5525-⨯⨯;(2;(3).【难度】★★【答案】(1)15;(2)4;(3)18.【解析】(1)1111122222111222 1331331 ()()()552555525---⨯⨯=⨯⨯=;(2213236222224 =⨯÷==;(3)1211333362332239218⨯⨯⨯⨯=⨯=.【总结】本题考查了根式与分数指数幂的混合运算,注意法则的准确运用.【习题8】计算:(1(2)111111332222113113⎛⎫⎛⎫-⋅+ ⎪ ⎪⎝⎭⎝⎭;(3)20142015⋅; (4))11-+【难度】★★【答案】(1)763; (2)2; (3 (4)1【解析】(1763=;(2)11111113332222113113(113)2⎛⎫⎛⎫-⋅+=-= ⎪ ⎪⎝⎭⎝⎭;(3)201420152014(32)⋅=-=(4))11-+-11=【总结】本题考查了根式与分数指数幂的混合运算,注意法则的准确运用.【习题9】 =,其中0ab ≠ 【难度】★★★【答案】57.【解析】(a a +=, 12a b ∴=,120a b ∴=, 0∴=,=或=-, 16a b ∴=,165451647b b b b b b -+==++.【总结】本题考查了根式的化简求值问题,注意整体代入思想的运用.【习题10】化简求值:(1)已知:15a a -+=,求22a a -+;1122a a-+;1122a a --;(2)已知:223a a -+=,求88a a -+. 【难度】★★★【答案】(1)23,; (2)18. 【解析】(1)1222()225a a a a --+=++=,2223a a -∴+=;15a a -+= 0a ∴>, 11220a a-∴+>,112122()27a a a a --+=++=, 1122a a -∴+=; 112122()23a a a a ---=+-=, 1122a a-∴-=(2)222(22)2229a a a a --+=++=, 22227a a -∴+=,332288(2)(2)(22)(212)a a a a a a a a ----+=+=+-+,883618a a -∴+=⨯=.【总结】本题主要考查了有理数指数幂的运算法则及其应用,综合性较强,注意对解题方法的归纳总结.【作业1】 若2a =a 的小数部分是b ,则a b ⋅的值是( ) A .0B .1C .-1D .2【难度】★ 【答案】B .【解析】425<+,42b a ∴=-=,2)1a b ∴⋅==. 【总结】本题主要考查了无理数的整数部分与小数部分的综合运用.【作业2】 下列语句中正确的是() A .500万有7个有效数字B .0.031用科学记数法表示为33.110-⨯C .台风造成了7000间房屋倒塌,7000是近似数D .3.14159精确到0.001的近似数为3.141 【难度】★ 【答案】C .【解析】500万有三个有效数字,故选项A 错误;0.031用科学记数法表示为23.110-⨯,故选项B 错误; 3.14159精确到0.001的近似数为3.142,故选项D 错误.【总结】本题考查了科学记数法和有效数字的应用.【作业3】 按照要求,用四舍五入法对下列各数取近似值:(1)0.76589(精确到千分位);(2)289.91(精确到个位); (3)320541(保留三个有效数字);(4)41.42310⨯(精确到千位).【难度】★【答案】(1)0.766; (2)290; (3)53.2110⨯; (4)41.410⨯. 【解析】(1)0.765890.766≈; (2)289.91290≈;(3)5320541 3.2110≈⨯; (4)441.42310 1.410⨯≈⨯.【总结】本题主要考查的是近似数和有效数字以及科学记数法的综合运用.【作业4】 计算: (1;(2(3.【难度】★★【答案】(1)565; (2)542; (3)【解析】(1151362555⨯=; (2315424222⨯=; (311136223323⨯÷=⨯= 【总结】本题主要考查了无理数的乘除运算.【作业5】 计算: (1 (2.【难度】★★【答案】(1)7125;(2)132.【解析】(1111111732342412 55555+-⋅÷==;(25151112262632222222+-+=⋅÷⋅==.【总结】本题主要考查了根式的乘除运算.【作业6】计算:(1)129()25-;(2)111344(882-⨯;(3)11123227()([(]64----+;(4)11222[(23)(2]-++.【难度】★★【答案】(1)365;(2)11-;(3)43-+(4)16.【解析】(1)129()253351655=++=;(2)111344(882--⨯31442(28)225=--⨯÷65=--11=-;(3)11123227()([(]64----+4433=-++=-+;(4)11222[(2(23)]-+211221(23)(2=⎡⎤++⎢⎥⎣⎦16==.【总结】本题主要考查了根式及有理数指数幂的混合运算.【作业7】计算:(1;(2.0)a>【难度】★★★【答案】(1)35x-;(2)1724a.【解析】(135x-===;(21724a =.【总结】本题主要考查了根式的运算及有理数指数幂的化简.【作业8】设的整数部分为,小数部分为,求的立方根.【难度】★★★【答案】2-.【解析】122<<,1a∴=,1b,22168161)81)8ab b∴--=-⨯-⨯=-,2168ab b∴--的立方根是2-.【总结】本题主要考查的是估算无理数的大小、立方根的定义及完全平方公式的综合应用.【作业9】如果223311320x a x bx x⎛⎫⎛⎫-++++=⎪ ⎪⎝⎭⎝⎭,求232(43)a b b+-的值.【难度】★★★【答案】0.【解析】223311320x a x bx x⎛⎫⎛⎫-++++=⎪ ⎪⎝⎭⎝⎭,33130x ax∴-+=,120x bx++=,3313x ax∴+=,2211(1)3x x ax x∴+-+=,即211()()33x x ax x⎡⎤∴++-=⎢⎥⎣⎦,120x bx++=,12x bx∴+=-,22(43)3b b a∴--=,232(43)0a b b∴+-=.【总结】本题主要考查了非负数的性质及立方和公式的综合应用.【作业10】已知21xa,求33x xx xa aa a--++的值.【难度】★★★2a b2816bab--【答案】1.【解析】33x x x xa a a a--++22()(1)x x x x x x a a a a a a ---+-+=+ 221x x a a -=-+,221x a =, 21x a -∴,2211111x x a a -∴-+-=.【总结】本题主要考查指数幂的化简与求值,利用立方和公式是解决本题的关键.【作业11】 若[]x 表示不超过x 的最大整数(如2[]3[2]33π=-=-,等),求++的值. 【难度】★★★ 【答案】2016.【解析】++⋅⋅⋅+22⎡=++⋅⋅⋅+⎢⎣⎦⎣⎦⎣⎦111=++⋅⋅⋅+ 2016=.【总结】本题主要考查了取整计算,正确利用已知条件中的概念及相关性质进行化简.。
初一数学拔高实数混合运算带超强解析
初中数学初一数学拔高实数混合运算一.选择题(共6小题)1.(2008•黔东南州)若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算正确的是()A.2008 B.2007 C.D.2008×20072.(2014•让胡路区校级模拟)实数a,b,c在数轴上的对应点如图,化简a+|a+b|﹣的值是()A.﹣b﹣c B.c﹣b C.2(a﹣b+c)D.2a+b+c3.(2014•内江)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14 B.16 C.8+5D.14+4.(2006•荆州)有一个数值转换器,原来如下:当输入的x为64时,输出的y是()A.8 B.2C.2D.35.(2008•台湾)计算48÷(+)之值为何()A.75 B.160 C.D.906.(2008秋•杭州期中)已知a,b,c是有理数,且a+b+c=0,abc(乘积)是负数,则的值是()A.3 B.﹣3 C.1 D.﹣1二.填空题(共2小题)7.(2010•珠海)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:(101)2+0×21+1×20=4+0+1=5,2=1×2(1011)2=1×23+0×22+1×21+1×20=11.按此方式,将二进制(1001)2换算成十进制数的结果是.8.(2007•莆田)观察,依照上述方法计算=.三.解答题(共12小题)9.(2013秋•府谷县期末)10.(2014秋•罗平县校级期末)计算÷[32﹣(﹣2)2].11.(2014•新泰市校级模拟)如果规定符号“﹡”的意义是a﹡b=,求2﹡(﹣3)﹡4的值.12.(2013秋•河西区期末)计算①②13.(2014秋•宣汉县校级期末)计算:[(﹣3)2﹣(﹣5)2]÷(﹣8)+(﹣3)×(﹣1)14.(2010秋•泗洪县校级期末)计算与化简:(1)计算:(2)25×.15.(2015春•平南县期中)先阅读第(1)题的解法,再解答第(2)题:(1)已知a,b是有理数,并且满足等式5﹣a=2b+﹣a,求a,b的值.解:因为5﹣a=2b+﹣a所以5﹣a=(2b﹣a)+所以解得(2)已知x,y是有理数,并且满足等式x2﹣2y﹣y=17﹣4,求x+y的值.16.(2013春•营口期末)求下列各式的值(1)+(2)|1﹣|+||﹣|﹣2|17.(2012春•淮上区校级期中)计算:(1)﹣24+(3﹣7)2﹣23÷×(2)解方程:4(x﹣1)2=9.18.(2014•福建模拟)计算:|﹣2|+(4﹣7)÷+.19.(2013秋•南开区期中)有理数计算.(1)﹣2.8+(﹣3.6)+(+3)﹣(﹣3.6)+(﹣1)2013(2)(﹣12)×(﹣+)+(﹣32)÷2.20.计算:++…+.初一数学拔高实数混合运算。
人教版七年级数学下册第六章第三节实数试题一(含答案) (29)
人教版七年级数学下册第六章第三节实数复习试题一(含答案)(1)用“<”,“>”,“=”(2)由上可知:①|1|= ;②= ;(3)计算:|1|+…﹣(结果保留根号) 【答案】(1)<,<;(2)﹣1,;(3 1【解析】【分析】(1)根据被开方数越大,则算术平方根越大解答;(2)根据绝对值的性质,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0解答;(3)先根据绝对值的性质去掉绝对值号,然后进行加减即可得解.【详解】解:(1)∵1<2<3,<<;(2)①∵1<0,∴|1|﹣1,0,∴||;(3)|1…﹣+…1.故答案为:(1)<,<;(2)﹣1,;(31.【点睛】此题考查绝对值的性质与实数的运算,熟记绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0是解题的关键.82.画一条数轴,把﹣112,0,2,π各数(或近似值)和这些数的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接【答案】﹣π<﹣2<﹣112<0<112<2<π,见解析 【解析】【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数和它的相反数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数和它的相反数由小到大用“<”号连接起来即可.【详解】解:, ﹣π<﹣2<﹣112<0<112<2<π. 【点睛】此题考查了实数大小比较的方法,在数轴上表示数的方法,解题关键在于掌握数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.83.计算:()()20192112-+--- 【答案】8-【解析】【分析】先根据乘方的意义、绝对值的意义、立方根的意义逐项化简,再算加减即可.【详解】原式=1142--+-=8-.故答案为:8-.【点睛】本题考查了实数的混合运算,熟练掌握绝对值的意义、立方根的意义是解答本题的关键.84.规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c ,例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,81)= ,(﹣15,﹣1125)= ,(2,(2,256))= ;(2)若(3,4)+(3,6)=(3,x ),求x 的值;(3)证明:(2,3)+(2,5)=(8,3375).【答案】(1)4,3,3;(2)x =24;(3)证明见解析.【解析】【分析】(1)由题意分别可得34=81,(-15)3=-1125,28=256;(2)设(3,4)=a,(3,6)=b,(3,x)=c,由题意可得3a•3b=3a+b=3c;(3)设(2,3)=a,(2,5)=b,(8,3375)=c,先求出2a+b=2a•2b=15,再由8c=23c=3375=153,可得2c=15,即有2a+b=2c.【详解】(1)因为34=81,所以(3,81)=4.因为(﹣15)3=﹣1125,所以(﹣15,﹣1125)=3.因为28=256,所以(2,256)=8.又(2,8)=3∴(2,(2,256))=3,故答案为:4,3,3.(2)由题意得,设(3,4)=a,(3,6)=b,(3,x)=c,∵(3,4)+(3,6)=(3,x),∴a+b=c,由题意可得:3a=4,3b=6,3c=x,∴3a•3b=3a+b=3c,∴x=24,(3)设(2,3)=a,(2,5)=b,(8,3375)=c,∴2a =3,2b =5,∴2a +b =2a •2b =15,∵8c =23c =3375=153,∴2c =15,∴2a +b =2c ,∴(2,3)+(2,5)=(8,3375).【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.85.计算:(1)(﹣1)101+(π﹣3)0+(12)﹣1.(2)213()2---. 【答案】(1)3;(21.【解析】【分析】(1)原式分别计算有理数的乘方、零次幂、负整数指数幂以及根据二次根式的性质进行化简,最后再进行加减运算即可;(2)原式分别计算负整数指数幂,二次根式的化简以及去绝对值符号,再合并同类二次根式即可.【详解】(1)(﹣1)101+(π﹣3)0+(12)﹣1. =-1+1+2-|1=-1+1+2+1=3;(2)213()2---+ =34-+1.【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解题的关键.86.计算与化简:(1)5(2)(8)(2)⨯-+-÷-;(2)21212(3)3-+÷-⨯; (3)22131516b a a b +--;(4)()22432121233x x x x ⎛⎫----+ ⎪⎝⎭. 【答案】(1)-6;(2)153-;(3)62b a -;(4)-5. 【解析】【分析】(1)可先计算乘除,最后计算加减;(2)可先计算乘方,再计算乘除,最后计算加减;(3)直接合并同类项即可;(4)可先去括号后,再合并同类项即可.【详解】解:(1)原式=−10+4=−6;(2)原式=−4−4×13=-4-43=153-; (3)原式=22161315b b a a -+-=62b a -;(4)原式=22643246x x x x ---+-=-5.【点睛】此题考查了有理数的混合运算,整式的加减混合运算,难度一般.87.(1)计算:232163327(2)已知2(1)9x -=,求x 的值.【答案】(1);(2)x=4或-2【解析】【分析】(1)原式第一项利用负指数幂法则计算,第二项利用平方根定义计算,第三项化简绝对值,最后一项利用立方根定义计算,然后合并同类二次根式即可得到结果;(2)方程利用平方根定义开方即可求出x 的值.【详解】 解:(1)原式=44333=(2)∵()219x -= ∴13x -=±∴4x =或-2.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.88.计算(1)0(2009)|2|π-(2)1)-【答案】(1)3+(2)13-【解析】【分析】(1)根据零指数幂的性质,二次根式的计算法则,和绝对值的性质计算即可.(2)根据平方差公式和实数运算法则计算即可.【详解】(1)0(2009)2|π-+12=+3=+(2)1)-1861=-13=-【点睛】本题综合考查了实数范围内的运算,熟练掌握各个运算性质是解答的关键.89.对于任意的有理数,a b ,定义关于“⊗”的一种运算如下:2a b a b ⊗=+,例如232237⊗=⨯+=(1)求1125⎛⎫-⊗ ⎪⎝⎭的值 (2)若(5),36x x ⊗-=求x 的值 【答案】(1)45-;(2)10x = 【解析】【分析】(1)根据题目给出的新运算,将对应的数据代入即可得出结果.(2)根据题目给出的新运算,把等式左边用含x 的代数式表示出来,然后就是一个一元一次方程,解这个一元一次方程即可.【详解】解:(1)11114225255⎛⎫⎛⎫-⊗=⨯-+=- ⎪ ⎪⎝⎭⎝⎭ (2)()2536x x ⨯+-= 253615210x x x x -=== 检验:将x=10代入方程,方程左边等于右边,所以x=10是原方程的解.【点睛】本题主要考查的是对新运算的理解以及一元一次方程的解法,正确理解新运算的公式是解题的关键.90.已知 ab224()b a +-的值是__.【答案】1.【解析】【分析】的取值范围,得出a b ,的值,进而求出答案.【详解】4175<<,∴=,a4b∴=,4222222∴+-=+-=-=.(4)44)441b a故答案为:1.【点睛】本题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.。
十实数计算题专题训练(含答案)
一.计算题1 计算题:2|-(1+1 :)°+ I..2.计算题:—12009+4X(—3) 2+ (- 6) -(- 2)3- —一丄丨:一:6•计算题:(1)丨—_ I 「;;7(^-2)°-皈话苗.8. I ' :卜二(精确到0.01).3 2 210. (- 2) + (- 3) >i (- 4) +2] -(- 3) r-2);11. | 硬—逅+佰-h/12512. - 12+ . X. :-213. M (-刃2 - (~2)3- IV?_4I+( -1)°9.214. 求 x 的值:9x =121 . 15. 已知 「1 - - _|-,求x y 的值.16. 比较大小:-2,- 一】(要求写过程说明)217•求 x 的值:(x+10) =1619.已知m < n ,求 + 的值;20.已知 a <0,求 ■■+ ' 的值.专题一计算题训练参考答案与试题解析.解答题(共13小题)1.计算题:|- 2|-( 1+ :':) 0+ ■■.解答:解:原式=2 - 1+2 ,=3.2.计算题:—12009+4X(—3) 2+ (- 6) -(- 2) 解答:解:-12009+4X (- 3) 2+ (- 6) - (- 2),=-1+4 >9+3,=38.3•:——T-■ ' _4.卩':| -二原式=14 - 11+2=5 ;(2)原式=【J 1匕-1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:-如(-2) 5 (匕)考点:有理数的混合运算。
分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可. 解答:解:原式=-4+8 r- 8)-(丄-1)43=-4 - 1 -(_ 丁) =』=:.点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.1 +1 ::;7.一_ * :巧有亍考点:实数的运算;立方根;零指数幕;二次根式的性质与化简。
八年级数学实数计算专项训练(含参考答案)
八年级数学实数计算专项训练练习1 平方根与算术平方根(1)1. 求下列各数的平方根:(1)100; (2)0.0081; (3)499; (4)169.2. 求下列各数的平方根与算术平方根:(1)(-6)2; (2) 0; (3)-3; (4)163. 求下列各式的值: (1)225; (2)4936-; (3)121144±.4. 求下列各式中的x :(1)02592=-x ; (2)36)12(42=-x ;(2)81162=x ; (4)025)2(2=--x .5. 计算:(1)169144+; (2)1691971•(3)04.025÷练习2 平方根与算术平方根(2)1. 填空:(1)=121 ; (2)=-256 ; (3)=43 ; (4)=-412 . 2.求下列各数的平方根与算术平方根: (1)196; (2)(-3)2; (3)49151; (4)0.5625.3.求下列各数的算术平方根,并用符号表示出来:(1)7.12; (2)(-3.5)2; (3)3.25; (4)412.4. 求下列各式的值: (1)0004.0-; (2)256169±; (3)818±; (4)2)8(-.5. 求下列各式中的x :(1)025692=-x ; (2)25)12(42=-x ;(3)822=x ; (4)126942-=x练习3 立方根1. 求下列各数的立方根:(1)-27; (2)-0.125; (3)27102; (4)729;2. 求下列各式的值:(1)3512-; (2)38729; (3)3008.0-;(4)31292⨯⨯; (5)31000-; (6)364--.3. 计算:(1)33512729+-; (2)333001.01251241027.0-+--.4. 求下列各式中的x : (1) 08273=-x ; (2)54)32(413=+x ;(3)81)1(33=-x ; (4)216)2(3-=+-x .练习4 平方根与立方根1. 求下列各数的平方根: (1)169; (2)9100; (3)2)5(-; (4)412.2. 求下列各数的立方根: (1)125; (2)2764; (3)81-; (4)2)8(-.3. 求下列各式中的x :(1)81162=x ; (2)11253=x ;(2)81631)14(2=-+x ; (4)64)3(273-=-x .练习5 实数的混合运算(Ⅰ)1. 计算:(1)9125833-+--; (2)222)3(2)32()6(----+-;(3)0332019)279(8)1(+++-; (4)3220183)21()1(---+--;(5)23)6(216-+-; (6)31081412+-+-π;(7)130)31(27)14.3()2(--++-+--π; (8)230)3(27)2(12149--+--+π.练习6 实数混合运算(Ⅱ)1. 计算:(1)81)1()21(01--+-; (2)3322782+---;(3)2)71(27)1(130-+-⨯--π; (4)28)5()2()41(3021÷--⨯-+--.2.求下列各式中的x :(1)2764)9(3-=-x ; (2)0121)3(312=-+x ;(3)0216)1(83=--x ; (4)048)43(312=--x .练习7 实数混合运算(Ⅲ)1. 计算:(1)03)2019(4)8(π+++-; (2)20193)1(829-+-+-+; (3)3008.01003631-⨯; (4))281(12151322-+--;(5)13)31(98-+--; (6)2)21(40)3(2-+----π;(7)02)33()1(93-+--+-; (8)148)3(432-----+;(9)230)1.0(27213-+-⎪⎭⎫ ⎝⎛-+-π; (10)3221691)21(--+---.练习8 实数的混合运算(Ⅳ)1. 求下列各式中的x :(1)822=x ; (2)81253=x ;(3)12)1(312=-x ; (4)064)1(273=++x .2.计算:(1))41(28)2009(30-+-+-; (2)0312)8(24)3(-⨯-+--;(3)032)2()2(641-⨯--+-; (4)9)21(3)4(2)4()3(27823333-⨯-+-⨯---.练习9 二次根式(Ⅰ)1.求下列各式的值: (1)32; (2)250; (3)3248; (4)203. 2.计算: (1)169144964⨯; (2)40219031⨯;(3)271032121÷-; (4)227818⨯÷; (5)1.1337.2⨯; (6)5232232⨯÷;(7))2223(18⨯-÷; (8)213827÷⨯.3.已知0276433=-++b a ,求b b a )(-的立方根。
人教版七年级数学下册章节重难点举一反三 专题6.3 实数的混合运算专项训练(60题)(原卷版+解析
