济南外国语高中推荐生数学试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南外国语学校2010年推荐生选拔测试数学试题
一、选择题(每小题5分,共25分)
1、下列图中阴影部分面积与算式2
131242-⎛⎫
-++ ⎪⎝⎭
的结果相同的是( )
2、一个长方体的三视图如图所示,若其俯视图为正方形,
则这个长方体的高和底面边长分别为( )
A .3,22
B .2,22
C .3,2
D .2,3
3、如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为( )
A. 32
B. π
C. 2π
D. 4
4、如果多项式2
12x px ++可以分解成两个一次因式的积,那么整数p 的值可取 ( )个
A .4 B. 5 C. 8 D. 6
5、小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1
人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多( )道
A. 15
B. 20
C. 25
D. 30 二、填空题(每小题6分,共30分)
第2题图
主视图 左视图
俯视图
22
3
O
E
D
B
A
C
· 6、计算:82-= .
7、满足方程532=-++x x 的x 的取值范围是 . 8、设M 是ABC ∆的重心(即M 是中线AD 上一点,
且AM=2MD ),过M 的直线分别交边AB 、AC 于 P 、Q 两点,且
n QC AQ m PB AP ==,,则=+n
m 1
1 . 9、在平面直角坐标系中,横坐标与纵坐标都是整数的点(y x ,)称为整点,如果将二次函数
4
39
82-
+-=x x y 的图像与x 轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有 个.
10、已知:M (2,1),N (2,6)两点,反比例函数x k y =
与线段MN 相交,过反比例函数x
k y =上任意一点P 作y 轴的垂线PG,G 为垂足,O 为坐标原点,则△OGP 面积S 的取值范围是
_______________.
三、解答题(共45分,写出必要的文字说明。) 11、(本小题20分)
如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD . (1)求证:DC =BC ;
(2)若AB =5,AC =4,求tan ∠DCE 的值.
12、(本小题25分)
已知抛物线y =ax 2
+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正
半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB -10x +16=0的两个根,且抛物线的对称轴是直线x =-2. (1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式; (3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围; (4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由. 第8题图 数学试题答案 1-5 BCADB 6 7、23x -≤≤ 8、1 9、25 10、6S 1≤≤ 11. 解:(1)证明:连接OC ∵OA =OC ∴∠OAC =∠OCA ∵CE 是⊙O 的切线 ∴∠OCE =90° ∵AE ⊥CE ∴∠AEC =∠OCE =90° ∴OC ∥AE ∴∠OCA =∠CAD ∴∠CAD =∠BAC ∴弧DC =弧BC ∴DC =BC (2)∵AB 是⊙O 的直径 ∴∠ACB =90° ∴3452222=-=-= AC AB BC ∵∠CAE =∠BAC ∠AEC =∠ACB =90° ∴△ACE ∽△ABC ∴AB AC BC EC = ∴ 543=EC 5 12 =EC ∵DC =BC =3 ∴5 9 )512( 32222=-=-= CE DC ED ∴4 3 5 1259 tan === ∠EC ED DCE 12.解:(1)解方程x 2-10x +16=0得x 1=2,x 2=8 ∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC O E D B A C · ∴点B 的坐标为(2,0),点C 的坐标为(0,8) 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2 ∴由抛物线的对称性可得点A 的坐标为(-6,0) (2)∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上 ∴c =8,将A (-6,0)、B (2,0)代入表达式,得 ⎩ ⎪⎨⎪⎧ 0=36a -6b +80=4a +2b +8 解得⎩⎨⎧ a =- 23 b =-83 ∴所求抛物线的表达式为y =-23x 2-8 3x +8 (3)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC ∴ EF AC =BE AB 即EF 10=8-m 8 ∴EF =40-5m 4 过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =4 5 ∴FG EF =45 ∴FG =45·40-5m 4 =8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m ) =12(8-m )(8-8+m )=12(8-m )m =-1 2m 2 +4m 自变量m 的取值范围是0<m <8 (4)存在. 理由:∵S =-12m 2+4m =-1 2(m -4)2+8 且 -1 2 <0, ∴当m =4时,S 有最大值,S 最大值=8 ∵m =4,∴点E 的坐标为(-2,0) ∴△BCE 为等腰三角形.