专题6.3 实数的混合运算专项训练(60题)【人教版】考卷信息:本卷试题共60道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了实数的混合运算的所有情况!一.解答题(共60小题)1.(2022春•芜湖期末)计算:|1−√3|+|2−√3|+(−√9)2+√−643.2.(2022春•永城市期末)计算:√−273−√925+|√643−√49|.3.(2022春•杨浦区校级期末)计算:√314−1−√252−242+√(−8)23.4.(2022春•合阳县期末)计算:√36−√(−3)2+√−83×√14.5.(2022春•开福区校级期末)计算:√4+|√3−3|−√−273+(−2)3.6.(2022春•南丹县期末)计算:√36+√−273−√(−5)2−|√2−2|.7.(2022春•防城区校级期末)计算:√−273−√19+√3+|√3−√9|.8.(2022春•绵阳期末)计算:|√3−2|+√100×√0.0643−√3(√3−1).9.(2022春•齐齐哈尔期末)计算|1−√3|+√1916−√−1643+√(−2)2.10.(2022春•钦州期末)计算:√81+√−273−√(−2)2+|−√3|.11.(2022春•岳池县期末)计算:√−273+|2−√3|﹣(−√16)+2√3.12.(2022春•定南县期末)计算:√2783−√254−√3(√3−√3).13.(2022春•宣恩县期末)计算;√83−√3(√3−1)+|√3−2|+√(−3)2+(﹣1)2022.14.(2022春•华阴市期末)计算:√9−(﹣1)2022−√−83+|2−√6|.15.(2022春•剑阁县期末)计算:﹣12022+√16×(−3)2+(−6)÷√−83.16.(2022春•镜湖区校级期末)计算:﹣12022+√25−|1−√2|+√−83−√(−3)2.17.(2022春•朝天区期末)计算:|52−√9|+(﹣1)2022−√273+√(−6)2.18.(2022春•渭南期末)计算:√25−|1−√2|+√−273−√(−3)2.19.(2022春•中山市期末)计算:√16+√−83+|√5−3|﹣(2−√5).20.(2022春•谷城县期末)计算:|√3−2|−√−83+√3×(√3√3)−√16.21.(2022春•平邑县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)−23−|1−√2|−√−273×√(−3)2.22.(2022春•费县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)﹣23﹣|1−√2|−√−273×√(−3)2.23.(2022春•西平县期末)计算:(1)√183+√(−2)2+√14; (2)﹣12+√4+√−273+|√3−1|.24.(2022春•虞城县期末)(1)计算:(﹣1)2023+|2−√5|−√9;(2)求式中x 的值:(x +2)3=−1258.25.(2021春•新市区校级期末)计算:(1)√81+√−273+√(−2)2+|√3−2|;(2)求x 的值,2(x +3)3+54=0.26.(2022春•林州市校级期末)计算(1)√−83+|√3−3|+√(−3)2−(−√3);(2)(﹣2)2×√116+|√−83+√2|+√2.27.(2022春•泗水县期末)计算:(1)2√2+√25+√83−|√2−2|;(2)√214−√(−2)4+√1−19273+(−1)2022.28.(2022春•新市区期末)计算:(1)√0.25−√−273+√(−14)2; (2)|√3−√2|+|√3−2|﹣|√2−1|.29.(2022春•安次区校级期末)计算:(1)√4−√−83+√16+5;(2)|√3−2|−√14+√3(√3+1)−√−183.(1)√1−89−√643+√−1273; (2)√2.56−√0.2163+|1−√2|.31.(2022春•固始县期末)计算:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|.32.(2022春•忠县期末)计算:(1)√32+√−273+√49; (2)−14×√4+|√9−5|+√214+√−0.1253.(1)求式子中x的值:√x2−243=1;(2)√3+√(−3)2−√−83−|√3−2|.34.(2022春•清丰县期末)计算:(1)(−2)3×18−√273×(−√19);(2)(3+3√3)√3−(2√3+√3).35.(2022春•潼南区期末)计算下列各式的值:(1)|−2|+√916−√83;(2)√0.25+|√5−3|+√−1253−(−√5).(1)计算:(﹣1)3+|−2√2|+√273−√4;(2)√9+|√5−3|+√−643+(﹣1)2022.37.(2022春•临沭县期中)(1)计算:√(−1)23+|1−√2|+√(−2)2;(2)求x 的值:(x +1)3=−278.38.(2022春•聂荣县期中)计算:(1)|√6−√2|+|√2−1|﹣|3−√6|;(2)√273+√(−3)2−√−13.39.(2022春•河北区校级期中)计算:(1)√16−√273+(√13)2+√(−1)33; (2)√3(√3−1)+|√2−√3|.40.(2022春•西城区校级期中)(1)计算:√81+√−273+√(−23)2;(2)计算:4√3−2(1+√3)+|2−√2|.41.(2022春•夏邑县期中)计算:(1)√(94)2+|2−√7|−√(78−1)3; (2)(−√6)2×12+√−273+√62+82.42.(2022春•海淀区校级期中)计算: (1)√25+√−643−|2−√5|+√(−3)2; (2)√2(2+√2)﹣2√2.43.(2022春•洛龙区期中)计算和解方程: (1)√0.04+√−83−√14+|√3−2|+2√3;(2)2(1﹣x )2=8.44.(2022春•随州期中)计算下列各式: ①√(−1)2+√14×(−2)2−√−643②|√3−√2|+|√3−√2|−|√2−1|−√−(−4);(1)√16+√149(2)√52−42−√62+82+√(−2)2.46.(2022春•渝北区月考)计算:3−√9+(−1)2021+(−√2)2;(1)√−8(2)(−3)2+2×(√2−1)−|−2√2|.47.(2022春•崇义县期中)计算:3+(﹣1)2022;(1)√4+|﹣2|+√−642÷2.(2)(−√3)2+√(−5)2−(﹣7)+√8(1)﹣(12)2−√2516−√−83; (2)|√2−√3|+|1−√2|+√3−(﹣1)2021.49.(2022春•渑池县期中)计算: (1)√214−√0.09+√(−3)2;(2)−43÷(−32)−√−83−(1−√9)+|1−√2|.50.(2022春•江北区校级月考)计算: (1)√0.2163−√1916+5×√1100;(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2.(1)﹣12022+√(−2)2−√643×√−27643+|√3−2|;(2)13(x ﹣2)2−427=0.52.(2022春•天门校级月考)计算 (1)|√5−2|+√25+√(−2)2+√−273;(2)﹣12﹣(﹣2)3×18−√273×|−13|+2÷(√2)2.53.(2022春•铁锋区期中)计算(1)√22−√214+√78−13−√−13; (2)|−√2|﹣(√3−√2)﹣|√3−2|.54.(2021春•涪城区校级期中)计算: (1)√49−√−643−(√2)2+√1+916;(2)√(−5)2−|√3−2|+|√5−3|+|−√5|.55.(2016秋•苏州期中)计算下列各题. (1)√0.16+√0.49−√0.81; (2)﹣16√0.25−4√1−653; (3)|−√549|−√210273+√19+116;(4)√1−0.9733×√(−10)2−2(√133−π)0.56.(2022春•林州市期末)计算:(1)计算:√(−2)2−√1253+|√3−2|+√3;(2)已知x 是﹣27的立方根,y 是13的算术平方根,求x +y 2+6的平方根.57.(2022春•无棣县期末)(1)计算:√94+√−183−|3−√2|+√(−2)2.(2)若实数a +5的一个平方根是﹣3,−14b ﹣a 的立方根是﹣2,求√a +√b 的值.58.(2022春•洛阳期中)已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为√2,f 的算术平方根是8,求12ab +c+d 5+e 2+√f 3的值.59.(2022春•秭归县期中)已知(x ﹣7)2=121,(y +1)3=﹣0.064,求代数式√x −2−√x +10y +√245y 3的值.60.(2022春•朔州月考)(1)计算:√14−√−0.1253+√(−4)2−|−6|;(2)解方程:25x 2﹣36=0;(3)已知√x +1+|y −2|=0,且√1−2z 3与√3z −53互为相反数,求yz ﹣x 的平方根.专题6.3 实数的混合运算专项训练(60题)【人教版】考卷信息:本卷试题共60道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了实数的混合运算的所有情况! 一.解答题(共60小题)1.(2022春•芜湖期末)计算:|1−√3|+|2−√3|+(−√9)2+√−643.【分析】利用绝对值的意义,实数的乘方法则和立方根的意义解答即可. 【解答】解:原式=√3−1+2−√3+9﹣4 =6.2.(2022春•永城市期末)计算:√−273−√925+|√643−√49|.【分析】首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:√−273−√925+|√643−√49|=﹣3−35+|4﹣7| =﹣3−35+|﹣3| =﹣3−35+3=−35.3.(2022春•杨浦区校级期末)计算:√314−1−√252−242+√(−8)23. 【分析】利用算术平方根和立方根的意义化简运算即可. 【解答】解:原式=√94−√49+√643=32−7+4=−32.4.(2022春•合阳县期末)计算:√36−√(−3)2+√−83×√14.【分析】先计算平方根、立方根,再计算乘法,后计算加减. 【解答】解:√36−√(−3)2+√−83×√14 =6−3+(−2)×12 =6﹣3﹣1 =2.5.(2022春•开福区校级期末)计算:√4+|√3−3|−√−273+(−2)3. 【分析】先计算开平方、开立方、立方和绝对值,后计算加减. 【解答】解:√4+|√3−3|−√−273+(−2)3 =2+3−√3+3﹣8 =−√3.6.(2022春•南丹县期末)计算:√36+√−273−√(−5)2−|√2−2|. 【分析】根据二次根式的加减运算法则以及绝对值的性质即可求出答案. 【解答】解:原式=6﹣3﹣5﹣(2−√2) =﹣2﹣2+√2 =﹣4+√2.7.(2022春•防城区校级期末)计算:√−273−√19+√3+|√3−√9|. 【分析】先计算开立方、开平方和绝对值,后计算加减. 【解答】解:√−273−√19+√3+|√3−√9|=﹣3−13+√3+3−√3 =−13.8.(2022春•绵阳期末)计算:|√3−2|+√100×√0.0643−√3(√3−1).【分析】首先计算开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|√3−2|+√100×√0.0643−√3(√3−1) =2−√3+10×0.4﹣3+√3 =2−√3+4﹣3+√3 =3.9.(2022春•齐齐哈尔期末)计算|1−√3|+√1916−√−1643+√(−2)2.【分析】利用绝对值的意义,算术平方根的意义,立方根的意义和二次根式的性质化简运算即可.【解答】解:原式=√3−1+54−(−14)+2=√3−1+54+14+2 √3−1+32+2 =√3+52.10.(2022春•钦州期末)计算:√81+√−273−√(−2)2+|−√3|.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√81+√−273−√(−2)2+|−√3|=9+(﹣3)﹣2+√3=9﹣3﹣2+√3=4+√3.11.(2022春•岳池县期末)计算:√−273+|2−√3|﹣(−√16)+2√3.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:原式=﹣3+2−√3+4+2√3=3+√3.12.(2022春•定南县期末)计算:√2783−√254−√3(√3−√3).【分析】直接利用立方根的性质以及二次根式的性质、二次根式的乘法运算法则分别化简,进而得出答案. 【解答】解:原式=32−54−3+1 =−74. 13.(2022春•宣恩县期末)计算;√83−√3(√3−1)+|√3−2|+√(−3)2+(﹣1)2022.【分析】根据立方根、绝对值和有理数的乘法分别化简,再计算即可.【解答】解:原式=2﹣3+√3−(√3−2)+3+1=2﹣3+√3−√3+2+3+1=5.14.(2022春•华阴市期末)计算:√9−(﹣1)2022−√−83+|2−√6|.【分析】先算乘方和开方,再化简绝对值,最后算加减.【解答】解:原式=3﹣1﹣(﹣2)+√6−2=3﹣1+2+√6−2=2+√6.15.(2022春•剑阁县期末)计算:﹣12022+√16×(−3)2+(−6)÷√−83.【分析】先利用乘方,立方根,算术平方根进行运算,再进行实数的混合运算求解.【解答】解:原式=﹣1+4×9+(﹣6)÷(﹣2)=﹣1+36+3=38.16.(2022春•镜湖区校级期末)计算:﹣12022+√25−|1−√2|+√−83−√(−3)2.【分析】原式利用乘方的意义,算术平方根、立方根定义,绝对值的代数意义,以及二次根式性质计算即可求出值.【解答】解:原式=﹣1+5﹣(√2−1)﹣2﹣3=﹣1+5−√2+1﹣2﹣3=−√2.17.(2022春•朝天区期末)计算:|52−√9|+(﹣1)2022−√273+√(−6)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|52−√9|+(﹣1)2022−√273+√(−6)2 =12+1﹣3+6 =92.18.(2022春•渭南期末)计算:√25−|1−√2|+√−273−√(−3)2.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:√25−|1−√2|+√−273−√(−3)2=5−√2+1+(−3)−3=5−√2+1−3−3=−√2.19.(2022春•中山市期末)计算:√16+√−83+|√5−3|﹣(2−√5).【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣2+3−√5−2+√5=3.20.(2022春•谷城县期末)计算:|√3−2|−√−83+√3×(√3√3)−√16.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案. 【解答】解:原式=2−√3+2+3+1﹣4 =4−√3.21.(2022春•平邑县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)−23−|1−√2|−√−273×√(−3)2.【分析】(1)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案;(2)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:(1)原式=−2−√3+5+√3−1=2;(2)原式=−8+1−√2−(−3)×3=−8+1−√2+9=2−√2.22.(2022春•费县期末)计算:(1)√−83−√3+(√5)2+|1−√3|;(2)﹣23﹣|1−√2|−√−273×√(−3)2.【分析】(1)原式利用立方根定义,二次根式性质,以及绝对值的代数意义计算即可求出值;(2)原式利用乘方的意义,绝对值的代数意义,以及立方根,二次根式性质计算求出值.【解答】解:(1)原式=﹣2−√3+5+√3−1=2;(2)原式=﹣8﹣(√2−1)﹣(﹣3)×3=﹣8−√2+1+9=2−√2.23.(2022春•西平县期末)计算:(1)√183+√(−2)2+√14; (2)﹣12+√4+√−273+|√3−1|.【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)√183+√(−2)2+√14 =12+2+12=3.(2)﹣12+√4+√−273+|√3−1|=﹣1+2+(﹣3)+(√3−1)=﹣1+2+(﹣3)+√3−1=√3−3.24.(2022春•虞城县期末)(1)计算:(﹣1)2023+|2−√5|−√9;(2)求式中x的值:(x+2)3=−1258.【分析】(1)根据乘方运算、绝对值的性质以及二次根式的加减运算法则即可求出答案.(2)根据立方根的定义即可求出答案.【解答】解:(1)原式=﹣1+√5−2﹣3=﹣6+√5.(2)(x+2)3=−1258,x+2=−52,x=−92.25.(2021春•新市区校级期末)计算:(1)√81+√−273+√(−2)2+|√3−2|;(2)求x的值,2(x+3)3+54=0.【分析】(1)根据求立方根、绝对值的意义、实数的运算法则等知识直接计算即可;(2)利用立方根的含义求解x+3,再求解x即可.【解答】解:(1)√81+√−273+√(−2)2+|√3−2|;=9+(−3)+2+2−√3=10−√3;(2)2(x+3)3+54=0,变形得(x+3)3=﹣27,即有x+3=﹣3,则x=﹣6.26.(2022春•林州市校级期末)计算(1)√−83+|√3−3|+√(−3)2−(−√3);(2)(﹣2)2×√116+|√−83+√2|+√2.【分析】(1)利用立方根、去绝对值、算术平方根、去括号定义求解即可.(2)利用数的平方、算术平方根、去绝对值化简求值即可.【解答】解:(1)原式=﹣2+3−√3+3+√3=4;(2)原式=4×14+2−√2+√2=1+2=3.27.(2022春•泗水县期末)计算:(1)2√2+√25+√83−|√2−2|;(2)√214−√(−2)4+√1−19273+(−1)2022.【分析】(1)直接利用二次根式的性质、立方根的性质、绝对值的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质、立方根的性质、有理数的乘方运算法则分别化简,进而合并得出答案.【解答】解:(1)原式=2√2+5+2﹣(2−√2)=2√2+5+2﹣2+√2=3√2+5;(2)原式=32−4+23+1=−56.28.(2022春•新市区期末)计算:(1)√0.25−√−273+√(−14)2;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)根据算术平方根、立方根的性质化简,再计算即可;(2)根据绝对值的性质化简,再合并即可.【解答】解:(1)原式=0.5+3+14 =334;(2)原式=(√3−√2)﹣(√3−2)﹣(√2−1)=√3−√2−√3+2−√2+1=3﹣2√2.29.(2022春•安次区校级期末)计算:(1)√4−√−83+√16+5;(2)|√3−2|−√14+√3(√3+1)−√−183. 【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:(1)原式=2+2+4+5=13;(2)原式=2−√3−12+3+√3+12=5.30.(2022春•博兴县期末)计算:(1)√1−89−√643+√−1273; (2)√2.56−√0.2163+|1−√2|.【分析】(1)原式利用算术平方根及立方根定义计算即可求出值;(2)原式利用算术平方根,立方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:(1)原式=√19−√643+√−1273=13−4−13=﹣4;(2)原式=1.6﹣0.6+√2−1=√2.31.(2022春•固始县期末)计算:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简每一个绝对值,然后再进行计算即可解答.【解答】解:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273=﹣8×4+(﹣4)+14−3=﹣32﹣4+14−3 =﹣3834;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|=√2−1+√3−√2+2−√3+√5−2=√5−1.32.(2022春•忠县期末)计算:(1)√32+√−273+√49; (2)−14×√4+|√9−5|+√214+√−0.1253. 【分析】(1)利用算术平方根,立方根的意义化简运算即可;(2)注意各项的符号和运算法则.【解答】解:(1)原式=3﹣3+23=23,(2)原式=﹣1×2+5﹣3+32−12=﹣2+5﹣3+1=1.33.(2022春•天津期末)计算:(1)求式子中x的值:√x2−243=1;(2)√3+√(−3)2−√−83−|√3−2|.【分析】(1)利用立方根的意义和平方根的意义解答即可;(2)利用二次根式的性质,立方根的意义,绝对值的意义解答即可.【解答】解:(1)∵√x2−243=1,∴x2﹣24=1,∴x2=25.∴x=±5.(2)原式=√3+3﹣(﹣2)﹣(2−√3)=√3+3+2﹣2+√3=3+2√3.34.(2022春•清丰县期末)计算:(1)(−2)3×18−√273×(−√19);(2)(3+3√3)√3−(2√3+√3).【分析】(1)利用有理数的乘方法则,立方根的意义和平方根的意义化简计算即可;(2)利用二次根式的性质解答即可.【解答】解:(1)原式=﹣8×18−3×(−13)=﹣1﹣(﹣1)=0;(2)原式=3√3+9﹣3√3=9.35.(2022春•潼南区期末)计算下列各式的值:(1)|−2|+√916−√83;(2)√0.25+|√5−3|+√−1253−(−√5).【分析】先计算开方及绝对值,再合并即可.【解答】解:(1)原式=2+34−2=34;(2)原式=0.5+3−√5−5+√5=﹣1.5.36.(2022春•綦江区期末)计算.(1)计算:(﹣1)3+|−2√2|+√273−√4;(2)√9+|√5−3|+√−643+(﹣1)2022.【分析】(1)原式利用乘方的意义,绝对值的代数意义,以及算术平方根、立方根定义计算即可求出值;(2)原式利用算术平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可求出值.【解答】解:(1)原式=﹣1+2√2+3﹣2=2√2;(2)原式=3+3−√5−4+1=3−√5.37.(2022春•临沭县期中)(1)计算:√(−1)23+|1−√2|+√(−2)2;(2)求x 的值:(x +1)3=−278. 【分析】(1)先计算√(−1)23、√(−2)2,再化简绝对值,最后加减.(2)利用立方根的意义求出x .【解答】解:(1)原式=√13+|1−√2|+√4=1+√2−1+2=√2+2;(2)x +1=−√2783, x =−32−1,x =−52.38.(2022春•聂荣县期中)计算:(1)|√6−√2|+|√2−1|﹣|3−√6|;(2)√273+√(−3)2−√−13.【分析】(1)先化去绝对值号,再加减;(2)先求出27、﹣1的立方根及(﹣3)2的算术平方根,再加减.【解答】解:(1)原式=√6−√2+√2−1﹣3+√6=2√6−4;(2)原式=3+3+1=7.39.(2022春•河北区校级期中)计算:(1)√16−√273+(√13)2+√(−1)33; (2)√3(√3−1)+|√2−√3|.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√16−√273+(√13)2+√(−1)33=4﹣3+13+(﹣1)=13.(2)√3(√3−1)+|√2−√3|=√3×√3−√3+(√3−√2)=3−√3+√3−√2=3−√2.40.(2022春•西城区校级期中)(1)计算:√81+√−273+√(−23)2; (2)计算:4√3−2(1+√3)+|2−√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√81+√−273+√(−23)2 =9+(﹣3)+23=9﹣3+23 =203;(2)4√3−2(1+√3)+|2−√2|=4√3−2﹣2√3+2−√2=2√3−√2.41.(2022春•夏邑县期中)计算:(1)√(94)2+|2−√7|−√(78−1)3;(2)(−√6)2×12+√−273+√62+82.【分析】(1)根据二次根式的性质,绝对值的性质,立方根的性质进行计算便可;(2)根据二次根式的性质,立方根的性质进行计算便可.【解答】解:(1)原式=94+√7−2−√−183 =94+√7−2+12=√7+34; (2)原式=6×12−3+10 =3﹣3+10=10.42.(2022春•海淀区校级期中)计算:(1)√25+√−643−|2−√5|+√(−3)2;(2)√2(2+√2)﹣2√2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘法,再算加减,即可解答.【解答】解:(1)√25+√−643−|2−√5|+√(−3)2=5+(﹣4)−√5+2+3=5﹣4−√5+2+3=6−√5;(2)√2(2+√2)﹣2√2=2√2+2﹣2√2=2.43.(2022春•洛龙区期中)计算和解方程:(1)√0.04+√−83−√14+|√3−2|+2√3;(2)2(1﹣x )2=8.【分析】(1)根据二次根式的性质,立方根的性质,绝对值的性质,合并同类二次根式的法则进行计算便可;(2)运用直接开平方法解方程便可.【解答】解:(1)原式=0.2﹣2−12+2−√3+2√3 =﹣0.3+√3;(2)(1﹣x )2=4,1﹣x =±2,∴x 1=﹣1,x 2=3.44.(2022春•随州期中)计算下列各式:①√(−1)2+√14×(−2)2−√−643②|√3−√2|+|√3−√2|−|√2−1|【分析】(1)利用算术平方根和立方根计算即可.(2)先利用绝对值的定义去绝对值,再合并运算.【解答】解:①√(−1)2+√14×(−2)2−√−643=1+12×4﹣(﹣4)=1+2+4=7.②|√3−√2|+|√3−√2|−|√2−1|=√3−√2+√3−√2−(√2−1)=√3−√2+√3−√2−√2+1=(√3+√3)−(√2+√2+√2)+1=2√3−3√2+1.45.(2022春•老河口市月考)计算(1)√16+√149−√−(−4);(2)√52−42−√62+82+√(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√16+√149−√−(−4)=4+17−2=157;(2)√52−42−√62+82+√(−2)2=3﹣10+2=﹣5.46.(2022春•渝北区月考)计算:(1)√−83−√9+(−1)2021+(−√2)2;(2)(−3)2+2×(√2−1)−|−2√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√−83−√9+(−1)2021+(−√2)2=﹣2﹣3+(﹣1)+2=﹣4;(2)(−3)2+2×(√2−1)−|−2√2|=9+2√2−2﹣2√2=7.47.(2022春•崇义县期中)计算:(1)√4+|﹣2|+√−643+(﹣1)2022;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√4+|﹣2|+√−643+(﹣1)2022=2+2﹣4+1=1;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2=3+5+7+2√2÷2=15+√2.48.(2022春•黄石期中)计算:(1)﹣(12)2−√2516−√−83;(2)|√2−√3|+|1−√2|+√3−(﹣1)2021.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)﹣(12)2−√2516−√−83=−14−54−(﹣2)=−32+2 =12.(2)|√2−√3|+|1−√2|+√3−(﹣1)2021=√3−√2+(√2−1)+√3−(﹣1)=√3−√2+√2−1+√3+1=2√3.49.(2022春•渑池县期中)计算:(1)√214−√0.09+√(−3)2;(2)−43÷(−32)−√−83−(1−√9)+|1−√2|.【分析】(1)首先计算开方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开立方和绝对值,然后计算除法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√214−√0.09+√(−3)2=32−0.3+3=4.2.(2)−43÷(−32)−√−83−(1−√9)+|1−√2|=﹣64÷(﹣32)﹣(﹣2)﹣1+3+(√2−1)=2+2﹣1+3+√2−1=5+√2.50.(2022春•江北区校级月考)计算:(1)√0.2163−√1916+5×√1100; (2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2.【分析】(1)首先计算开平方和开立方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解(1)√0.2163−√1916+5×√1100=0.6−54+5×110=35−54+12=−320.(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2=√2−(﹣2)+(2−√3)+9+9=√2+2+2−√3+9+9=√2−√3+22.51.(2022春•三台县月考)计算.(1)﹣12022+√(−2)2−√643×√−27643+|√3−2|;(2)13(x ﹣2)2−427=0.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先求出(x ﹣2)2的值;然后根据平方根的含义和求法,求出x ﹣2的值,进而求出x 的值即可.【解答】解:(1)﹣12022+√(−2)2−√643×√−27643+|√3−2| =﹣1+2﹣4×(−34)+(2−√3) =﹣1+2+3+2−√3=6−√3.(2)∵13(x ﹣2)2−427=0,∴(x ﹣2)2=49,∴x ﹣2=−23或x ﹣2=23, 解得:x =43或x =83.52.(2022春•天门校级月考)计算(1)|√5−2|+√25+√(−2)2+√−273;(2)﹣12﹣(﹣2)3×18−√273×|−13|+2÷(√2)2. 【分析】(1)原式利用绝对值的代数意义,算术平方根、立方根性质计算即可求出值;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可求出值.【解答】解:(1)原式=√5−2+5+2﹣3=√5+2;(2)原式=﹣1﹣(﹣8)×18−3×13+2÷2 =﹣1+1﹣1+1=0.53.(2022春•铁锋区期中)计算(1)√22−√214+√78−13−√−13;(2)|−√2|﹣(√3−√2)﹣|√3−2|.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)利用绝对值的性质化简得出答案.【解答】解:(1)√22−√214+√78−13−√−13=2−32−12+1 =1;(2)|−√2|﹣(√3−√2)﹣|√3−2|=√2−√3+√2−(2−√3)=2√2−2.54.(2021春•涪城区校级期中)计算:(1)√49−√−643−(√2)2+√1+916;(2)√(−5)2−|√3−2|+|√5−3|+|−√5|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而得出答案;(2)直接利用二次根式的性质以及绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=7+4﹣2+54 =1014;(2)原式=5﹣(2−√3)+3−√5+√5=5﹣2+√3+3−√5+√5=6+√3.55.(2016秋•苏州期中)计算下列各题.(1)√0.16+√0.49−√0.81;(2)﹣16√0.25−4√1−653;(3)|−√549|−√210273+√19+116;(4)√1−0.9733×√(−10)2−2(√133−π)0.【分析】(1)、(2)根据数的开方法则分别计算出各数,再根据实数的加减法则进行计算即可;(3)先根据绝对值的性质及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(4)先根据数的开方法则及0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣4×(﹣4)=﹣8+16=8;(3)原式=73−43+512=1712;(4)原式=0.3×10﹣2=3﹣2=1.56.(2022春•林州市期末)计算:(1)计算:√(−2)2−√1253+|√3−2|+√3;(2)已知x是﹣27的立方根,y是13的算术平方根,求x+y2+6的平方根.【分析】(1)直接利用二次根式的性质以及立方根的定义、绝对值的性质分别化简,进而合并得出答案;(2)直接利用立方根的定义以及算术平方根的性质得出x,y的值,进而利用平方根的定义得出答案.【解答】解:(1)原式=2﹣5+2−√3+√3=﹣1;(2)∵x是﹣27的立方根,∴x=﹣3,∵y是13的算术平方根,∴y=√13,∴x+y2+6=﹣3+13+6=16,∴x+y2+6的平方根为:±4.57.(2022春•无棣县期末)(1)计算:√94+√−183−|3−√2|+√(−2)2.(2)若实数a+5的一个平方根是﹣3,−14b﹣a的立方根是﹣2,求√a+√b的值.【分析】(1)利用算术平方根的意义立方根的意义,绝对值的意义和二次根式的性质化简运算即可;(2)利用平方根和立方根的意义求得a,b的值,再将a,b的值代入计算即可.【解答】解:(1)原式=32−12−(3−√2)+2=1﹣3+√2+2 =√2;(2)∵实数a +5的一个平方根是﹣3,∴a +5=9,∴a =4.∵−14b ﹣a 的立方根是﹣2, ∴−14b ﹣a =﹣8, ∴−14b ﹣4=﹣8,∴b =16.∴√a +√b=√4+√16=2+4=6.58.(2022春•洛阳期中)已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为√2,f 的算术平方根是8,求12ab +c+d 5+e 2+√f 3的值.【分析】根据相反数,倒数,以及绝对值的意义求出c +d ,ab 及e 的值,代入计算即可.【解答】解:由题意可知:ab =1,c +d =0,e =±√2,f =64,∴e 2=(±√2)2=2,√f 3=√643=4,∴12ab +c+d 5+e 2+√f 3=12+0+2+4=612. 59.(2022春•秭归县期中)已知(x ﹣7)2=121,(y +1)3=﹣0.064,求代数式√x −2−√x +10y +√245y 3的值.【分析】根据平方根的定义,以及立方根的定义即可求得x ,y 的值,然后代入所求的代数式化简求值即可.【解答】解:∵(x ﹣7)2=121,∴x ﹣7=±11,则x =18或﹣4,又∵x ﹣2>0,即x >2.则x =18.∵(y +1)3=﹣0.064,∴y +1=﹣0.4,∴y =﹣1.4.则√x −2−√x +10y +√245y 3=√18−2−√18−10×1.4−√245×1.43=4﹣2﹣7=﹣560.(2022春•朔州月考)(1)计算:√14−√−0.1253+√(−4)2−|−6|; (2)解方程:25x 2﹣36=0;(3)已知√x +1+|y −2|=0,且√1−2z 3与√3z −53互为相反数,求yz ﹣x 的平方根.【分析】(1)利用算术平方根的意义,立方根的意义,二次根式的性质和绝对值的意义解答即可;(2)利用平方根的意义解答即可;(3)利用非负数的意义和相反数的意义求得x ,y ,z 的值,再将x ,y ,z 的值代入解答即可.【解答】解:(1)原式=12−(﹣0.5)+4﹣6 =12+0.5+4﹣6 =﹣1;(2)25x 2﹣36=0,∴x 2=3625.∴x 是3625的平方根, ∴x =±65. (3)∵√x +1+|y −2|=0,√x +1≥0,|y ﹣2|≥0,∴x +1=0,y ﹣2=0.∴x =﹣1,y =2.∵√1−2z 3与√3z −53互为相反数,∴1﹣2z +3z ﹣5=0.解得:z =4.∴yz ﹣x =8﹣(﹣1)=9.∵9的平方根为±3,∴yz ﹣x 的平方根为±3.。
专题01 实数及其运算(31题)(解析版)--2024年中考数学真题好题汇编
专题01实数及其运算(31题)一、单选题1(2024·广东深圳·中考真题)如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,a <b <0<c <d ,则最小的实数为a ,故选:A .2(2024·甘肃临夏·中考真题)下列各数中,是无理数的是()A.π2B.13C.327D.0.13133【答案】A【分析】本题考查无理数的定义,根据无理数是无限不循环小数结合立方根的定义,进行判断即可.【详解】解:A 、π2是无理数,符合题意;B 、13是有理数,不符合题意;C 、327=3是有理数,不符合题意;D 、0.13133是有理数,不符合题意;故选A .3(2024·福建·中考真题)下列实数中,无理数是()A.-3B.0C.23 D.5【答案】D【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001....,等数.【详解】根据无理数的定义可得:无理数是5故选:D .4(2024·四川内江·中考真题)16的平方根是()A.-4 B.4C.2D.±4【答案】D【分析】题考查了平方根,熟记定义是解题的关键.根据平方根的定义计算即可.【详解】解:16的平方根是±4,故选:D .5(2024·四川泸州·中考真题)下列各数中,无理数是()A.-13B.3.14C.0D.π【答案】D【分析】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,π3等;②开方开不尽的数,如2,35等;③虽有规律但却是无限不循环的小数,如0.1010010001⋯(两个1之间依次增加1个0),0.2121121112⋯(两个2之间依次增加1个1)等.【详解】解:根据无理数的定义可知,四个数中,只有D 选项中的数π是无理数,故选:D .6(2024·山东·中考真题)下列实数中,平方最大的数是()A.3B.12C.-1D.-2【答案】A【分析】本题考查的是实数的大小比较,乘方运算,先分别计算各数的乘方,再比较大小即可.【详解】解:∵32=9,122=14,-1 2=1,-2 2=4,而14<1<4<9,∴平方最大的数是3;故选A7(2024·山东烟台·中考真题)下列实数中的无理数是()A.23B.3.14C.15D.364【答案】C【分析】本题考查无理数,根据无理数的定义:无限不循环小数,叫做无理数,进行判断即可.【详解】解:A 、23是有理数,不符合题意;B 、3.14是有理数,不符合题意;C 、15是无理数,符合题意;D 、364=4是有理数,不符合题意;故选C .8(2024·四川眉山·中考真题)下列四个数中,无理数是()A.-3.14B.-2C.12D.2【答案】D【分析】本题考查的是无理数的概念,无理数即无限不循环小数,它的表现形式为:开方开不尽的数,与π有关的数,无限不循环小数.根据无理数的定义,即可得出符合题意的选项.【详解】解:-3.14,-2,12是有理数,2是无理数,故选:D .9(2024·广东·中考真题)完全相同的4个正方形面积之和是100,则正方形的边长是()A.2B.5C.10D.20【答案】B【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100÷4=25,∴正方形的边长为25=5,故选:B .10(2024·天津·中考真题)估算10的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C【分析】本题考查无理数的估算,根据题意得9<10<16,即可求解.【详解】解:∵9<10<16∴3<10<4,∴10的值在3和4之间,故选:C .11(2024·四川自贡·中考真题)在0,-2,-3,π四个数中,最大的数是()A.-2B.0C.πD.-3【答案】C【分析】此题主要考查了实数大小比较的方法,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.【详解】解:根据实数比较大小的方法,可得:-2<-3<0<π,∴在0,-2,-3,π四个数中,最大的数是π,故选:C .12(2024·四川南充·中考真题)如图,数轴上表示2的点是()A.点AB.点BC.点CD.点D【答案】C【分析】本题考查了实数与数轴,无理数的估算.先估算出2的范围,再找出符合条件的数轴上的点即可.【详解】解:∵1<2<2,∴数轴上表示2的点是点C ,故选:C .13(2024·北京·中考真题)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b >-1B.b >2C.a +b >0D.ab >0【答案】C【分析】本题考查了是实数与数轴,绝对值的意义,实数的运算,熟练掌握知识点是解题的关键.由数轴可得-2<b <-1,2<a <3,根据绝对值的意义,实数的加法和乘法法则分别对选项进行判断即可.【详解】解:A 、由数轴可知-2<b <-1,故本选项不符合题意;B 、由数轴可知-2<b <-1,由绝对值的意义知1<b <2,故本选项不符合题意;C 、由数轴可知2<a <3,而-2<b <-1,则a >b ,故a +b >0,故本选项符合题意;D 、由数轴可知2<a <3,而-2<b <-1,因此ab <0,故本选项不符合题意.故选:C .14(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A.-3 -2=19B.a +b 2=a 2+b 2C.9=±3D.-x 2y 3=x 6y 3【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A . -3 -2=19,故该选项正确,符合题意;B. a+b2=a2+2ab+b2,故该选项不正确,不符合题意;C. 9=3,故该选项不正确,不符合题意;D. -x2y3=-x6y3,故该选项不正确,不符合题意;故选:A.15(2024·内蒙古包头·中考真题)若2m-1,m,4-m这三个实数在数轴上所对应的点从左到右依次排列,则m的取值范围是()A.m<2B.m<1C.1<m<2D.1<m<53【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:2m-1<m<4-m,解得:m<1;故选B.二、填空题16(2024·内蒙古赤峰·中考真题)请写出一个比5小的整数【答案】1(或2)【详解】试题分析:先估算出5在哪两个整数之间,即可得到结果.∵2=4<5<9=3,满足条件的数为小于或等于2的整数均可.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法.17(2024·四川广安·中考真题)3-9=.【答案】0【分析】本题考查的是实数的混合运算,先计算算术平方根,再计算减法运算即可.【详解】解:3-9=3-3=0,故答案为:018(2024·广西·中考真题)写一个比3大的整数是.【答案】2(答案不唯一)【分析】本题考查实数大小比较,估算无理数的大小是解题的关键.先估算出3的大小,再找出符合条件的整数即可.【详解】解:∵1<3<4,∴1<3<2,∴符合条件的数可以是:2(答案不唯一).故答案为:2.19(2024·内蒙古包头·中考真题)计算:38+-1 2024=.【答案】3【分析】本题考查实数的混合混算,先进行开方和乘方运算,再进行加法运算即可.【详解】解:原式=2+1=3;故答案为:3.20(2024·四川成都·中考真题)若m ,n 为实数,且m +4 2+n -5=0,则m +n 2的值为.【答案】1【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵m +4 2+n -5=0,∴m +4=0,n -5=0,解得m =-4,n =5,∴m +n 2=-4+5 2=1,故答案为:1.21(2024·安徽·中考真题)我国古代数学家张衡将圆周率取值为10,祖冲之给出圆周率的一种分数形式的近似值为227.比较大小:10227(填“>”或“<”).【答案】>【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵227 2=48449,10 2=10=49049,而48449<49049,∴2272<10 2,∴10>227;故答案为:>22(2024·黑龙江绥化·中考真题)如图,已知A 11,-3 ,A 23,-3 ,A 34,0 ,A 46,0 ,A 57,3 ,A 69,3 ,A 710,0 ,A 811,-3 ⋯,依此规律,则点A 2024的坐标为.【答案】2891,-3【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,A 7n 的坐标为10n ,0 ,据此可求得A 2024的坐标.【详解】解:∵A 11,-3 ,A 23,-3 ,A 34,0 ,A 46,0 ,A 57,3 ,A 69,3 ,A 710,0 ,A 811,-3 ⋯,,∴可知7个点坐标的纵坐标为一个循环,A 7n 的坐标为10n ,0 ,A 7n +110n +1,-3 ∵2024÷7=289⋅⋅⋅1,∴A 2023的坐标为2890,0 .∴A 2024的坐标为2891,-3 故答案为:2891,-3 .三、解答题23(2024·广东·中考真题)计算:20×-13+4-3-1.【答案】2【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:20×-13+4-3-1=1×13+2-13=13+2-13=2.24(2024·甘肃临夏·中考真题)计算:-4 -13-1+20250.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式=2-3+1=0.25(2024·福建·中考真题)计算:(-1)0+-5 -4.【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式=1+5-2=4.26(2024·江苏连云港·中考真题)计算|-2|+(π-1)0-16.【答案】-1【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式=2+1-4=-127(2024·江苏苏州·中考真题)计算:-4+-20-9.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式=4+1-3=2.28(2024·陕西·中考真题)计算:25--70+-2×3.【答案】-2【分析】本题考查了实数的运算.根据算术平方根、零次幂、有理数的乘法运算法则计算即可求解.【详解】解:25--70+-2×3=5-1-6=-2.29(2024·四川乐山·中考真题)计算:-3+π-20240-9.【答案】1【分析】本题考查了绝对值,零指数幂,算术平方根.熟练掌握绝对值,零指数幂,算术平方根是解题的关键.先分别计算绝对值,零指数幂,算术平方根,然后进行加减运算即可.【详解】解:-3+π-20240-9=3+1-3=1.30(2024·浙江·中考真题)计算:1 4-1-38+-5【答案】7【分析】此题考查了负整数指数幂,立方根和绝对值,解题的关键是掌握以上运算法则.首先计算负整数指数幂,立方根和绝对值,然后计算加减.【详解】1 4-1-38+-5=4-2+5=7.31(2024·湖北·中考真题)计算:-1×3+9+22-20240【答案】3【分析】本题主要考查了实数混合运算,根据零指数幂运算法则,算术平方根定义,进行计算即可.【详解】解:-1×3+9+22-20240水不撩不知深浅=-3+3+4-1=3.。
实数混合运算(人教版)(含答案)
实数混合运算(人教版)一、单选题(共15道,每道6分)1.计算的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实数的混合运算2.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数的混合运算3.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:实数的混合运算4.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数的混合运算5.计算的结果是( )A.30B.90C.20D.6答案:A解题思路:试题难度:三颗星知识点:实数的混合运算6.计算:=( )A. B.C.2D.6答案:B解题思路:试题难度:三颗星知识点:实数的混合运算7.计算:=( )A. B.C. D.0答案:B解题思路:试题难度:三颗星知识点:实数的混合运算8.计算:=( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:实数的混合运算9.计算:=( )A.10B.4C.0D.6答案:B解题思路:试题难度:三颗星知识点:实数的混合运算10.计算:=( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实数的混合运算11.计算:=( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数的混合运算12.计算:=( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实数的混合运算13.关于的方程的解为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平方根的意义14.关于的方程的解为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:立方根的意义15.关于的方程的解为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:平方根的意义。
专题3 实数的运算(考点讲练)(解析版)
专题3 实数的运算考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14−,-3,3−,π−中,最小的数是( ) A . 3.14− B .-3C .3−D .π−【答案】D【分析】根据实数的比较大小的规则比较即可. 【详解】解:∵ 3.14 3.14−=, ∴33 3.14p --<-<-<,在实数 3.14−,-3,3−,π−中,最小的数是:π− ; 故选:D .【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.(2022·湖南益阳·21,2,3中,比0小的数是( )A 2B .1C .2D .13【答案】A【分析】利用零大于一切负数来比较即可.【详解】解:根据负数都小于零可得,﹣2<0,故A 正确. 故选:A .【点睛】本题考查了实数的大小比较,解答此题关键要明确:正实数>零>负实数,两个负实数绝对值大的反而小.是( )A .0a >B .a b <C .10b −<D .0ab >【答案】B【分析】观察数轴得:2123a b −<<−<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b −<<−<<<,故A 错误,不符合题意;B 正确,符合题意;∴10b−>,故C错误,不符合题意;∴0ab<,故D错误,不符合题意;故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键.4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是()A.3B.32−C.23−D.23【答案】C【分析】根据各数的取值范围,即可一一判定.【详解】解:132<<Q,31∴−<−,故A不符合题意;312−<−,故B不符合题意;2103−<−<,故C符合题意;203>,故D不符合题意;故选:C.【点睛】本题考查了实数大小的比较,熟练掌握和运用实数大小的比较方法是解决本题的关键.5.(2022·天津红桥·中考三模)估计17−的值在().A.5−和4−之间B.4−和3−之间C.3−和2−之间D.2−和1−之间【答案】A【分析】先估算4175<<,再由几个负数比较大小,绝对值越小的数越大.【详解】解:161725<<Q4175∴<<4175∴−>−>−故选:A.【点睛】本题考查无理数的估算,是基础考点,掌握相关知识是解题关键.6.(2022·山东临沂·中考真题)比较大小:2______3(填写“>”或“<”或“=”).【答案】>【分析】比较两者平方后的值即可. 【详解】解:221()22=Q ,231()33=,1123>Q , ∴2323>.故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果. 7.(2022·海南·中考真题)写出一个比3大且比10小的整数是___________. 【答案】2或3【分析】先估算出3、10的大小,然后确定范围在其中的整数即可. 【详解】∵32< ,310< ∴32310<<<即比3大且比10小的整数为2或3, 故答案为:2或3【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.考点二:实数的基本运算A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|5【答案】D【分析】各项计算得到结果,即可作出判断. 【详解】A 、原式=﹣1,不符合题意; B 、原式<0,不符合题意;C 、原式=﹣3×25=﹣75,不符合题意;D 、原式=55,符合题意. 故选:D .【点睛】本题考查了实数,有理数的混合运算,熟练掌握运算法则是解本题的关键. A .1332B 342=C 8220=D 2632=【答案】C【分析】根据实数的运算法则即可求解;【详解】解:A.1234332÷=≠,故错误; B.342≠,故错误;C.8220−=,故正确;D.262332⨯=≠,故错误; 故选:C .【点睛】本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键. A 31− B .12−C 32D .32【答案】B【分析】把特殊角的三角函数值代入进行计算即可. 【详解】解:sin30°−tan45° =12−1 =−12, 故选:B .【点睛】本题考查了实数的运算,熟练掌握特殊角的三角函数值是解题的关键. 11.(2022·重庆中考二模)计算:122⎛⎫−+= ⎪⎝⎭( )A .0B .4C .-2D .32【答案】B【分析】先求绝对值,负整指数幂,再进行实数的加法运算. 【详解】解:1122242−⎛⎫−+=+= ⎪⎝⎭,故选:B .【点睛】本题考查了实数的运算,正确理解实数的运算法则是解本题的关键.12.(2022·广东深圳·中考模拟预测)计算021(12)−+−的结果是( )A .1B 2C .22D .221【答案】B【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值. 【详解】解:原式2112=−+=, 故选B .【点睛】此题考查了实数的运算、去绝对值、零指数幂,熟练掌握运算法则是解本题的关键.13.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.【答案】1【分析】根据程序分析即可求解. 【详解】解:∵输出y 的值是2, ∴上一步计算为121x=+或221x =− 解得1x =(经检验,1x =是原方程的解),或32x = 当10x =>符合程序判断条件,302x =>不符合程序判断条件 故答案为:1【点睛】本题考查了解分式方程,理解题意是解题的关键. 14.(2022·陕西·中考真题)计算:325−=______. 【答案】2−【分析】先计算25=5,再计算3-5即可得到答案. 【详解】解:325352−=−=−. 故答案为:-2.【点睛】本题主要考查了实数的运算,化简25=5是解答本题的关键. 15.(2022·四川攀枝花·中考真题)038(1)=−−−__________. 【答案】3−【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可. 【详解】解:原式213=−−=−. 故答案为:3−.【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.16.(2022·辽宁阜新·中考真题)计算:224−−=______.【答案】74−【分析】先计算22−、4,再算减法. 【详解】解:原式17244=−=−. 故答案为:74−.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键. 17.(2022·广东肇庆·中考二模)计算:31008÷=______________. 【答案】5【分析】根据算术平方根的定义及立方根的定义化简,再计算除法. 【详解】解:31008÷=5210=÷, 故答案为:5.【点睛】此题考查了实数的混合运算,正确掌握算术平方根的定义及立方根的定义是解题的关键.18.(2022·湖北黄石·中考真题)计算:20(2)(20223)−−−=____________. 【答案】3【分析】根据有理数的乘法与零次幂进行计算即可求解. 【详解】解:原式=413−=. 故答案为:3.【点睛】本题考查了实数的混合运算,掌握零次幂以及有理数的乘方运算是解题的关键.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π−−−−+的结果为( )A .3−B .3C .6D .9【答案】D【分析】先化简绝对值,计算零次幂与负整数指数幂,再化简即可. 【详解】解:031|2|(2017)()2π−−−−+218=−+189=+=故选D【点睛】本题考查的是化简绝对值,零次幂,负整数指数幂的含义,掌握“零次幂与负整数指数幂:()()0110,0ppa a a a a −=≠=≠”是解本题的关键. 20.(2022·山东威海·中考模拟)计算3024(1)(1)2π−+−−−−的结果是( )A .74B .34C .14D .14−【答案】D【分析】根据二次根式的性质,零指数幂、负整数指数幂、乘方的运算法则先进行化简,然后再计算即可.【详解】解:原式()12114=+−−−12114=−−−14=−故选:D .【点睛】本题主要考查了实数的混合运算,熟练掌握二次根式的性质,零指数幂、负整数指数幂、乘方的运算法则,是解题的关键. 21.(2022·江苏南京·中考模拟)计算2323的结果是( )A 23B .23C .23−D 23【答案】A【分析】把较高次幂拆分后逆用积的乘方法则,进行运算即可得解. 【详解】解:()()202120202323+− = ()()20202020=(23)2323++−()()2020=(23)[2323]++−222020=(23)[(2)(3)]+− 2020=(23)(1)+⨯−=23+故选:A【点睛】本题考查了二次根式的运算,平方差公式,积的乘方的逆运算等知识,熟练掌握相关运算法则是关键.22.(2022·广东·东莞市中考三模)计算:|2|3sin 302(2022)−+−−−︒等于() A .2−B .12−C .2D .0【答案】C【分析】先化简绝对值,求解特殊角的三角函数,负整数指数幂,零次幂,再进行加减运算即可.【详解】解:10|2|3sin 302(2022)π−−+−−−︒1123122=+?- 312122=+−− =2, 故选C .【点睛】本题考查的是特殊角的三角函数,零次幂,负整数指数幂的含义,绝对值的含义,实数的混合运算,掌握“实数的混合运算的运算顺序”是解本题的关键.23.(2022·广东惠州·中考二模)01tan60|3|(3)122π︒⎛⎫−−−−+−= ⎪⎝⎭__________.【答案】-1【分析】根据负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简等计算法则求解即可.【详解】解:101tan60|3|(3)122π−⎛⎫−−−−+−⎪︒+ ⎝⎭=233123−−−++=1−故答案为:-1.【点睛】本题主要考查了负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简,熟知相关计算法则是解题的关键.24.(2022·山东泰安·中考三模)()02281212cos 45π−−+−−++−︒=________.【答案】74【分析】根据负整指数幂,二次根式的性质,化简绝对值,零次幂,特殊角的三角函数值进行计算即可求解.【详解】解:原式=()1222211242−+−−+−⨯1114=−++7=4故答案为:74【点睛】本题考查了实数的混合运算,掌握负整指数幂,二次根式的性质,化简绝对值,零次幂,特殊角的三角函数值是解题的关键.25.(2022·重庆长寿·中考模拟)计算:201131216012π12tan −−−+−︒+⋅−=−()()__________. 【答案】-4【分析】根据有理娄数的乘方、负整数指数幂、特殊三角函数值、二次根式的化简、零指数幂、绝对值的概念计算即可.【详解】解:1213121tan 601212π−︒⎛⎫−⎛⎫−+−+⋅− ⎪ ⎪⎪−⎝⎭⎝⎭=241312331−+−+⨯−−=()()()231431233131+−+−+−−+=4313123−+−++− =-4【点睛】本题考查了实数的运算,解题的关键是掌握有关运算法则.26.(2022·内蒙古内蒙古·中考真题)计算:0312cos30(3π)82︒⎛⎫−++−− ⎪⎝⎭.【答案】31+【分析】根据负整数指数幂、30°角的余弦值、零次幂以及开立方的知识计算每一项,再进行实数的混合运算即可.【详解】原式1321(2)122=+⨯+−−−2312=−+++31=+.【点睛】本题主要考查了含特殊角的三角函数值的实数的混合运算,牢记30°角的余弦值是解答本题的基础.27.(2022·湖南·中考真题)计算:012cos 45( 3.14)12()2π−︒+−++.【答案】222+【分析】先将各项化简,再算乘法,最后从左往右计算即可得【详解】解:原式2212122=⨯++−+ 222=+.【点晴】本题考查特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂,解题的关键是掌握特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂的性质. 28.(2022·湖南郴州·中考真题)计算:()2022112cos30133⎛⎫−−︒++ ⎪⎝⎭.【答案】3【分析】根据特殊角的三角函数值、绝对值的意义和负整数指数幂的计算方法计算即可. 【详解】解:原式()3123132=−⨯+−+13313=−+−+ =3.【点睛】本题考查了特殊角的三角函数值、绝对值的意义和负整数指数幂的运算法则等知识,熟记特殊角的三角函数值是解答本题的关键.29.(2022·广东中考三模)计算:()0120222sin 6032123π⎛⎫+−+︒ ⎪⎝⎭【答案】1223−【分析】根据负整数指数幂,零指数幂,特殊角的三角函数值,化简绝对值,二次根式的性质化简各数,然后即可求解. 【详解】解:原式=391223232++⨯+−− 9132323=+++−− 1223=−.【点睛】本题考查了实数的混合运算,掌握负整数指数幂,零指数幂,特殊角的三角函数值,化简绝对值,掌握二次根式的性质是解题的关键. 30.(2022·湖南·0332cos60820222π+︒. 【答案】13−【分析】根据零指数幂、特殊角的三角函数值、绝对值及二次根式的运算法则进行计算,再相加减可得结果.【详解】解:原式=33−+211822⨯−⨯−1=33−+1﹣2﹣1 =13−.【点睛】本题考查实数的综合运算能力,熟练掌握零指数幂、特殊角的三角函数值、绝对值及二次根式的运算是解决本题的关键.31.(2022·四川德阳·中考真题)计算:()()0212 3.143tan 60132π−+−−︒+−+−. 【答案】14【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:0212 3.143tan 6013())2(π−+−−︒+−+−123133314=+−+−+ 14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.。
实数的运算(含二次根式 三角函数特殊值的运算)
一、填空题1.(2019山东滨州,13,5分)计算:(-12)-2-=____________.【答案】243【解析】原式=4-+31218=4-=243.【知识点】负整数指数幂;绝对值;二次根式的乘除2.(2019重庆市B 卷,13,4分)计算:()⎪⎭⎫ ⎝⎛-+-21113=【答案】3【解析】解题关键是理解零指数幂和负整数指数幂的意义.思路:利用“任意不为0的数的0次幂都等于1”,“任意不为零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数”,然后求和即可.故答案为3. 【知识点】零指数幂,负整数指数幂.3.(2019重庆A 卷,13,4)计算:=+1-0213-)()(π.【答案】3.【解析】因为原式=1+2=3,所以答案为3. 【知识点】实数的运算;0指数幂;负整数指数幂.二、解答题1.(2019重庆A 卷,19,10分)计算:(1))2(2y x y y x +-+)(;(2)292492--÷--+a a a a a )(.【思路分析】(1)按完全平方公式和单项式乘以多项式法则展开,再合并同类项即可;(2)按分式的运算法则进行计算即可.【解题过程】(1)原式=x 2+2xy +y 2-2xy -y 2=x 2;(2)原式=22294229a a a a a a -+--⋅--=2(3)22(3)(3)a a a a a --⋅-+-=33a a -+. 【知识点】整式的运算;分式的运算.2.(2019浙江台州, 18, 8分)先化简,再求值:22332121x x x x x --+-+,其中x =12. 【思路分析】先做减法,后约分,然后代入求值即可. 【解题过程】原式=()()22313332111x x x x x x --==-+--,当x =时,原式=31x -=-6.【知识点】分式计算,因式分解3.(2019浙江衢州,17,6分)计算,|-3|+(π-3)0- 4+tan45°.【思路分析】根据绝对值、零次幂、算术平方根的意义,化简代数式,根据特殊三角函数值的概念得到tan45°的值,依据运算法则进行计算。
中考数学----《实数混合运算》专项练习题(含答案解析)
中考数学----《实数混合运算》专项练习题(含答案解析) 1.计算:()2022192sin 30−︒. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()20221192sin 3013213132−︒=+−⨯=+−=. 【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.2.计算:021(3)3624−−π−−+. 【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式111644=−++7= 【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.3.计算:01(10)1620222⎛⎫−⨯− ⎪⎝⎭. 【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式541=−+=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.4.计算:0(2022)2tan 45|2|9−−︒+−+【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=−⨯++1223=−++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.5.()()0212 3.143tan 60132π−−−︒+−.【答案】14【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算. 0212 3.143tan 6013())2(π−−−︒+−123133314=−+14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.6.计算:20(2)|325(33)−+−− 3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可. 【详解】解:原式43513=+【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1,2a a . 7.计算:(011322452−+︒−−. 【答案】2【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1211222+=2. 【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.8.019(2022)2−−+.【答案】52【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得. 019(2022)2−−+1312=−+ 52=. 【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.9.计算:201(2)2sin 602π−⎛⎫−+−− ⎪⎝⎭︒.【答案】3【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:201(2)2sin 602π−⎛⎫−+−− ⎪⎝⎭︒33 【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则. 10.计算:015(3)|67⎛⎫⨯−+−− ⎪⎝⎭. 【答案】166−【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解. 【详解】解:015(3)|67⎛⎫⨯−+− ⎪⎝⎭1561=−+166=−【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键. 11.计算:(()2623+⨯−.【答案】0【分析】先算乘方,再算乘法和减法,即可.【详解】()26(6)623606=+−=+−−=⨯ 【点睛】本题考查实数的混合运算,关键是掌握2(a a =.12.2324 【答案】6−【分析】根据二次根式的混合运算进行计算即可求解. 【详解】解:原式626=6=−【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.13.计算:2013sin3082−︒︒⎛⎫− ⎪⎝⎭【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=12 14222−⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.14.计算:2sin60°﹣32|+(π10012(﹣12)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣32|+(π10012+(﹣12)﹣2333333=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.15.计算:12022125(1)3−⎛⎫+−⎪⎝⎭.5【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022 125(1)3−⎛⎫+−⎪⎝⎭3521=−5【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.16.124sin3032︒;3【分析】先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可; 【解析】解:原式1234232=⨯+3=【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算法则,熟记特殊角的三角函数值.17.计算:2022032tan 45(1)(3)π−−︒+−−.【答案】1 【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可. 【详解】解:2022032tan 45(1)(3)π−−︒+−−32111=−⨯+−3211=−+−1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.18.计算:201tan 452(3)(21)2(6)23−︒−++−−+⨯−. 【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法. 【详解】解:201tan 452(3)(21)2(6)23−︒−++−+⨯− =1191422++−− =6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.19.计算:()20211+84sin 45+2−︒−.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可 【详解】解:原式2122422=−+⨯+ 122222=−+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.20.23862−−.【答案】4. 38=2,-6=6,计算出结果.【详解】解:原式2644=+−=故答案为:4.【点睛】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算. 21.计算:()043897⨯−+−. 【答案】-6;.【分析】直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;【详解】解:()043897⨯−+−− 12831=−+−+6=−;【点睛】此题主要考查了实数运算的混合运算,正确掌握相关运算法则是解题关键. 22.025|7|(23)−−+.【答案】1−【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=−+=−.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.23.计算:0|2021|(3)4−+−【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可; 【详解】解:0|2021|(3)4−+−202112=+−,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.24.计算:011(2021)()2cos 452π−−+−︒. 【答案】32【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】解:011(2021)()2cos 452π−−+−︒, 2122=+− 32=【点睛】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.25.计算:()101tan 60233122−⎛⎫−+︒−+−− ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可. 【详解】解:()101tan 60233122−⎛⎫−+︒−−+− ⎪⎝⎭π ()=2+3233−+1-2=2323123−−=3−【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.26.计算:()03.1427134sin 60π−+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1427134sin 60π−︒ =3133314−+ =1333123−+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.27.计算:()2012sin 602020233π−︒⎛⎫+−+−+ ⎪⎝⎭ 【答案】12【解析】【分析】分别根据特殊锐角三角函数值、零指数幂、负指数幂和实数性质化简各式,再计算即可.【详解】解:原式329123=++3123=12=.【点睛】本题考查了特殊锐角三角函数值、零指数幂、负指数幂和实数的有关性质,解答关键是根据相关法则进行计算.28.计算:552×822)0. 【答案】0【解析】【分析】先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;【详解】 解:原式=12352522122− =35521−=0;【点睛】本题主要考查实数的混合运算,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.29.计算:0(23)(23)tan 60(23)π++︒−− 3【解析】【分析】先计算平方差公式、特殊角的正切函数值、零指数幂,再计算实数的混合运算即可.【详解】 原式222(3)31=− 4331=−+3=【点睛】本题考查了平方差公式、特殊角的正切函数值、零指数幂等知识点,熟记各运算法则是解题关键.30.()220201272603232cos −⎛⎫−−+ ⎪⎝⎭o ; 36.【解析】【分析】根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;【详解】 ()220201272603232cos −⎛⎫−−+ ⎪⎝⎭o 3314323=−−−36=;【点睛】本题考查了实数的混合运算,二次根式的加减法,解答此题的关键是熟练掌握运算法则. 31.计算:120201(1)|132sin 602−︒⎛⎫−+−+− ⎪⎝+⎭. 【答案】2【解析】【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.【详解】 解:原式=)312312++−=12313+=2【点睛】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.32.计算:2cos45(2020)|22π︒︒+−+−.【答案】3【解析】【分析】根据特殊角的三角函数值,零指数幂运算及去绝对值法则进行计算即可.【详解】 解:2cos45(2020)|22π︒︒+−+=2×22+1+22 =2+1+22=3.【点睛】本题考查零次幂的性质、特殊角的三角函数值,绝对值性质实数的运算,熟练掌握计算法则是正确计算的前提.33.计算:11()18|2|6sin 453−−−︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=2332262+−⨯ 332232=+−5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.34.计算:0|122sin45(2020)︒−+−;【答案】0;【解析】【分析】根据实数的混合运算法则计算即可;【详解】解:原式221212−⨯+ =0;【点睛】本题考查了实数的混合运算,以及特殊角的三角函数值,解题的关键是掌握运算法则.35.计算:10311345( 3.14)273π−⎛⎫+︒+− ⎪⎝⎭3【解析】【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】10311345( 3.14)273π−⎛⎫+︒+− ⎪⎝⎭3|131|13=++−33113=+−3=【点睛】 本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.36.计算:101()2cos 4512(31)3−−+−【答案】1【分析】根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.【详解】101()2cos 4512(31)3−−+ 2322211=−⨯− 22131=−1=.【点睛】 本题主要考查了实数的混合运算,包含零指数幂,负整数指数幂,绝对值及特殊角的余弦值等,灵活运用是解题关键.37.计算:013120208302−⎛⎫+︒− ⎪⎝⎭. 【答案】0【解析】【分析】依次计算零指数幂,化简立方根乘以特殊的三角函数值,最后一项利用负指数幂,最后相加减即可得出答案.【详解】解:原式11222=+⨯− 112=+−0=【点睛】此题主要考查了实数的运算以及特殊的三角函数值,熟练掌握运算法则是解题的关键. 38.计算:1202138(π﹣3.14)0﹣(﹣15)-1. 【答案】5【解析】算出立方根、零指数幂和负指数幂即可得到结果;【详解】解:原式=1﹣2+1+5=5.【点睛】本题主要考查了实数的运算,计算是解题的关键.39.计算:13182cos60-(-1) 2π−⎛⎫−⎪⎝⎭.【答案】0【解析】【分析】先化简各项,再作加减法,即可计算.【详解】解:原式=1 22212−++⨯−=0,故答案为:0.【点睛】此题考查实数的混合运算以及特殊角的三角函数值,关键是掌握运算法则和运算顺序.40.0 31 8312sin604⎛⎫−−︒+ ⎪⎝⎭【答案】2−.【解析】【分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可.【详解】原式323121−+−+ =23131 =−+【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.41.计算:()10124sin 601232π−⎛⎫−−−+︒− ⎪⎝⎭ 【答案】-3【解析】【分析】根据负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则分别对每项进行化简,再进行加减计算即可. 【详解】 解:()10124sin 601232π−⎛⎫−−−+︒− ⎪⎝⎭ 2223231=−−+3=−【点睛】本题考查实数的混合运算、熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则是解题的关键.42.计算:()10131012454−︒⎛⎫−−++ ⎪⎝⎭ 【答案】7【解析】【分析】根据绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则分别对每项进行化简,再进行加减计算即可.【详解】解:)10131012454−︒⎛⎫−−+ ⎪⎝⎭ =3114−++=7【点睛】本题考查实数的混合运算、熟练掌握绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则是解题的关键.43.101313tan 30(3.14)2π−⎛⎫−︒+−+ ⎪⎝⎭ 【答案】2.【解析】【分析】先计算绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.【详解】 原式331312=−++ 31312=+2=.【点睛】本题考查了绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,熟记各运算法则是解题关键.44.()(202 3.14219π−+ 【答案】10.【解析】【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式221(21)3=−+2219=+10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.18。
(完整word版)2019年中考专题复习第二讲实数的运算(含详细参考答案)
2019年中考专题复习 第二讲 实数的运算【基础知识回顾】一、实数的运算.1、基本运算:初中阶段我们学习的基本运算有 、 、 、 、 、 和 共六种,运算顺序是先算 ,再算 ,最后算 ,有括号时要先算 ,同一级运算,按照 的顺序依次进行. 2、运算法则:加法:同号两数相加,取 的符号,并把 相加,异号两数相加,取 的符号,并用较大的 减去较小的 ,任何数同零相加仍得 。
减法,减去一个数等于 。
乘法:两数相乘,同号得 ,异号得 ,并把 相乘。
除法:除以一个数等于乘以这个数的 。
乘方:(-a )2n +1= (—a ) 2n=3、运算定律:加法交换律:a+b= 加法结合律:(a+b )+c= 乘法交换律:ab= 乘法结合律:(ab )c= 分配律: (a+b )c= 二、零指数、负整数指数幂。
0a = (a≠0) a -p= (a≠0)【名师提醒:1、实数的混合运算在中考考查时经常与0指数、负指数、绝对值、锐角三角函数等放在一起,计算时要注意运算顺序和运算性质。
2、注意底数为分数的负指数运算的结果,如:(31)-1= 】三、实数的大小比较:1、比较两个有理数的大小,除可以用数轴按照的原则进行比较以外,,还有比较法、比较法等,两个负数大的反而小。
2、如果几个非负数的和为零,则这几个非负数都为。
【名师提醒:比较实数大小的方法有很多,根据题目所给的实数的类型或形可以式灵活选用。
22的大小,可以先确定10和65的取值范围,然后得结论:10+2 65—2。
】【重点考点例析】考点一:实数的大小比较。
例1 (2018•福建)在实数|-3|,—2,0,π中,最小的数是()A.|-3| B.-2 C.0 D.π【思路分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.解:在实数|—3|,-2,0,π中,|—3|=3,则-2<0<|-3|<π,故最小的数是:—2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.考点二:估算无理数的大小例2 (2018•南京)下列无理数中,与4最接近的是()A B C D【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键. 考点三:实数与数轴例3(2018•北京)实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .|a |>4 B .c —b >0 C .ac >0 D .a+c >0【思路分析】本题由图可知,a 、b 、c 绝对值之间的大小关系,从而判断四个选项的对错. 解:∵—4<a <-3,∴|a |<4,∴A 不正确; 又∵a <0,c >0,∴ac <0,∴C 不正确; 又∵a <—3,c <3,∴a+c <0,∴D 不正确; 又∵c >0,b <0,∴c-b >0,∴B 正确; 故选:B .【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负. 考点四:实数的混合运算例4 (2018•怀化)计算:0112sin 3022|31|π-︒--+-+()()【思路分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=1213122⨯-+-+ =1+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 考点五:实数中的规律探索。
2021年七年级数学下册第六单元《实数》经典习题(答案解析)(3)
一、选择题1.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有( )A .0个B .1个C .2个D .3个C 解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C .【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.2.,则x+y 的值为( )A .-3B .3C .-1D .1D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵ ∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.3.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.A 、22-=,则2-与2不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 、3382,82-=--=-,则38-与38-不是相反数,此项不符题意;故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.4.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.5.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A点沿数轴向右滚动,A点表示的数加两个圆周.6.在下列各数中是无理数的有()-43π,3.1415926,2.010101(相邻两个0之间有1个1),0.11176.0102030405060732A.3个B.4个C.5个D.6个B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】3π,76.0102030405060732故选:B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.7.和数轴上的点一一对应的数是()A.自然数B.有理数C.无理数D.实数D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D.【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.-的整数部分相8.已知无理数m5π同,则m为()A B C1D.π-解析:C【分析】m的整数部分与小数部分,进而可得答案.【详解】π≈,解:因为23, 3.14-的整数部分为1,2,5π所以无理数m的整数部分是12,所以121m=+=.故选:C.【点睛】m的整数部分与小数部分是解题的关键.9.若1a>,则a,a-,1a的大小关系正确的是()A.1a aa>->B.1a aa>->C.1a aa>>-D.1a aa->> C解析:C 【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2,∴|a|>1a>-a;故选:C.【点睛】此类问题运用取特殊值的方法做比较简单.10.已知|x|=2,y2=9,且xy<0,则x+y的值为()A.1或﹣1 B.-5或5 C.11或7 D.-11或﹣7A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.二、填空题11.计算:(12(2)22(2)8x -=(1)1;(2)【分析】(1)实数的混合运算利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解【详解】解:(1)===1(2)∴【点睛】本题考查实数的混合运算及利用平方根解方 解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.12.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯【分析】利用裂项法计算即可【详解】原式【点睛】本题考查了利用裂项法进行分数的加法计算熟练掌握裂项法是解题的关键 解析:10102021【分析】 利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 13.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根.(1)x=5169或;(2)±3【分析】(1)根据题意这两个式子互为相反数列方程求出x 的值然后算出这个数;(2)根据绝对值和算术平方根的非负性求出c 和d 的值再算出结果【详解】(1)解:①这个数是②这解析:(1)x =5,169或21x =-,1521;(2)±3【分析】(1)根据题意,这两个式子互为相反数,列方程求出x 的值,然后算出这个数; (2)根据绝对值和算术平方根的非负性求出c 和d 的值,再算出结果.【详解】(1)解:①23180x x ++-=,315x =,5x =,这个数是()2253169⨯+=,②2318x x +=-,21x =-,这个数是()221181521--=;(2)解:由题意得:2c -d =0,2360d -=,解得:d =±6,c =±3.∵当d =-6,c =-3时,d +c =-9(舍),∴d +c 的平方根为.【点睛】本题考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的性质. 14.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 15.计算:(1)﹣12﹣(﹣2)(21)+2|(1)﹣9;(2)5【分析】(1)先计算立方根和算术平方根再进行加减运算即可;(2)先计算乘法和绝对值再相加即可【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=3 解析:(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.16.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=(1)或;(2)【分析】(1)适当变形后利用平方根的定义即可解方程;(2)适当变形后利用立方根的定义即可解方程【详解】解:(1)两边乘以2得开平方得即或∴或;(2)移项得开立方得解得【点睛】本题考查解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.17.比较大小:12-___________12<【分析】利用作差法比较两个数的大小【详解】解:∵1<3<4∴1<<2∴1-1<-1<2-1∴0<-1<1∴<故答案为:<【点睛】本题考查了实数的大小比较此题的难点是利用夹逼法推知的取值范围 解析:<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1<2-1∴0<1∴<12. 故答案为:<.【点睛】本题考查了实数的大小比较,此题的难点是利用“夹逼法” 18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.比较大小:3-(用“>”,“<”或“=”填空).>【分析】正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小据此判断即可【详解】解:因为<<所以2<<3所以-3<-<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法解析:>【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】所以2<3所以,-3<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.若()22110a c --=,则a b c ++=__________.【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用等知识点熟练掌握绝对值算术平方根偶次方的 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 三、解答题21.计算:2(3)2--解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭(2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=-143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.23.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()225--.解析:(1)182;(2)22;(3-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】 (1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.24.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值; (2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加; 特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值. 故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键. 25.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x =∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.26)10152-⎛⎫-+︒ ⎪⎝⎭解析:32【分析】 根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式33421421222=-+-=-+-=. 【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键. 27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】 利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.。
七年级下-专题 实数的运算计算题(共45小题)(解析版)
七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−=5+3﹣(−2 3)=5+3+2 3=82 3.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27++|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27++|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×3 5=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−5 2×310=0−3 4=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2+=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×(﹣1)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+3 2−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−+(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(1;(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−×|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−1 5−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022秋•+(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−�|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×−172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×172−82÷=0.2×54−15÷(−15)=14+75=751 4【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.(1)(−2)2×3(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×−23×=2×32−8×14=3﹣2=1(3)9+|1−2|−×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×+|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9×33=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。
1.1核心考点突破训练:与实数有关的计算-2023届中考数学一轮大单元复习(解析版)
1.1突破训练:与实数有关的计算类型体系(本专题共69题48页)类型1:实数的混合计算)―2+(2022+π)0.典例:(2022·广西·南宁十四中九年级期中)计算:12―|―1|+(121.(2022·重庆巴蜀中学九年级期中)|14―5|―(π―5)0+(―2)―2=______.(2)(2022·重庆八中九年级期中)计算:cos30°―|1―3|=___________.2.(2022·江苏·盐城市初级中学一模)计算:(π―1)0+12―2cos30°.3.(2022·四川乐山·九年级期中)计算:25+|1―3|+27.4.(2022·上海·青浦区实验中学九年级期中)计算:40+813―(2―1)―1+|1―2|.5.(2022·江苏·连云港市新海初级中学三模)计算:|―3|+3―8―(1―π)0.【答案】0【分析】根据绝对值的意义,求一个数的立方根以及零指数幂进行运算即可.【详解】解:原式=3―2―1=0.【点睛】本题考查了绝对值的意义,求一个数的立方根以及零指数幂等知识点,灵活运用所学知识点是解本题的关键.6.(2022·江苏·射阳县第四中学二模)计算:8+(2010―3)0―17.(2022·广西·1+2cos45°―8+|1―2|.8.(2022·江苏·阳山中学九年级期中)计算:(1) 2tan45°―1―2sin260°sin30°(2) 12―4sin30°+|3―2|;9.(2022·山东·淄博市张店区第九中学九年级期中)计算:(1)cos60°+sin45°―tan45°;(2)6tan230°―3sin60°―2cos45°.典例:(2022·河北邢台·七年级期末)按下面程序计算:(1)当输入x=5时,输出的结果为______(2)若输入x的值为大于1的实数,最后输出的结果为17,则符合条件的x的值是______1.(2022·浙江·杭州绿城育华学校一模)有一个数值转换器,原理如下:当输人的x=144时,输出的y等于()A.3B.8C.33D.232.(2022·河北·一模)按如图所示的程序计算,若开始输入的n值为3,则最后输出的结果是( )A.3+3B.15+3C.3+33D.15+733.(2022·辽宁葫芦岛·七年级期末)如图是一个无理数生成器的工作流程图,根据该流程图下面说法正确的是()A.输入值x为16时,输出y值为4B.输入任意整数,都能输出一个无理数C.输出值y为3时,输入值x为9D.存在正整数x,输入x后该生成器一直运行,但始终不能输出y值4.(2022·山东济宁·八年级期中)按如图所示的程序计算,若开始输入的x值为5,则最后输出的结果是()A.55B.5+5C.24D.35+1155.(2022·浙江·七年级专题练习)如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y为3时,输入值x为3或9;②当输入值x为16时,输出值y为2;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是( )A.①②B.②④C.①④D.①③故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.(2022·全国·九年级专题练习)按照如图所示的程序计算,若输出y的值是2,则输入x的值是_____.7.(2022·北京海淀·九年级期末)给定二元数对(p,q),其中p=0或1,q=0或1.三种转换器A,B,C 对(p,q)的转换规则如下:(1)在图1所示的“A—B—C”组合转换器中,若输入(1,0),则输出结果为________;(2)在图2所示的“①—C—②”组合转换器中,若当输入(1,1)和(0,0)时,输出结果均为0,则该组合转换器为“____—C—____”(写出一种组合即可).【答案】 1 A A【分析】(1)利用转换器C的规则即可求出答案.(2)利用转换器A、B、C的规则,写出一组即可.【详解】(1)解:利用转换器C的规则可得:输出结果为1.(2)解:当输入(1,1)时,若①对应A,此时经过A、C输出结果为(1,0),②对应A,输出结果恰好为0.当输入(0,0)时,若①对应A,此时经过A、C输出结果为(0,1),②对应A,输出结果恰好为0.故答案为:1;A;A.【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.8.(2022·河北·廊坊市第十六中学七年级期末)一个数值转换器,如图所示:(1)当输入的x为2时,输出的y值是______.(2)当输出的y值为3时,请写出两个满足条件的x的值为______和______.9.(2022·福建厦门·七年级期中)如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y为2时,输入值x为2或4;②当输入值x为9时,输出值y为3;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中正确的是________.④当x=1,1的算术平方根为1,该生成器能够一直运行,但始终不能输出y值,故④符合题意;故答案为:②④.【点睛】本题考查了实数的性质,求一个数的算术平方根,无理数的定义,理解题意是解题的关键.10.(2022·河北·邯郸市第二十三中学七年级期中)任意给出一个非零实数m,按如图所示的程序进行计算.(1)当m=1时,输出的结果为________.(2)当实数m的一个平方根是﹣3时,求输出的结果.11.(2022·上海·七年级专题练习)如图是一个无理数筛选器的工作流程图.(1)当x为9时,y值为;(2)如果输入0和1,(填“能”或“不能”)输出y值;(3)当输出的y值是5时,请写出满足题意的x值:.(写出两个即可)典例:(2022·江苏宿迁·七年级期中)设a、b都表示有理数,规定一种新运算“※”:当a≥b时,a※b=b2,当a<b时,a※b=2×a.例如:1※2=2×1=2,3※(―2)=(―2)2=4.(1)(―1)※(―5)=_______________;(2)求(2※3)※(―1)的值;(3)若有理数x在数轴上对应点的位置如图所示,设:m=(1※x)※x;n=x※3,比较m、n的大小关系.解:(1)∵(―1)<(―5),∴(―1)※(―5)=(―5)2=25;(2)(2※3)※(―1)=(2×2)※(―1)=(―1)2=1;(3)由数轴知1<x<2,∴(1※x)※x=(2×1)※x=2※x=x2,x※3=2x∵x2<2x,∴m<n.巩固练习1.(2022·陕西咸阳·八年级期中)现定义一个新运算“※”,规定对于任意实数x,y,都有x※y=x+y+3xy+1,则7※9的值为________.2.(2022·山东德州·九年级期中)给出一种运算:对于函数y=x n,规定y′=nx n―1.例如:若函数y1=x4,则有y′1=4x3.若函数y2=x3,求方程y′2=12的解为___________.【答案】x1=2,x2=―2【分析】根据新定义的规定先计算y2′,再解方程.【详解】解:∵y2′=3x2,又∵y2′=12,∴3x2=12.∴x2=4.∴x1=2,x2=―2,故答案为:x1=2,x2=―2.【点睛】本题考查了解一元二次方程的直接开平方法.掌握新定义规定的运算和一元二次方程的解法是解决本题的关键.3.(2022·山东潍坊·八年级期中)定义一种运算☆,规则为a☆b=1a +1b,根据这个规则,若x☆(x+1)=32x,则x=___________.4.(2022·山东烟台·期中)在有理数的原有运算法则中,补充新的运算法则“∗”如下:当a≥b时,a∗b= b2;当a<b时,a∗b=a.则当x=3时,(3∗x)·(―x)―(2∗x)=______.【答案】―29【分析】根据题意,当a≥b时,a∗b=b2;当a<b时,a∗b=a,当x=3时,3∗x=x2,x2·(―x)=―x3,2∗x=2,由此即可求解.【详解】解:当x=3时,3∗x=3∗3=32=9,9×(―x)=9×(―3)=―27,2∗x=2∗3=2(3∗x)·(―x)―(2∗x)=9×(―3)―2=―29,故答案为:―29.【点睛】本题主要考查有理数的定义新运算,掌握有理数的加法、减法、乘法运算法则是解题的关键.5.(2022·山东·商河县第三实验学校八年级期中)规定以下两种变换:①f(m,n)=(―m,n),如f(2,1)=(―2,1);②g(m,n)=(―n,―m),如g(2,1)=(―1,―2),按照以上变换有:f[g(3,4)]=f(―4,―3)=(4,―3),那么g[f(―2,3)]等于_____.【答案】(―3,―2)【分析】直接利用新定义分别化简,进而得出答案.【详解】解:g[f(―2,3)]=g(2,3)=(―3,―2)故答案为:(―3,―2)【点睛】此题考查新定义的运用,仔细阅读题干,理解材料的含义是解题的关键.6.(2022·江苏无锡·七年级期中)定义一种新运算:x★y=x+y―xy,则计算(―3)★2=___________.【答案】5【分析】根据新运算的定义代入直接计算即可.【详解】解:∵x★y=x+y―xy,∴(―3)★2=―3+2―(―3)×2=―3+2+6=5,故答案为:5【点睛】本题考查了新运算和有理数的混合运算,理解新运算的定义是解题的关键.7.(2022·安徽·宣城十二中七年级期中)对于实数a、b,定义运算:a△b=a b(a>b,a≠0)a―b(a<b,a≠0);如:2▲3= 2―3=1,4▲2=42=16.照此定义的运算方式计算[2Δ(―4)]×[(―4)Δ(―2)]=___________ .88.(2022·贵州六盘水·七年级期末)规定一种新运算法则:a⊗b=a2―2ab―b,例如:3⊗2=32―2×3×2―2=―5.(1)求―2⊗1的值;3(2)若5⊗x=―5―x,求x的值.9.(2022·江西景德镇·八年级期中)定义:如果两个无理数的乘积等于一个有理数,即a⋅b=c,则称a和b 是关于c的共轭数例:2⋅8=4,则称2和8是关于4的共轭数.(1)已知3和b是关于6的共轭数,则b=______.(2)若(2―3)和(6+m3)是关于3的共轭数,求m的值.10.(2022·河北石家庄·九年级期中)定义新运算“¤”:对于任意实数a,b,都有a¤b=(a+2b)(a―2b)+3,其中等式右边是通常的加法、减法和乘法运算.如,2¤3=(2+2×3)(2―2×3)+3=8×(―4)+3=―29.据此,解答下列问题:(1)1¤1=___________;(2)方程x¤1=0的解为____________;(3)若关于x的方程1¤x=2―k有一个解为x=1,则k的值为___________.【答案】 0 x=±1 2【分析】(1)根据题目定义运算法则进行代入计算;(2)由题意构造一元一次方程并求解;(3)根据定义和方程解的定义代入计算.【详解】解:(1)1¤1=(1+2×1)(1―2×1)+3=3×(―1)+3=―3+3=0,故答案为:0;(2)由题意得方程(x+2×1)(x―2×1)+3=0,整理得x2―4+3=0,解得x=1或x=―1,故答案为:x=1或x=―1;(3)由题意得方程(1+2x)(1―2x)+3=2―k,将x=1代入得(1+2×1)(1―2×1)+3=2―k,故答案为:2.【点睛】本题考查了实数运算和解一元二次方程及新定义问题的解决能力,解题的关键是能准确理解并运用以上知识进行列式、代入并求解.11.(2022·江苏徐州·七年级期中)[概念学习]规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2.(―3)÷(―3)÷(―3)÷(―3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(―3)÷(―3)÷(―3)÷(―3)记作(―3)④,读作“−3的圈4次方”,一般地,把a÷a÷a÷a(a≠0)记作aⓝ,读作“a的圈n次方”.n个a[初步探究](1)直接写出计算结果:2③=,(2)关于除方,下列说法错误的是A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1的圈n次方都等于1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.[深入思考]我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照图中的算式,将下列运算结果直接写成幂的形式.(―3)⑤=;=;―=.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于;(3)算一算:122÷×(―2)⑥――÷33.典例:(2022·山东·烟台市福山区教学研究中心八年级期中)观察下列等式:x 1=1+112+122=32=1+11×2;x 2=1+122+132=76=1+12×3;x 3=1+132+142=1312=1+13×4;……(1)请写出第n 个等式:xn =____________;(2)根据以上规律,计算x 1+x 2+x 3+⋯+x 2020―2021=____________.1.(2022·浙江·杭州市清河实验学校七年级期中)观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,···,试利用上述规律判断算式7+72+73+···+72020结果的末位数字是( )A .0B .1C .3D .7【答案】A【分析】先根据给出的已知条件得到尾数以7,9,3,1四次循环,再得到2020÷4=505,结合每组尾数的和,从未可得答案.【详解】解:∵71=7,72=49,73=343,74=2401,75=16807,76=117649,···∴尾数以7,9,3,1四次循环,而2020÷4=505,7+9+3+1=20,∴7+72+73+···+72020的末位数字为0,故选A .【点睛】本题考查的是数字的规律探究,总结出尾数以7,9,3,1四次循环是解本题的关键.2.(2022·福建宁德·八年级期中)有一列数按如下规律排列:―22,34,―14,516,―632,764…则第10个数是()A.―1029B.1029C.―11210D.112103.(2022·江苏·七年级专题练习)各正方形中的四个数之间都有一定的规律,按此规律得出a,b的值分别为()0325476c413631857a bA.9,10B.9,91C.10,91D.10,110【答案】C【分析】分析前三个图形,有:右上=左上+3,左下=左上+4,右下=右上×右下+1,由此即可求出a、b、c 【详解】由前三个图形,有:右上=左上+3,左下=左上+4,右下=右上×右下+1,∴c=6+3=9∴a=6+4=10∴b=ac+1=10×9+1=91故选:C【点睛】本题考查规律中的数字变换,分析前面的图形,得出:右上=左上+3,左下=左上+4,右下=右上×右下+1,找出给定的数之间的关系时解题关键.4.(2022·山东潍坊·七年级期中)观察下列各式:―1×12=―1+12,―12×13=―12+13,―13×14=―13+14,…试运用你发现的规律计算:(―1×12)+(―12×13)+(―13×14)+⋅⋅⋅+(―12020×12021)+(―12021×12022)=_____.5.(2022·辽宁鞍山·七年级期中)观察下列各式:(1)1×2×3×4+1=5;(2)2×3×4×5+1=11;(3)3×4×5×6+1=19;…,根据上述规律,则11×12×13×14+1=______.6.(2022·吉林·长春市实验中学七年级期末)a 是不为1的有理数,我们把11―a 称为a 的差倒数.如:2的差倒数是11―2=―1,-1的差倒数是11―(―1)=12.已知a 1=―13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差的倒数,…,依此类推,a2010的差倒数a2011=_____.7.(2022·山东·广饶县乐安街道乐安中学期末)2×(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的个位数字为_____【答案】1【分析】将2写成3-1,再采用平方差公式逐级计算,最终原式为364,再根据3的整数次幂的个位数字每4个数字为一个循环组依次循环,即可求解.【详解】解:原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34-1)(34+1)(38+1)(316+1)(332+1)+1=(38-1)(38+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,∵31=3,32=9,33=27,24=81,25=243,…∴3的整数次幂的个位数字每4个数字为一个循环组依次循环,∵64=16×4,∴364的个位数字与34的个位数字相同,为1.故答案为:1.【点睛】本题考查了平方差公式以及实数的运算等知识,将原式变为364是解答本题的关键.8.(2022·山东济南·期中)已知:13=1=1×12×22;4×22×32;13+23=9=1413+23+33=36=1×32×42;4×42×52…13+23+33+43=100=14(1)猜想填空:13+23+33+⋯+(n―1)3+n3=______.(2)计算:①13+23+33+⋯+1003;②23+43+63+⋯+983+1003.9.(2022·福建宁德·八年级期中)细心观察图形,认真分析各式,然后解答下列问题:OA22=(1)2+1=2,S1=12(S1是Rt△A1A2O的面积);OA23=(2)2+1=3,S2=22(S2是Rt△A2A3O的面积);OA24=(3)2+1=4,S3=32(S3是Rt△A3A4O的面积);…(1)请你直接写出OA102=______,S10=______;(2)请用含有n(n为正整数)的式子填空:OA2n=______,S n=______;(3)在线段OA1、OA2、OA3、…、OA2022中,长度为正整数的线段共有______条.(4)我们已经知道(13+3)(13―3)=4,因此将813―3分子、分母同时乘以(13+3),分母就变成了4,请仿照这种方法求1S1+S2+1S2+S3+1S3+S4+⋅⋅⋅+1S99+S100的值;【点睛】本题考查了数学中的阅读能力,以及对新定义的理解,还有二次根式的化简,关键是理解新定义和有关二次根式的化简运算.10.(2022·福建·宁德市博雅培文学校九年级期中)阅读下列解题过程:12+1=2―1(2+1)(2―1)=2―113+2=3―2(3+2)(3―2)=3―214+3=4―3(4+3)(4―3)=4―3请你参考上面的化简方法,解决如下问题:(1)计算:110+9;(2)+13+2+14+3+⋅⋅⋅⋅(2022+1).11.(2022·吉林白城·七年级期末)观察表格,回答问题:a…0.00010.01110010000…a…0.01x1y100…(1)表格中x=________,y=________;(2)从表格中探究a与a数位的规律,并利用这个规律解决下面两个问题:①已知10≈3.16,则1000≈________;②已知m=8.973,若b=897.3,用含m的代数式表示b,则b=________;(3)试比较a与a的大小.当________时,a>a;当________时,a=a;当________时,a<a.典例:(2022·福建·厦门市杏南中学七年级期中)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示―2,设点B所表示的数为m.(1)实数m的值是 ;(2)求|m+1|+|m―1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与d2―16互为相反数,求2c﹣3d的平方根.1.(2022·河北石家庄·八年级期中)实数15在数轴上的大致位置是()A.点A B.点B C.点C D.点D2.(2022·江苏·南京师范大学附属中学树人学校二模)如图,四个实数在数轴上的对应点分别为点M,P,N,Q.若点M,N表示的实数互为相反数,则图中表示正数的点的个数是()A.1B.2C.3D.4【答案】C【分析】根据“点M,N表示的实数互为相反数”,可得原点在MN的中点处,从点在数轴上的位置即可判断.【详解】∵点M,N表示的实数互为相反数,∴原点在MN的中点处,从数轴上可以看出点M点在原点的左侧,为负数,P、N、Q点在原点的右侧,为正数,故选:C【点睛】考查数轴、相反数的意义,掌握相反数则是位于原点两侧且到原点距离相等的两个点所表示的数,并确定原点的位置是关键.3.(2022·广西·贺州市八步区教学研究室八年级期末)如图,AB⊥数轴于A,OA=AB=BC=1,BC⊥OB,以O为圆心,以OC长为半径作圆弧交数轴于点P,则点P表示的数为()A.3B.2C.5D.22【答案】A【分析】根据勾股定理分别求出OB、OC的长,再由作图可得答案.【详解】解:∵OA=AB=BC=1,AB⊥数轴于A,∴OB2=OA2+AB2=12+12=2,4.(2022·广东·育才三中七年级期中)实数a,b,c,d在数轴上对应点的位置如图所示,正确的结论是( )A.|a|<|c|B.b+c>0C.|a|<|d|D.―b<d【答案】D【分析】观察数轴,找出a,b,c,d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【详解】解:根据数轴,―5<a<―4,―2<b<―1,0<c<1,d=4,A.∵―5<a<―4,0<c<1,∴|a|>|c|,故此选项不符合题意;B.∵―2<b<―1,0<c<1,∴b+c<0,故此选项不符合题意;C.∵―5<a<―4,d=4,∴|a|>|d|,故此选项不符合题意;D.∵―2<b<―1,∴1<―b<2,又∵d=4,∴―b<d,故此选项符合题意.故选:D.【点睛】本题考查实数与数轴,绝对值,实数的大小比较,数轴的特征.一般来说,当数轴方向朝右时,右边的数总比左边的数大.观察数轴,利用所学知识逐一分析四个选项的正误是解题的关键.5.(2022·北京房山·八年级期中)如图,直径为1个单位长度的圆,在数轴上从表示﹣1的点A滚动一周到点B,则点B表示的无理数为_____.【答案】π―1##―1+π【分析】先计算圆的周长,根据题意再计算π+(―1)即可得出答案.【详解】根据题意可得,圆的周长为π,则点B表示的数是从﹣1向右移动π,∴点B表示的无理数为(―1)+π=π―1.故答案为:π―1.【点睛】本题主要考查了无理数及实数与数轴,熟练掌握无理数及实数与数轴上的点是一一对应关系进行求解是解决本题的关键.6.(2022·福建三明·八年级期中)如图,数轴的正半轴上有A,B两点,表示1和2的对应点分别为A,B,点C,D在数轴上,点B到点A的距离与点C到点D的距离相等,设点C所表示的数为x.(1)当D所表示的数为0且C在D的右边时,求出x的值;(2)当D所表示的数为―22时,求出x的值.7.(2022·湖北省宜昌市渔峡口中学七年级期中)如图所示,数轴上点A表示2,点A关于原点的对称点为B,设点B所表示的数为x,求|―x+3―1|+2(x―1)的值.8.(2022·广东·深圳市龙岗区德琳学校八年级期中)如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的边长为______.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的―1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是______.(3)如图3,网格中每个小正方形的边长为1,若能把阴影部分剪拼成一个新的正方形,求新的正方形的面积和边长.9.(2022·北京房山·八年级期中)已知数轴上两点A,B,其中A表示的数为―2,B表示的数为2,AB表示A,B两点之间的距离.若在数轴上存在一点C,使得AC+BC=n,则称点C为点A,B的“n节点”.例如图1所示,若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A,B的“4节点”(1)若点C为点A,B的“n节点”,且点C在数轴上表示的数为―3,则n=___________;(2)若点D为点A,B的“43节点,请直接写出点D在数轴上表示的数为___________;(3)若点E在数轴上(不与A,B重合),满足A,E两点之间的距离是B,E两点之间的距离的2倍,且点E 为点A,B的“n节点”,求n的值.10.(2022·浙江杭州·七年级期中)如图两个4×4网格都是由16个边长为1的小正方形组成.(1)图①中的阴影正方形的顶点在网格的格点上,这个阴影正方形的面积为,若这个正方形的边长为a,则a=;(2)请在图②中画出面积是5的正方形,使它的顶点在网格的格点上,若这个正方形的边长为b,则b=;(3)请你利用以上结论,在图③的数轴上表示实数a,b和-a,-b,并将它们用“<”号连接.11.(2022·浙江·宁波市鄞州区咸祥镇中心初级中学七年级期中)如图(1),在4×4的方格中,每个小正方形的边长均为1.(1)求图(1)中正方形ABCD 的面积为 ;边长为(2)如图(2),若点A 在数轴上表示的数是―1,以A 为圆心,AD 长为半径画圆弧与数轴的正半轴交于点E ,求点E 表示的数为典例:(2022·江西景德镇·七年级期中)材料一:对任意有理数a ,b 定义运算“⊗”,a ⊗b =a +b ―20232,如:1⊗2=1+2―20232,1⊗2⊗3=1+2―20232+3―20232=―2017.材料二:规定[a ]表示不超过a 的最大整数,如[3.1]=3,[―2]=―2,[―1.3]=―2.(1)2⊗6 =______,[―π][π]=______;(2)求1⊗2⊗3⊗4…⊗2022⊗2023的值:(3)若有理数m ,n 满足m =2[n ]=3[n +1],请直接写出m ⊗[m +n ]的结果.1.(2022·山东烟台·期中)计算:(1)8+―5―(―0.25);(2)(―1)÷―×13;(3)―16+34×(―48);(4)―13―(1+0.5)×13÷(―4).2.(2022·广西·南宁市第四十七中学七年级期中)出租车司机小李某段时间在东西走向的大街上进行营运,规定向东为正,向西为负,他所接送的六位乘客的里程如下:(单位:千米)―7.5,+6,―4.8,+3.5,―9,―12.(1)将最后一位乘客送到目的地时,小李处在第一次出发时的什么位置?(2)若小李这段时间共耗油3升,则出租车的耗油量是每千米多少升?(精确到0.01升)(3)小李预计每月行驶里程为0.8万千米,若每升油的价格为8.5元,那么小李每月在耗油方面需要多少元?【答案】(1)小李处在第一次出发时的正西方向的23.8千米处(2)每千米的耗油量为0.07升(3)小李每月在耗油方面需要4760元【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量=耗油量÷行驶路程,可得答案.(3)单位耗油量×行驶里程×每升价格可得答案.【详解】(1)根据题意有:―7.5+6―4.8+3.5―9―12=―23.8(千米),根据向东为正,向西为负,可知小李处在第一次出发时的正西方向的23.8千米处;(2)行驶的总里程为:|―7.5|+6+|―4.8|+3.5+|―9|+|―12|=42.8(千米),则该车的耗油量为:3÷42.8≈0.07(升),答:每千米的耗油量为0.07升.(3)根据题意有:0.8×10000×0.07×8.5=4760(元),答:小李每月在耗油方面需要4760元.【点睛】本题考查了正数和负数,有理数的运算等知识,解题的关键是利用单位耗油量乘以行驶路程等于耗油量.3.(2022·山东济南·七年级期中)为宣传健康知识,某社区居委会派车按照顺序为7个小区(分别记为A,B,C,D,E,F,G)分发防疫安全手册,社区工作人员乘车从服务点(原点)出发,沿东西向公路行驶,如果约定向东为正,向西为负,当天的行驶记录如下(单位:百米):+10,―18,+14,―30,+6,+22,―6.(1)请你在数轴上标记出D,E,F这三个小区的位置(在相应位置标记字母即可)(2)服务车最后到达的地方距离服务点多远?若该车辆油耗为0.01升/百米,则这次分发工作共耗油多少升?(3)为方便附近居民进行核酸检测,现居委会计划在这七个小区中选一个作为临时核酸检测点,为使七个小区所有居民步行到监测点的路程总和最小,假设各小区人数相等,那么监测点的位置应设在______小区.【答案】(1)见解析(2)服务车最后到达的地方距离服务点200米,共耗油1.06升(3)G【分析】(1)由题意计算出D,E,F在数轴上对应的数即可;(2)服务车最后到达的地方为G小区,计处出G点到原点的距离即可;求出所给数据的绝对值的和,得到该车辆行驶的总路程,乘以单位距离的油耗即可;(3)根据数轴上两点间距离公式,以及绝对值的意义,可得检测点应设在最中间的小区.【详解】(1)解:由题意,D在数轴上对应的数为6―30=―24,E在数轴上对应的数为―24+6=―18,F在数轴上对应的数为―18+22=4,因此在数轴上表示为:(2)解:由题意知服务车最后到达的地方为G小区,G在数轴上对应的数为2,(|+10|+|―18|+|+14|+|―30|+|+6|+|+22|+|―6|)×0.01=(10+18+14+30+6+22+6)×0.01=106×0.01=1.06(升),因此服务车最后到达的地方距离服务点200米, 这次分发工作共耗油1.06升;(3)解:设检测点所设小区在数轴上对应的点为x,则七个小区到该检测点的距离之和为:|x+24|+|x+18|+|x+8|+|x+2|+|x+4|+|x+6|+|x+10|,由绝对值的意义可知,当x=―2时,上面式子取最小值,因此检测点应设在最中间的小区,即G小区.【点睛】本题考查正负数的实际应用,有理数混合运算的应用,绝对值的应用等,第3问有一定难度,解题的关键是理解绝对值的意义.4.(2022·山东烟台·期中)一辆警车某日8:00从A地出发,在一条东西方向的公路上巡逻,警察张叔叔每隔20分钟记录警车巡逻的行程情况(向东为正方向,单位:千米):+14,―15.7,+13.7,―15,―12.5,+13.5,10:00警车完成巡逻任务.(1)10:00时,警车在A地的什么方向?距离A地多远?(2)张叔叔记录行程的过程中,警车在何时距离A地最远?最远距离为多少?(3)警车巡逻前油箱中有14升油,若巡逻时警车每千米耗油0.2升,请问中途是否需要加油?【答案】(1)警车在A地的西边,距离A地2千米;(2)9:40距离A地最远,最远距离为15.5千米;(3)中途需要加油.【分析】(1)把巡逻所走路程相加,得到这辆警车司机所在的位置;(2)把巡逻所走路程相加,再依次比较绝对值大小即可求解;(3)巡逻各路程的绝对值与最后返回路程的绝对值的和是这辆警车行驶的总路程,根据:耗油量=行驶路程×每千米耗油量,计算这次巡逻耗油.【详解】(1)解:+14―15.7+13.7―15―12.5+13.5=―2(千米);答:警车在A地的西边,距离A地2千米;(2)解:8:20,14,8:40,+14―15.7=―1.7,9:00,―1.7+13.7=12,9:20,12―15=―3,9:40,―3―12.5=―15.5,10:00,―15.5+13.5=―2,其中算式结果绝对值最大的是―15.5.故9:40距离A地最远,最远距离为15.5千米;(3)解:|+14|+|―15.7|+|+13.7|+|―15|+|―12.5|+|+13.5|=14+15.7+13.7+15+12.5+13.5=84.4(千米),0.2×84.4=16.88>14.答:中途需要加油.【点睛】本题考查了有理数的混合运算及绝对值的意义,理解题意掌握耗油量的计算公式是解决本题的关键.5.(2022·安徽芜湖·七年级期中)数学课上,李老师在黑板上写了一道题目:当n为正整数时,计算(―1)n+ (―1)n+1的结果.琪琪说:因为n的值不确定,所以(―1)n+(―1)n+1的结果也不能确定;聪聪说:(―1)n+(―1)n+1的结果是不变的,可以求出.你同意谁的说法?请给出你的答案并说明理由.【答案】同意聪聪的说法,(―1)n+(―1)n+1=0,理由见解析【分析】分类讨论,分别把当n为偶数时和当n为奇数时的两种情况列出来,代入式子求解即可.【详解】解:同意聪聪的说法,(―1)n+(―1)n+1=0,理由如下:∵n为正整数,∴n可能为偶数,也可能为奇数,当n为偶数时,n+1为奇数,此时(―1)n+(―1)n+1=1+(―1)=0,当n为奇数时,n+1为偶数,此时(―1)n+(―1)n+1=(―1)+1=0,∴(―1)n+(―1)n+1的结果是不变的,可以求出,∴聪聪的说法是正确的.【点睛】本题考查了有理数的乘方,对n进行分类讨论是解题的关键.6.(2022·山东烟台·期中)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值.(3)若原点O到A、C两点距离相等,A点对应的数为a,B点对应的数为b,求|a―b|的值.【答案】(1)若以B为原点,则C表示1,A表示―2,p=―1,若以C为原点,p=―4(2)―88(3)2【分析】(1)根据数轴的性质,求得A、B、C对应的数,求解即可;(2)根据题意,求得C表示―28,求出A、B表示的数,即可求解;(3)求得A、B表示的数,代入求解即可.【详解】(1)解:若以B为原点,则C表示1,A表示―2.∴p=1+0―2=―1.若以C为原点,则A表示―3,B表示―1,∴p=―3―1+0=―4.(2)解:若原点O在图中数轴上点C的右边,且CO=28则C表示―28,B表示―29,A表示―31.∴p=―31―29―28=―88.(3)解:若原点O到A、C两点距离相等,AC=AB+BC=3,则C点表示数的为1.5,A点表示的数为―1.5,B点表示数的为0.5,则a=―1.5,b=0.5,∴|a―b|=2【点睛】此题考查了数轴的应用,涉及了绝对值的化简,数轴上两点间的距离,解题的关键是掌握数轴上两点间的距离公式.7.(2022·广东·测试·编辑教研五七年级期中)广州市教育局倡导全民阅读行动,婷婷同学坚持阅读,她每天以阅读30分钟为标准,超过的时间记作正数,不足的时间记作负数.下表是她一周阅读情况的记录(单位:分钟):星期一二三四五六日与标准的差(分钟)+9+10―10+15―20+6(1)星期五婷婷读了______分钟;(2)她读得最多的一天比最少的一天多了_____分钟;(3)求她这周平均每天读书的时间.【答案】(1)28(2)25(3)她这周平均每天读书的时间为34分钟.【分析】(1)列出算式,再求出即可;(2)用其中最大的正整数减去最小的负整数即可;(3)先求出读书的总时间,再除以7即可.【详解】(1)解:30―2=28(分钟),即星期五婷婷读了28分钟;故答案为:28;(2)解:15―(―10)=25(分钟),即她读得最多的一天比最少的一天多了25分钟;故答案为:25;(3)解:9+10―10+15―2+0+6=28(分钟),28÷7+30=34(分钟),答:她这周平均每天读书的时间为34分钟.【点睛】本题考查了正数与负数以及有理数的混合运算,正确理解正数与负数的意义是解题的关键.8.(2022·山东泰安·期中)如图,在一条不完整的数轴上一动点A向左移动5个单位长度到达点B,再向右移动9个单位长度到达点C.。
实数的混合运算专项训练(40题)(北师大版)(解析版)
专题2.7 实数的混合运算专项训练(40题)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对实数混合运算的理解!1.(2023春·黑龙江齐齐哈尔·八年级统考期中)计算√116−√614+|√3−1|−√3【答案】−134【分析】先根据算术平方根的定义,去绝对值的方法化简,再合并即可.【详解】解:原式=14−√254+√3−1−√3=14−52+√3−1−√3=14−52−1+√3−√3=−134【点睛】本题考查求一个数的算术平方根,去绝对值,实数的运算等知识,掌握相关法则和公式是解题的关键.2.(2023春·广西玉林·八年级统考期末)计算:(−1)2023−√9+|1−√2|−√−83.【答案】√2−3【分析】先计算乘方运算,化简绝对值,求解算术平方根与立方根,再合并即可.【详解】解:原式=−1−3+√2−1+2=√2−3.【点睛】本题考查的是实数的混合运算,掌握化简绝对值,求解算术平方根与立方根是解本题的关键.3.(2023春·河南洛阳·八年级统考期末)计算:−32×2+√(−4)2+√−643.【答案】−18【分析】原式利用立方根,平方根,以及平方的定义化简即可得到结果.【详解】解:−32×2+√(−4)2+√−643=−9×2+4−4=−18【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.(2023春·四川广元·八年级校联考期末)计算:√−83+|√3−2|−(−1)2021+|−√3|. 【答案】1【分析】先计算立方根、去绝对值、计算乘方,再计算加减即可. 【详解】解:原式=−2+2−√3+1+√3 =1.【点睛】本题主要考查实数的运算,掌握实数的运算顺序及有关运算法则是解答本题的关键. 5.(2023春·四川德阳·八年级四川省德阳中学校校考期中)计算:−22+√36−√−273−|2−√5|. 【答案】7−√5【分析】首先计算乘方、开方,去绝对值,然后从左向右依次计算,求出算式的值是多少即可. 【详解】解:−22+√36−√−273−|2−√5|=−4+6−(−3)−(√5−2) =−4+6+3−√5+2=7−√5.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 6.(2023春·四川泸州·八年级统考期末)计算:−32×29+√2516÷58+√−273. 【答案】−3【分析】先计算平方、开平方和开立方,再计算加减. 【详解】解:原式=−9×29+54×85+(−3) =−2+2+(−3) =−3.【点睛】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.7.(2023春·四川绵阳·八年级校联考期中)计算:√196×√−643÷√12425−√(−3)2−|√3+√−83|.【答案】−45+√3【分析】根据实数的混合计算法则求解即可. 【详解】解:原式=14×(−4)÷√4925−3−|√3−2|=−56÷75−3−(2−√3)=−40−3−2+√3=−45+√3.【点睛】本题主要考查了实数的混合计算,正确计算是解题的关键. 8.(2023春·四川绵阳·八年级统考期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|【答案】−14+√2【分析】先化简各式,再进行加减运算. 【详解】解:原式=−2+3−54+1+√2−1=−14+√2.【点睛】本题考查开方运算,乘方运算,去绝对值.熟练掌握相关运算法则,是解题的关键. 9.(2023春·山东临沂·八年级统考期中)计算: (1)√9+√52+√−273(2)(−3)2−|−12|−√9【答案】(1)5 (2)512【分析】(1)根据算术平方根、立方根的性质化简,再计算加减即可; (2)根据乘方、绝对值、算术平方根的性质化简,再计算加减即可. 【详解】(1)解:√9+√52+√−273=3+5−3=5;(2)解:(−3)2−|−12|−√9=9−12−3=512.【点睛】本题考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减.10.(2023春·山西临汾·八年级统考期中)计算: (1)√0.04+√−83−√125;(2)−√214+√0.1253+√1−6364. 【答案】(1)−2 (2)−78【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可; (2)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可. 【详解】(1)解:原式=0.2−2−15=−2(2)解:原式=−32+12+18=−78【点睛】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.11.(2023春·河南驻马店·八年级统考期中)(1)计算∶ √16+√−643−2√3+|√3−2|; (2)求下列式子中的x : 9x 2−16=0. 【答案】(1)2−3√3;(2)x =±43【分析】(1)先计算算术平方根,立方根,化简绝对值,再合并即可; (2)把方程化为x 2=169,再利用直接平方根的含义解方程即可.【详解】(1)解:原式=4−4−2√3+2−√3=2−3√3 (2)解:∶9x 2−16=0, ∶9x 2=16, ∶x 2=169,解得:x =±43;【点睛】本题考查的是实数的混合运算,利用平方根的含义解方程,熟记平方根的含义是解本题的关键.12.(2023春·重庆彭水·八年级统考期中)(1)计算√83−√16+|√3−2|; (2)(12)0+(−2)3×18−√273×√19.【答案】(1)−√3;(2)−1【分析】(1)先根据立方根定义、算术平方根计算,再利用绝对值的代数意义化简,计算即可得到结果; (2)先将零指数幂、立方根、算术平方根、乘方计算,再进行计算即可 【详解】解:(1)√83−√16+|√3−2|=2−4+2−√3=−√3;(2)(12)0+(−2)3×18−√273×√19=1−8×18−3×13=1−1−1=−1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 13.(2023春·湖北十堰·八年级统考期末)计算下列各式的值: (1)√16−√−13+|2−√3| (2)√7(√7√7)−√83【答案】(1)7−√3 (2)6【分析】(1)先化简各式,再进行加减运算; (2)先算乘法,求立方根,再进行加减运算. 【详解】(1)解:原式=4−(−1)+2−√3=5+2−√3=7−√3;(2)原式=√7×√7+√7√72=7+1−2=6.【点睛】本题考查实数的混合运算.熟练掌握相关运算法则,正确的计算是解题的关键. 14.(2023春·湖北省直辖县级单位·八年级统考期末)计算: (1)√16+√−643−√(−3)2+|√3−1|; (2)已知(x +1)2=16,求x 的值. 【答案】(1)−4+√3 (2)x =3或x =−5【分析】(1)原式先化简算术平方根、立方根和绝对值,然后再进行加减运算即可即可; (2)直接运用开平方法求解方程即可.【详解】(1)解:√16+√−643−√(−3)2+|√3−1| =4−4−3+√3−1 =−4+√3; (2)(x +1)2=16, x +1=±4, ∶x =3或x =−5.【点睛】本题主要考查了实数的混合运算和运用开平方法解方程,熟练掌握算术平方根的定义是解答本题的关键.15.(2023春·天津静海·八年级校考期中)计算: (1)(−1)3+|1−√2|+√83; (2)√0.01+√−83−√14 【答案】(1)√2 (2)−2.4【分析】(1)根据立方、立方根、实数绝对值化简后再去计算即可; (2)根据算术平方根、立方根化简后计算即可. 【详解】(1)原式=−1+√2−1+2=√2; (2)原式=0.1−2−12=−2.4.【点睛】本题考查实数的混合运算,解题的关键是先化简再去计算.16.(2023春·黑龙江哈尔滨·八年级统考期中)计算(1)8x3+125=0;(2)√−83+√(−3)2−|√3−2|.【答案】(1)−52(2)−1+√3【分析】(1)先整体求得x3,然后再根据立方根的知识求得x即可;(2)先根据立方根、算术平方根、绝对值的知识化简,然后再计算即可.【详解】(1)解:8x3+125=0,8x3=125,x3=−1258,x=−52.(2)解:√−83+√(−3)2−|√3−2|,=−2+3−2+√3,=−1+√3.【点睛】本题主要考查了立方根、算术平方根、绝对值、实数的运算等知识点,灵活运用相关运算法则是解答本题的关键.17.(2023春·广东广州·八年级广州大学附属中学校考期中)计算:(1)√3+|√3−2|−√−83+√(−2)2.(2)√81+√(−3)2×√169−√1214+√−273.【答案】(1)6(2)132【分析】(1)分别计算化简绝对值,开立方根和开算术平方根,再按照实数加减混合运算即可.(2)分别计算开立方根、开算术平方根和实数乘除,再按照有理数加减乘除混合运算即可.【详解】(1)解:√3+|√3−2|−√−83+√(−2)2=√3+2−√3+2+2=6故答案为:6.(2)解:√81+√(−3)2×√169−√1214+√−273=9+3×43−72−3=9+4−72−3=132故答案为:132.【点睛】本题考查了实数的加减乘除混合运算,解题的关键在于熟练掌握实数的运算法则. 18.(2023春·广东汕头·八年级校考期中)计算 (1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2| 【答案】(1)293;(2)−4−√3;【分析】(1)先分别计算算术平方根、立方根,再进行实数的加减运算即可;(2)先分别计算乘方、算术平方根、立方根和化简绝对值,再进行实数的加减运算即可;【详解】(1)解:√9−√(−5)33÷√(34)2=3−(−5)÷34=3+5×43=293;(2)(−1)2021−√9+√−83+|√3−2|=−1−3+(−2)+(2−√3)=−4−2+2−√3=−4−√3;【点睛】本题考查实数的加减运算,解题的关键是掌握立方根和绝对值相关知识.19.(2023春·山西吕梁·八年级统考期中)(1)计算:(−1)2022−(√16+√214)+√273+12 (2)解方程:2x 2=18 【答案】(1)−1;(2)x =±3【分析】(1)原式分别根据乘方的意义、算术平方根以及立方根的意义化简各项后,再进行加减运算即可得到结果;(2)方程两边同除以2后,再进行开平方运算即可. 【详解】解:(1)(−1)2022−(√16+√214)+√273+12 =1−(4+32)+3+12=1−4−32+3+12 =−1; (2)2x 2=18 x 2=9 x =±3.【点睛】本题主要考查了实数的混合运算以及运用平方根解方程,熟练掌握相关知识是解答本题的关键. 20.(2023春·山东临沂·八年级统考期中)(1)计算:(−1)2017−√(−2)2−√−83+|√3−2|; (2)求x 的值:2(x −3)2=32.【答案】(1)1−√3;(2)x 的值为7或−1【分析】(1)先计算乘方、算术平方根、立方根、化简绝对值,再计算实数的加减法即可得; (2)利用平方根解方程即可得.【详解】解:(1)原式=−1−√4−(−2)+2−√3=−1−2+2+2−√3=1−√3;(2)2(x −3)2=32, (x −3)2=16,x −3=4或x −3=−4, 解得x =7或x =−1, 所以x 的值为7或−1.【点睛】本题考查了算术平方根、立方根、实数的运算、利用平方根解方程,熟练掌握各运算法则是解题关键.21.(2023春·辽宁鞍山·八年级校联考期中)计算:(1)√273−√25+|√3−2|−(1−√3)(2)√13×(√13√13)−√273【答案】(1)−1(2)0【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可.【详解】(1)解:原式=3−5+2−√3−1+√3=−1;(2)解:原式=√13×√13−√13×√13−3=13−10−3=0.【点睛】本题主要考查了实数的混合计算,熟知相关计算法则是解题的关键.22.(2023春·重庆江津·八年级校联考期中)计算:(1)−42×(−1)2023+√83−√25;(2)2√14−|2−√3|+√(−9)2+√−273.【答案】(1)13;(2)5+√3【分析】(1)根据幂的运算法则,根式性质,立方根的定义直接计算即可得到答案;(2)根据根式的性质,立方根的定义直接计算即可得到答案;【详解】(1)解:原式=−16×(−1)+2−5=16+2−5=13;(2)解:原式=2×12−2+√3+9+(−3)=1−2+√3+9−3=5+√3;【点睛】本题考查根式的性质,立方根的定义,幂的运算,解题的关键是熟练掌握√a 2=|a | ,√a 33=a . 23.(2023春·山东聊城·八年级统考期中)计算: (1)2−2+√−13+(√83+4)÷√(−6)2 (2)(π−2023)0+√1.21−√−33263−√0.0083【答案】(1)14 (2)2.65【分析】(1)先计算负整数指数幂、立方根、算术平方根,再根据实数的混合计算法则求解即可; (2)先计算零指数幂、算术平方根及立方根,再根据实数的混合计算法则求解即可. 【详解】(1)解:原式=14−1+(2+4)÷6=14−1+6÷6 =14−1+1 =14;(2)解:原式=1+1.1−(−322)−0.2=1+1.1−(−34)−0.2=1+1.1+34−0.2=2.65.【点睛】本题主要考查了实数的混合计算,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键. 24.(2023春·四川德阳·八年级四川省德阳市第二中学校校考期中)计算: (1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)2023 【答案】(1)−7 (2)1【分析】(1)先分别求解算术平方根、立方根,然后进行乘除运算,最后进行减法运算即可;(2)先分别求解立方根,乘方,绝对值,然后进行加减运算即可. 【详解】(1)解:√(−3)2×(−13)−√273÷√14=3×(−13)−3÷12=−1−6=−7;(2)解:√−83−√2+(√3)2+|1−√2|−(−1)2023=−2−√2+3+√2−1−(−1) =−2+3−1+1−√2+√2=1.【点睛】本题考查了算术平方根、立方根,乘方,绝对值,实数的混合运算.解题的关键在于正确的运算. 25.(2023春·河北唐山·八年级统考期中)计算: (1)(√2)2−√273+|√3−3|; (2)√9×√4+√102−(−4)2; 【答案】(1)2−√3 (2)0【分析】(1)先计算平方、立方根,去绝对值符号,再进行加减运算; (2)先计算开平方,有理数的乘方,再进行乘法运算,最后进行加减运算. 【详解】(1)解:原式=2−3+(−√3+3)=2−3−√3+3=2−√3;(2)解:原式=3×2+10−16=6+10−16=0.【点睛】本题考查了实数的混合运算,平方、平方根、立方根,绝对值的性质,有理数的乘方,熟练掌握运算法则及运算顺序是解题的关键.26.(2023春·浙江宁波·八年级校考期中)计算下列各式: (1)√4+|−2|+√−273+(−1)2017;(2)(−3)2÷(−23)+(−2)3×(−32).【答案】(1)0 (2)−32【分析】(1)分别根据算术平方根的定义,绝对值的性质,立方根的定义计算出各数,再根据实数的加减法则进行计算;(2)先算乘方,再算乘除,最后算加减即可. 【详解】(1)解:原式=2+2−3−1 =0;(2)解:原式=9÷(−23)+(−8)×(−32)=9×(−32)+12=−272+12 =−32.【点睛】本题考查的是实数的运算,熟知实数混合运算的法则是解题的关键. 27.(2023春·广东广州·八年级校考期中)计算: (1)(√5)2+√(−3)2+√−83; (2)(−2)3×18−√273×(−√19). 【答案】(1)6 (2)0【分析】(1)原式利用乘方的意义,平方根、立方根定义计算即可得到结果; (2)原式利用乘方的意义,立方根定义,以及乘法法则计算即可得到结果. 【详解】(1)解:原式=5+3+(−2)=8−2=6; (2)解:原式=(−8)×18−3×(−13)=−1+1=0.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键. 28.(2023春·河南鹤壁·八年级校考期中)计算:(1)√14+√−83−11−√21;(2)0.1252022×(−8)2023. 【答案】(1)−1212−√21 (2)−8【分析】(1)根据算术平方根、立方根定义先化简,再利用实数加减运算法则计算即可得到答案; (2)先将小数化为分数,再利用积的乘方运算的逆运算求解即可得到答案. 【详解】(1)解:√14+√−83−11−√21=12−2−11−√21 =−112−11−√21=−1212−√21;(2)解:0.1252022×(−8)2023=(18)2022×(−8)2023=[18×(−8)]2022×(−8) =(−1)2022×(−8)=−8.【点睛】本题考查实数混合运算,涉及算术平方根、立方根、实数加减运算、分数与小数互化、积的乘方运算的逆运算等知识,熟练掌握相关运算法则是解决问题的关键.29.(2023春·山东枣庄·八年级统考期末)(1)计算:√16−√19+√273−|3−√5|;(2)求x 的值:(x +1)3=−827.【答案】(1)113+√5;(2)x =−53【分析】(1)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可. (2)根据立方根的含义和求法,求出x +1的值,进而求出x 的值即可. 【详解】解:(1)√16−√19+√273−|3−√5| =4−13+3−(3−√5)=4−13+3−3+√5=113+√5.(2)∵(x +1)3=−827, ∴x +1=−23, 解得:x =−53.【点睛】此题主要考查了立方根的含义和求法,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.30.(2023春·天津河北·八年级统考期中)(1)计算:√0.04+√−83−√14+2;(2)求下式中x 的值: 4(x +5)2=16. 【答案】(1)−0.3;(2)x =−7或x =−3【分析】(1)首先进行开平方和开立方运算,再进行有理数的加减即可求解;(2)首先求出(x +5)2的值,然后根据平方根的定义求出x +5的值,进而求出x 的值即可. 【详解】解:(1)√0.04+√−83−√14+2 =0.2+(−2)−12+2 =−0.3;(2)4(x +5)2=16, 即(x +5)2=4,∴x +5=−2或x +5=2, 解得x =−7或x =−3.【点睛】此题主要考查了平方根、立方根的定义,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 31.(2023春·黑龙江牡丹江·八年级校考期中)计算: (1)√−83−√3+(√5)2+|1−√3| (2)√36+√214+√−273【答案】(1)2 (2)92【分析】(1)根据立方根定义、平方根的性质、绝对值的意义等计算即可; (2)根据立方根、算术平方根的定义计算即可. 【详解】(1)解:√−83−√3+(√5)2+|1−√3| =−2−√3+5+√3−1 =2;(2)解:√36+√214+√−273=6+32−3=92.【点睛】本题考查了实数的混合运算,掌握立方根、算术平方根的定义等是解题的关键. 32.(2023春·湖北十堰·八年级统考期中)计算: (1)√−8273×√14−√(−2)2; (2)√3−√25+|√3−3|+√1−63643.【答案】(1)−213 (2)−74【分析】(1)先利用立方根,算术平方根的性质化简,再进行计算; (2)先利用立方根,算术平方根、绝对值的性质化简,再进行计算. 【详解】(1)解:原式=−23×12−√4=−13−2=−213;(2)解:原式=√3−5+3−√3+√1643=−2+14=−74.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.33.(2023春·云南红河·八年级校考期中)计算(1)√25−√273+|−√9|(2)|2−√5|+|3−√7|+|√7−√5|【答案】(1)5(2)1【分析】(1)先化简根式再计算(2)先化简再进行实数的混合运算(1)解:原式=5−3+3=5(2)解:原式=√5−2+3−√7+√7−√5=1【点睛】本题考查了根式的化简,去绝对值运算,熟练掌握运算法则是解题关键.34.(2023春·江苏泰州·八年级校考期中)计算或解方程:(1)8(x−1)3=−1258;(2)3(x−1)2−15=0.(3)−14×√4+|√9−5|+√214+√−0.1253.【答案】(1)x=−14(2)x=1±√5(3)1【分析】(1)利用立方根解方程即可;(2)移项,利用平方根解方程即可;(3)先化简各式,再加减运算即可.【详解】(1)解:8(x−1)3=−1258,∶(x −1)3=−12564∶x −1=√−125643=−54,∶x =−14;(2)解:3(x −1)2−15=0, ∶3(x −1)2=15, ∶(x −1)2=5, ∶x −1=±√5, ∶x =1±√5;(3)原式=−1×2+|3−5|+32−0.5=−2+|−2|+32−12=−2+2+32−12=1.【点睛】本题考查利用平方根和立方根解方程,实数的混合运算.熟练掌握相关运算法则,正确计算,是解题的关键.35.(2023春·北京西城·八年级北京市回民学校校考期中)按要求计算下列各题 (1)计算:|1−√2|−√(−2)2+√273;(2)已知√a −1+√b −5=0,则(a −b )2的算术平方根; (3)已知4x 2=25,求x 的值; (4)已知(x +1)2=1,求x 的值. 【答案】(1)√2 (2)4(3)x 1=52,x 2=−52(4)x 1=0,x 2=−2【分析】(1)先根据绝对值、算术平方根、立方根的知识化简,然后再结束即可;(2)先根据算术平方根的非负性求得a 、b 的值,然后再代入(a −b )2求出其算术平方根即可; (3)先求出x 2,然后再运用平方根解方程即可解答;(4)运用平方根解方程即可解答.【详解】(1)解:|1−√2|−√(−2)2+√273, =√2−1−2+3, =√2.(2)解:∶√a −1+√b −5=0, ∶a −1=0,b −5=0, ∶a =1,b =5,∶(a −b )2=(1−5)2=16, ∶(a −b )2的算术平方根是4. (3)解:4x 2=25, x 2=254,∶x 1=52,x 2=−52. (4)解:(x +1)2=1, x +1=±1, ∶x 1=0,x 2=−2.【点睛】本题主要考查了实数的混合运算、算术平方根的非负性、立方根、运用平方根解方程等知识点,灵活运用相关知识成为解答本题的关键.36.(2023春·浙江宁波·八年级校联考期中)计算: (1)−2+(−7)−3+8;(2)−12021+(12−13)×|−6|÷22; (3)(14−23−56)×(−12); (4)−23+√−273−(−2)2÷√1681.【答案】(1)−4 (2)−34 (3)15 (4)−20【分析】(1)先将减法运算变成加法,再计算求解; (2)先计算乘方、绝对值和括号里面的,再计算加法; (3)先运用乘法分配律,再计算加减运算;(4)先计算乘方、立方根和平方根,再计算除法,最后计算加减. 【详解】(1)−2+(−7)−3+8=−2−7−3+8=−4;(2)−12021+(12−13)×|−6|÷22=−1+16×6×14=−1+14=−34;(3)(14−23−56)×(−12)=−14×12+23×12+56×12=−3+8+10=15;(4)−23+√−273−(−2)2÷√1681=−8−3−4×94=−11−9=−20.【点睛】此题考查了有理数的混合运算,以及实数混合运算的能力,关键是能准确确定运算顺序和方法. 37.(2023春·山东德州·八年级统考期中)计算: (1) −22−(√−38+8)÷√(−6)2−|√7−3|(2)√−1253−√279+√−(−14)3+√8273(3)(3x+2)2=16 (4)12(2x −1)3=−4 【答案】(1)−8+√7(2)−478(3)x=−2或x=23(4)x=−12【分析】(1)根据乘方计算、求算术平方根、立方根、绝对值化简即可;(2)根据求算术平方根、立方根进行计算即可;(3)根据求平方根进行解方程即可;(4)根据求立方根进行解方程即可.【详解】(1)解:原式=−4−(−2+8)÷6−(3−√7)=−4−1−3+√7=−8+√7;(2)解:原式=−5−53+√164+23=−5−1+18=−478;(3)解:由(3x+2)2=16,得:3x+2=−4或3x+2=4解得:x=−2或x=23;∴方程的解为x=−2或x=23;(4)解:由12(2x−1)3=−4,得:(2x−1)3=−82x−1=−2x=−12.【点睛】本题考查实数的混合运算及根据平方根和立方根解方程,解题的关键是熟练掌握乘方计算、求算术平方根、立方根、绝对值化简、根据平方根和立方根解方程,本题的易错点是根据平方根解方程时需考虑求一个正数的平方根应有两个互为相反数的解.38.(2023春·浙江绍兴·八年级校考期中)计算:(1)|−8|+32+(−12)−32 (2)2×(−5)−(−3)÷34 (3)√81+√−273+√(−23)2−14 (4)22+(−2)2+√19+(−1)2019 【答案】(1)−4(2)−6(3)523(4)713【分析】(1)先算绝对值和去括号,再算加减;(2)先算乘除,再算加法;(3)先算立方根,算术平方根和乘方,再算加减;(4)先算乘方和算术平方根,再算加减.【详解】(1)|−8|+32+(−12)−32=8+32−12−32=−4(2)2×(−5)−(−3)÷34=−10+4=−6(3)√81+√−273+√(−23)2−14 =9+(−3)+23−1 =523(4)22+(−2)2+√19+(−1)2019=4+4+13−1=71 3【点睛】本题主要考查了实数的混合运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.39.(2023春·山东东营·八年级统考期末)(1)计算∶√144−(2022−π)0+√(−3)2∶√259+√−125273+|√2−2|(2)解方程∶(x+2)2=25∶(x−1)3=27【答案】(1)∶14;∶2−√2;(2)∶x=3或−7;∶x=4【分析】(1)∶利用算术平方根的意义,零指数幂的意义即可求解;∶利用算术平方根,立方根的意义和绝对值的意义化简运算即可;(2)∶利用平方根的意义解答即可;∶利用立方根的意义解答即可.【详解】解:(1)∶√144−(2022−π)0+√(−3)2=12−1+3=14;∶√259+√−125273+|√2−2|=53+(−53)+2−√2=2−√2;(2)∶(x+2)2=25∴x+2=±5,∴x=3或−7;∶(x−1)3=27∴x−1=3∴x=4【点睛】本题主要考查了实数的运算,算术平方根的意义,立方根的意义,熟练掌握实数运算法则与性质是解题的关键40.(2023春·江苏·八年级期中)计算(1)√16−√−83+√−1273 (2)√3(√3√3) (3)|3−√2|−|√2−π|−√(−3)2(4)9(x +1)2−16=0(解方程) 【答案】(1)523(2)2(3)6−π (4)x =13或x =−73【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可;(3)根据实数的混合计算法则求解即可;(4)根据求平方根的方法解方程即可.【详解】(1)解:原式=4−(−2)+(−13)=4+2−13 =523; (2)解:原式=√3×√3−√3√3=3−1=2;(3)解:原式=3−√2−(π−√2)−(−3)=3−√2−π+√2+3=6−π;(4)解:∶9(x +1)2−16=0,∶9(x +1)2=16,∶(x +1)2=169,∶x +1=43或x +1=−43, ∶x =13或x =−73.【点睛】本题主要考查了实数的混合计算,求平方根的方法解方程,熟知相关计算法则是解题的关键.。
中考数学--数与式的有关代数计算(实数、整式、分式)大题押题30道【教师版】
数与式的有关代数计算(实数、整式、分式最新模拟题30道)类型一、实数的混合运算1.(2023•坪山区一模)计算:tan60°+2sin30°+|2-1|-2cos45°.【分析】首先计算特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【详解】tan60°+2sin30°+|2-1|-2cos45°=3+2×12+(2-1)-2×22=3+1+2-1-2=3.【点睛】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.2.(2023•喀什地区模拟)计算:(3.14-π)0+16-|-1|+(-3)2.【分析】先算零次幂、平方和开平方,再化简绝对值,最后算加减.【详解】(3.14-π)0+16-|-1|+(-3)2=1+4-1+9=13.【点睛】本题考查了有理数的混合运算,掌握零次幂、乘方、开方及绝对值的意义是解决本题的关键.3.(2023•昭阳区校级模拟)计算:8+(π-3.14)0-3cos60°+|1-2|+(-2)-2.【分析】分别根据零指数幂及负整数指数幂的计算法则,绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【详解】原式=22+1-3×12+2-1+14=22+1-32+2-1+14=32-54.【点睛】本题考查的是实数的运算,零指数幂及负整数指数幂的计算法则,绝对值的性质及特殊角的三角函数值,熟知以上知识是解题的关键.4.(2023•海淀区校级模拟)计算:-13-1-8-(5-π)0+4cos45°.【分析】先化简各式,然后再进行计算即可解答.【详解】-1 3-1-8-(5-π)0+4cos45°=-3-22-1+4×22=-3-22-1+22=-4.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.5.(2023•青秀区校级模拟)计算:π20+2cos60°+4+12 -1+(-4)÷2.【分析】原式分别化简π2 0=1,12 -1=2,cos60°=12,再进行乘除运算,最后进行加减运算即可得到答案.【详解】π2 0+2cos60°+4+12 -1+(-4)÷2=1+2×12+4+2+(-4)÷2=1+1+4+2-2=6.【点睛】本题主要考查了实数的混合运算,正确化简π2 0=1,12 -1=2,cos60°=12是解答本题的关键.6.(2023•市中区校级一模)计算:-13 -2+2sin45°+|2-2|-(π+2022)0.【分析】分别计算出负整数指数幂、特殊角的三角函数值、绝对值及零指数幂,最后运算即可.【详解】原式=9+2×22+2-2-1=9+2+2-2-1=10.【点睛】本题是实数的运算,熟练掌握实数的运算法则是解题的关键.7.(2023•晋州市模拟)计算:-13-2-|3-2|+3tan30°-613+(2023-π)0.【分析】先化简各式,然后再进行计算即可解答.【详解】-13 -2-|3-2|+3tan30°-613+(2023-π)0=9-(2-3)+3×33-23+1=9-2+3+3-23+1=7+23-23+1=8.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.8.(2023•南充模拟)计算:2cos45°+|1-2|-38+(-1)2023.【分析】先化简各式,然后再进行计算即可解答.【详解】2cos45°+|1-2|-38+(-1)2023=2×22+2-1-2+(-1)=2+2-1-2-1=22-4.【点睛】本题考查了实数的运算,特殊角的三角函数值,准确熟练地进行计算是解题的关键.9.(2023春•崇川区校级月考)计算:(1)(23-2)-(2-23).(2)|3-π|+25-327+(-1)2022.【分析】(1)去括号、合并同类二次根式即可得出结果;(2)根据绝对值的意义、算术平方根的性质、立方根的意义、乘方的意义进行计算即可得出结果.【详解】(1)(23-2)-(2-23)=23-2-2+23=43-22;(2)|3-π|+25-327+(-1)2022=π-3+5-3+1=π.【点睛】本题考查了实数的运算,熟练掌握绝对值的意义、算术平方根的性质、立方根的意义、乘方的意义及同类二次根式的定义是解题的关键.10.(2023春•长沙月考)计算:-12023+|3-2|-3-27+(-3)2.【分析】先化简各式,然后再进行计算即可解答.【详解】原式=-1+2-3-(-3)+3=-1+2-3+3+3=7-3.【点睛】本题考查了实数的混合运算,准确熟练地化简各式是解题的关键.类型二、整式的混合运算11.(2023•温州模拟)(1)计算:(-2023)0+12+2×-12;(2)化简:(2m+1)(2m-1)-4m(m-1).【分析】(1)直接利用二次根式的性质、零指数幂的性质分别化简,进而得出答案;(2)根据平方差公式和单项式乘多项式法则展开,再合并同类项即可.【详解】(1)原式=1+23-1=23;(2)原式=4m2-1-4m2+4m=4m-1.【点睛】此题主要考查了实数的运算以及平方差公式和单项式乘多项式法则等,正确化简各数和掌握运算法则是解题关键.12.(2023春•佛山月考)计算:(1)(π-3)0-32+12-2;(2)(-3a4)2-a•a3•a4-a10÷a2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【详解】(1)(π-3)0-32+12 -2=1-9+4=-8+4=-4;(2)(-3a4)2-a•a3•a4-a10÷a2=9a8-a8-a8=7a8.【点睛】本题考查了整式的混合运算,有理数的加减混合运算,同底数幂的乘法,幂的乘方与积的乘方,零指数幂,负整数指数幂,准确熟练地进行计算是解题的关键.13.(2023春•薛城区月考)计算:(1)(-1)2012+-12-2-(3.14-π)0;(2)(2x3y)2•(-2xy)+(-2x3y)3÷(2x2);(3)(x+1)(x-3)-(x+1)2;(4)(a-b-3)(a-b+3).【分析】(1)先算乘方,负整数指数幂,零指数幂,再算加减即可;(2)先算积的乘方,再算整式的除法与单项式乘单项式,最后合并同类项即可;(3)先算多项式乘多项式,完全平方,再算加减即可;(4)利用平方差公式及完全平方公式进行运算较简便.【详解】(1)(-1)2012+-1 2-2-(3.14-π)0=1+4-1=4;(2)(2x3y)2•(-2xy)+(-2x3y)3÷(2x2)=4x6y2•(-2xy)+(-8x9y3)÷(2x2)=-8x7y3-4x7y3=-12x7y3;(3)(x+1)(x-3)-(x+1)2=x2-3x+x-3-(x2+2x+1)=x2-3x+x-3-x2-2x-1=-4x-4;(4)(a-b-3)(a-b+3)=(a-b)2-9=a2-2ab+b2-9.【点睛】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.14.(2023春•沙坪坝区校级月考)计算:(1)-12-2-(-1)2023+(π-2023)0;(2)(2m+n)2-(2m-n)2;(3)(a+3b)(3a-b)-(a+b)(-a-b);(4)(3x-2y+1)(2y-3x+1).【分析】(1)先分别计算负整数次幂、乘方、零次幂,再进行加减运算;(2)利用平方差公式计算即可;(3)先计算多项式的乘法,再合并同类项即可;(4)先变形,然后根据平方差公式和完全平方公式计算即可.【详解】(1)-1 2-2-(-1)2023+(π-2023)0=4-(-1)+1=4+1+1=6;(2)(2m+n)2-(2m-n)2=[(2m+n)+(2m-n)][(2m+n)-(2m-n)]=(2m+n+2m-n)(2m+n-2m+n)=4m•2n=8mn;(3)(a+3b)(3a-b)-(a+b)(-a-b)=(a+3b)(3a-b)+(a+b)2=3a2-ab+9ab-3b2+a2+2ab+b2=4a2+10ab-2b2;(4)(3x-2y+1)(2y-3x+1)=[1+(3x-2y)][1-(3x-2y)]=1-(3x-2y)2=1-9x2+12xy-4y2.【点睛】本题考查整式的混合运算,实数的运算,熟练掌握运算法则是解答本题的关键,注意平方差公式和完全平方公式的应用.15.(2023春•杏花岭区校级月考)计算:(1)(-1)2020+-12-2-(3.14-π)0;(2)2x•(3x2-4x+1);(3)23a4b7-19a2b6÷-13ab3;(4)(x-2y)(x+2y)-(2x-y)2.【分析】(1)先化简各式,再进行计算;(2)利用单项式乘多项式的法则,进行计算即可;(3)利用多项式除以单项式的法则,进行计算即可;(4)先进行平方差公式和完全平方公式的计算,再合并同类项即可.【详解】(1)原式=1+4-1=4;(2)原式=6x3-8x2+2x;(3)原式=23a4b7÷-13ab3-19a2b6÷-13ab3=-2a3b4+13ab3;(4)原式=x2-4y2-(4x2-4xy+y2)=x2-4y2-4x2+4xy-y2=-3x2+4xy-5y2.【点睛】本题考查零指数幂,负整数指数幂,单项式乘多项式,多项式除以单项式,平方差公式,完全平方公式.熟练掌握相关运算法则,是解题的关键.16.(2023春•沙坪坝区校级月考)化简求值:[(2x-y)2-2(x+2y)(2x-y)]÷5y,其中:x=2,y=-3.【分析】根据完全平方公式、多项式乘多项式的运算法则、合并同类项法则把原式化简,把x、y的值代入计算,得到答案.【详解】原式=[4x2-4xy+y2-2(2x2-xy+4xy-2y2)]÷5y=(4x2-4xy+y2-4x2+2xy-8xy+4y2)÷5y=(-10xy+5y2)÷5y=-2x+y,当x=2,y=-3时,原式=-2×2-3=-7.【点睛】本题考查的是整式的化简求值,掌握整式的混合运算法则是解题的关键.17.(2023春•平遥县月考)(1)化简:(3x2y2+4x3y-4x2y)÷xy-(2x-1)2.(2)先化简,再求值:(2x+y)2-4x(x+2y)-3y2,其中x=-4,y=12.【分析】(1)首先进行多项式除以单项式及完全平方公式运算,再合并同类项,即可求得结果;(2)首先进行整式的混合运算,进行化简,再把x、y的值代入化简后的式子即可求解.【详解】(1)(3x2y2+4x3y-4x2y)÷xy-(2x-1)2=3xy+4x2-4x-(4x2-4x+1)=3xy+4x2-4x-4x2+4x-1=3xy-1.(2)(2x+y)2-4x(x+2y)-3y2=4x2+4xy+y2-4x2-8xy-3y2=-4xy-2y2,当x=-4,y=12时,原式=-4×(-4)×12-2×122=8-12=152.【点睛】本题考查了整式的混合运算及化简求值,掌握整式的混合运算法则是解决本题的关键.18.(2023春•海淀区校级月考)已知x2+3x-4=0.求代数式(x+1)(2x-1)-(x-1)2的值.【分析】根据完全平方公式,多项式乘多项式法则进行乘法运算,再合并同类项,然后根据x2+3x-4 =0可以得到x2+3x=4,再把x2+3x=4代入化简后的式子计算即可.【解答】解(x+1)(2x-1)-(x-1)2=2x2-x+2x-1-x2+2x-1=x2+3x-2,∵x2+3x-4=0,∴x2+3x=4,当x2+3x=4时,原式=4-2=2.【点睛】本题考查整式的混合运算-化简求值,熟练掌握整式混合运算法则是解答本题的关键.19.(2023春•新城区校级月考)先化简,再求值:[(-2x+y)2-(2x-y)(y+2x)-6y]÷2y,其中x=-1,y=2.【分析】原式括号中利用完全平方公式,平方差公式计算,合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】原式=(4x 2+y 2-4xy -4x 2+y 2-6y )÷2y=(2y 2-4xy -6y )÷2y=y -2x -3,当x =-1,y =2时,原式=2-2×(-1)-3=1.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则及公式是解本题的关键.20.(2023春•碑林区校级月考)先化简再求值:[(3a +b )2-(3a +b )(3a -b )]÷2b ,其中a =-13,b =-2.【分析】先利用完全平方公式,平方差公式计算括号里,再算括号外,然后把a ,b 的值代入化简后的式子,进行计算即可解答.【详解】[(3a +b )2-(3a +b )(3a -b )]÷2b=(9a 2+6ab +b 2-9a 2+b 2)÷2b=(6ab +2b 2)÷2b=3a +b ,当a =-13,b =-2时,原式=3×-13+(-2)=-1+(-2)=-3.【点睛】本题考查了整式的混合运算-化简求值,完全平方公式,平方差公式,准确熟练地进行计算是解题的关键.类型三、分式的混合运算21.(2023•九龙坡区模拟)计算:(1)(x +y )2-x (2y -x );(2)a -1+4a a -1 ÷2a 2-2a 2-2a +1.【分析】(1)根据完全平方公式和单项式乘多项式将题目中的式子展开,然后合并同类项即可;(2)先算括号内的式子,然后计算括号外的除法即可.【详解】(1)(x +y )2-x (2y -x )=x 2+2xy +y 2-2xy +x 2=2x 2+y 2;(2)a -1+4a a -1 ÷2a 2-2a 2-2a +1=(a -1)2+4a a -1•(a -1)22(a +1)(a -1)=a 2-2a +1+4a a -1•(a -1)22(a +1)(a -1)=(a +1)2a -1•(a -1)22(a +1)(a -1)=a +12.【点睛】本题考查分式的混合运算、完全平方公式和单项式乘多项式,熟练掌握运算法则是解答本题的关键.22.(2023春•泸县校级月考)化简x +1x 2-2x +1÷1-21-x .【分析】先利用异分母分式加减法法则计算括号里,再算括号外,即可解答.【详解】x +1x 2-2x +1÷1-21-x =x +1(x -1)2÷1-x -21-x =x +1(x -1)2•1-x -1-x=x +1(x -1)2•-(x -1)-(x +1)=1x -1.【点睛】本题考查了分式的混合运算-化简求值,准确熟练地进行计算是解题的关键.23.(2023春•海陵区校级月考)计算:(1)a 2a -b -b 2a -b;(2)a +1-4a -5a -1 ÷1a -1-2a 2-a.【分析】(1)根据同分母分式相减,然后对分子分解因式,再约分即可;(2)先算括号内的式子,然后计算括号外的除法即可.【详解】(1)a 2a -b -b 2a -b=a 2-b 2a -b=(a +b )(a -b )a -b=a +b ;(2)a +1-4a -5a -1 ÷1a -1-2a 2-a=(a +1)(a -1)-(4a -5)a -1÷a -2a (a -1)=a 2-1-4a +5a -1•a (a -1)a -2=(a -2)2a -1•a (a -1)a -2=a (a -2)=a 2-2a .【点睛】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.24.(2023春•沙坪坝区校级月考)计算:(1)(x +1)(4x -3)-(2x -1)2;(2)2x -1x +1-x +1 ÷x -2x 2+2x +1.【分析】(1)首先根据多项式乘多项式法则、完全平方公式进行运算,然后合并同类项即可;(2)根据分式的混合运算法则和运算顺序进行化简计算即可.【详解】(1)原式=4x 2-3x +4x -3-(4x 2-4x +1)=4x 2-3x +4x -3-4x 2+4x -1=5x -4;(2)原式=2x -1x +1-(x -1)(x +1)x +1 ÷x -2(x +1)2=2x -1-(x 2-1)x +1×(x +1)2x -2=2x -x 2x +1×(x +1)2x -2=-x 2-x .【点睛】本题主要考查了整式运算和分式运算,熟练掌握相关运算法则是解题关键.25.(2023•宾阳县一模)先化简,再求值:x +1x -2 ×2x -4x -1,其中x =2+1.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x 的值代入原式即可求出答案.【详解】原式=x 2-2x +1x -2×2(x -2)x -1=(x -1)2x -2•2(x -2)x -1=2(x -1)=2x -2,当x =2+1时,原式=2(2+1)-2=22+2-2=22.【点睛】本题考查分式的化简求值,解题的关键是熟练运用分式的乘除运算以及加减运算法则,本题属于基础题型.26.(2023•秦都区校级二模)先化简,再求值:2m m +1-1 ÷m 2-m m +1,其中m =3.【分析】先对分式通分、因式分解、约分等化简,化成最简分式,后代入求值.【详解】=2m m +1-m +1m +1 ÷m (m -1)m +1=m -1m +1⋅m +1m (m -1)=1m .当m =3时,原式=13.【点睛】本题考查了分式的化简求值,运用因式分解,通分,约分等技巧化简是解题的关键.27.(2023•喀什地区模拟)先化简,再求值:x 2-1x 2-2x +1+x +1x -1⋅1-x 1+x ,其中x =-2.【分析】先算乘法,然后再算加法,最后代入求值.【详解】原式=(x +1)(x -1)(x -1)2+(-1)=x +1x -1-1=x +1x -1-x -1x -1=2x -1,当x =-2时,原式=2-2-1=-23.【点睛】本题考查分式的化简求值,掌握分式混合运算的运算顺序和计算法则是解题关键.28.(2023•福田区模拟)先化简:3x x -2-x x +2 ⋅x 2-4x ,并在-2,0,1,2中选一个合适的数求值.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可.【详解】原式=3x (x +2)(x +2)(x -2)-x (x -2)(x -2)(x +2)⋅(x -2)(x +2)x =3x 2+6x -x 2+2x (x -2)(x +2)•(x -2)(x +2)x =2x 2+8x (x -2)(x +2)•(x -2)(x +2)x =2x (x +4)(x -2)(x +2)•(x +2)(x -2)x =2(x +4)=2x +8;又分母不能为0,∴x 不能取-2,0,2,当x =1时,原式=2×1+8=10.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.29.(2023春•平城区校级月考)(1)计算:(1-tan60°)2+-230+6×2;(2)先化简,再求值:1-x x +2 ÷x +2x -2-8x x 2-4,其中x =2+2.【分析】(1)根据特殊角的三角函数值、零次幂、二次根式的乘法法则计算,即可求解;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】(1)(1-tan60°)2+-230+6×2=|1-3|+1+12=3-1+1+23=33;(2)1-x x +2 ÷x +2x -2-8x x 2-4=x +2x +2-x x +2 ÷(x +2)2(x +2)(x -2)-8x (x +2)(x -2)=2 x+2÷x2+4x+4(x+2)(x-2)-8x(x+2)(x-2)=2 x+2÷x2-4x+4 (x+2)(x-2)=2 x+2÷(x-2)2 (x+2)(x-2)=2 x+2÷x-2 x+2=2 x+2⋅x+2 x-2=2x-2,当x=2+2时,原式=22+2-2=22=2.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.也考查了二次根式的乘法运算,特殊角的三角函数值.30.(2023春•东营区校级月考)(1)计算:(-1)2017-27+(4-π)0+|3-3|+(sin60°)-1.(2)先化简分式:x2-2x+4x-1+2-x÷x2-41-x,然后在0,1,2中选一个合适的代入求值.【分析】(1)根据二次根式的性质、零指数幂和负整数指数幂、绝对值的性质计算;(2)根据分式的混合运算法则把化简,根据分式有意义的条件确定x的值,代入计算,得到答案.【详解】(1)原式=-1-33+1+3-3+32 -1=3-43+233=3-1033;(2)原式=x2-2x+4x-1+2x-2-x2+xx-1•1-x(x+2)(x-2)=x+2 x-1•1-x (x+2)(x-2)=12-x,由题意得:x≠1和±2,当x=0时,原式=12-0=12.【点睛】本题考查的是分式的化简求值、实数的混合运算,掌握分式的混合运算法则、实数的混合运算法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数
1、一组按一定规律排列的式子如下:2
a -,52a ,83a -,11
4a ,…,(0)a ≠,则第n 个式子是________。
2、已知数a ,b ,c 在数轴上的位置如图所示,化简|2||2|a b c b +--的结果是________。
答案:a+c
3、观察下面一列数,1,2,3,4,5,6,7----L 将这列数排成下列形式,按照上述规律排下去,那么第11行从左边第7个数是_____________。
答案:-107
4、下列说法错误的是( )
A 、28是的立方根
B 、464±是的立方根
C 、1139-是
的平方根 D 、4 答案:B
5、2(8)-的立方根是( ) A 、-2 B 、2± C 、4 D 、4± 答案:C
6、若b a -是的立方根,那么下面结论正确的是( )
A 、b a --也是 的立方根
B 、b a 是 的立方根
C 、b a -也是 的立方根
D 、b a ±都是 的立方根
答案:C
7、点A 、B 分别是数3-、12
-在数轴上对应的点,把线段AB 沿数轴向右移动到A'B',且线段A'B'的中点对应的数是3,则点A'对应的数是( )
A 、0
B 、
12 C 、314 D 、144 答案:C
8、已知1101101,,,
,mn m n m n n m n n m <->->>+++且那么的大小关系是( ) A 、11m n n n m <
<+< B 、11m n n m n <+<< C 、11n m n m n +<<< D 、11m n n m n <+<<
9__________________________。
10、已知一个正数x 的平方根是3225a a +-与,则a =_______,x 的立方根为_______。
11、若,a b 均为正整数,且a b >>,则a b +的最小值是( )
A 、6
B 、7
C 、8
D 、9
答案:B
12、已知:2x -的平方根是2±,27x y ++的立方根是3,则22x y +的算术平方根为_______。
13、已知实数,x y |24|0x y -+=,则423x y -
的立方根为_______。
141_____2(填,><=或)
15 )
A <<<<<答案:D
16、若5的小数部分是a ,若5的小数部分是b ,则5ab b +=___________。
答案:2
17x ,小数部分是y ,则1(x y --的平方根为___________。
18、若7+a ,若7b ,则2017()a b +=___________。
19、下图为魔术师在小美面前表演的经过
根据图中所述,我们无法知道小美所写的数字是多少,那么魔术师一定能做到吗如果能,请利用所学知识推导出魔术师猜出的结果;如果不能,请说明理由。
20、如图,在一张长方形纸条上画一条数轴。
(1)若折叠纸条,数轴上表示-3的点与表示1的点重合,则折痕与数轴的交点表示的数为__________。
(2)若经过某次折叠后,该数轴上的两个数a 和b 表示的点恰好重合,则折痕与数轴的交点表示的数为___________(用含a ,b 的代数式表示)
(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n 次后,再将
其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数。
(用含n 的代数式表示)
答案:(1)-1 (2) 2a b + (3) 883522
n n -+-
21、小明在草稿纸上画了一条数轴进行操作探究:
操作一:
(1)折叠纸面,若使表示点1与-1的两点重合,则-2表示的点与______表示的点重合。
操作一:
(1)折叠纸面,若使表示点1与-3的两点重合,回答以下问题:
表示的点与______表示的点重合。
②若数轴上A 、B 两点之间的距离为8(A 在B 的左侧),且A ,B 经过折叠后重合,则A 、B 两点表示的数分别是_________________。
操作三:(3)在数轴上剪下9个单位长度(从-1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图),若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是________________。