第十四章模糊数学分析方法
第2讲 模糊数学方法解析

22
2020年9月23日
三、模糊聚类分析方法
1. 数据标准化 (1)获取数据
设论域U {x1, x2 ,, xn}为所需分类的对象,每个对象又
由 m 个指标表示其性态,即 xi {xi1, xi2 ,, xim }(i 1,2,, n) ,
则 A
xij
.
nm
(2) 数据的标准化处理
定义 2 设模糊集 A, B F(U ) ,其隶属函数为 A (x), B (x) , (1) 若 x U ,有 B (x) A (x) ,则称 A 包含 B ,记 B A;
(2) 若 A B 且 B A,则称 A 与 B 相等,记为 B A .
定义 3 设模糊集 A, B F(U ) ,其隶属函数为 A (x), B (x) , 则称 A B 和 A B 为 A 与 B 的并集和交集;称 Ac 为 A 的补集
的过渡点,即是模糊性最大的点.
5
2020年9月23日
一、模糊数学的基本概念
2. 模糊集与隶属函数 (1) 模糊集与隶属函数的定义
对一个确定的论域U 可以有多个不同的模糊集,记 U 上的模糊集的全体为 F (U ) ,即
F(U ) {A | A : U [0,1]}
则 F (U ) 就是论域U 上的模糊幂集,显然 F (U ) 是一个 普通集合,且U F(U ) .
19
2020年9月23日
二、模糊关系与模糊矩阵
3. λ-截矩阵与传递矩阵
定义 8 设 R (rij )mn 为模糊矩阵,对任意的 [0,1] .
(1)
如果令 rij ()
1, rij 0, rij
i 1,2,, m j 1,2,, n
模糊分析法

模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
模糊集合理论的概念于1965 年由美国自动控制专家查德(L.A. Zadeh)教授提出,用以表达事物的不确定性。
编辑本段模糊综合评价法的术语及其定义为了便于描述,依据模糊数学的基本概念,对模糊综合评价法中的有关术语定义如下:1.评价因素(F):系指对招标项目评议的具体内容(例如,价格、各种指标、参数、规范、性能、状况,等等)。
为便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类(例如,商务、技术、价格、伴随服务,等),把每一类都视为单一评价因素,并称之为第一级评价因素(F1)。
第一级评价因素可以设置下属的第二级评价因素(例如,第一级评价因素“商务”可以有下属的第二级评价因素:交货期、付款条件和付款方式,等)。
第二级评价因素可以设置下属的第三级评价因素(F3)。
依此类推。
2.评价因素值(Fv):系指评价因素的具体值。
例如,某投标人的某技术参数为120,那么,该投标人的该评价因素值为120。
3.评价值(E):系指评价因素的优劣程度。
评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。
4.平均评价值(Ep):系指评标委员会成员对某评价因素评价的平均值。
平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数5.权重(W):系指评价因素的地位和重要程度。
第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1 。
6.加权平均评价值(Epw):系指加权后的平均评价值。
数学建模方法详解--模糊数学

数学建模方法详解--模糊数学在生产实践、科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。
例如,大与小、轻与重、快与慢、动与静、深与浅、美与丑等都包含着一定的模糊概念。
随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。
模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。
统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。
在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。
对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。
模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。
本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。
1.1 模糊数学的基本概念1.1.1 模糊集与隶属函数 1. 模糊集与隶属函数一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为U ,则称之为论域(或称为全域、全集、空间、话题)。
如果U 是论域 ,则U 的所有子集组成的集合称之为U 的幂集,记作)(U F 。
在此,总是假设问题的论域是非空的。
为了与模糊集相区别,在这里称通常的集合为普通集。
对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈或A x ∉,二者有且仅有一个成立。
于是,对于子集A 定义映射}1,0{:→U A μ即⎩⎨⎧∉∈=,0,,1)(A x A x x A ,μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定。
所谓论域U 上的模糊集A 是指:对于任意U x ∈总以某个程度)]1,0[(∈A A μμ属于A ,而不能用A x ∈或A x ∉描述。
模糊数学方法

0.5 u1 0.9 u2 1 u3 0.8 u4 1 u5
A B 0.2 u1 0.6 u2 0.4 u4
A 0.8 u1 0.4 u2 0.2 u4 1 u5
AB 0.1 u1 0.54 u2 0.32 u4
A B 0.7 u1 1 u2 1 u3 1 u4 1 u5
u A (u) uB (u)
交集:若 D A B ,则对一切 u U ,有
其中 和 分别表示“取大”和“取小”运算。除上述运算 外,还有一些模糊集之间的代数运算也是常用的: 代数积:AB 记为,其隶属函数 u AB 规定为
uD min[u A (u), uB (u)] u A (u) uB (u)
九 管理学科中的主要应用领域
在软科学方面,模糊技术已用到了投资决策、 企业效益评估、区域发展规划、经济宏观 调控、中、长期市场模糊预测等领域.模糊 理论将大大促进软科学的科学化、定量化 研究.比如东京的Yamaichi Securities用模 糊逻辑系统去管理大型的股票有价评证,该 系统使用了约一百条规则去作买进和卖出 决策.
例如: “明天的气温是30摄氏度的概率是0.9” “明天高温的可能性是0.9”
五
模糊数学的广泛应用性
• 软科学方面:投资决策、企业效益评估、经济宏观调控等 • 地震科学方面:地震预报、地震危害分析 • 工业过程控制方面:模糊控制技术是复杂系统控制的有效 手段 • 家电行业:模糊家电产品,提高了机器的“IQ” • 航空航天及军事领域:飞行器对接C3I指挥自动化系统, NASA • 人工智能与计算机高技术领域:模糊推理机、F专家系统、 F数据库、F语言识别系统、F机器人等,F-prolog、F-C等 • 其它:核反应控制、医疗诊断等
模糊决策与分析方法

当f 为非单射,如图,f (x1) f (x2 ) y,
但A (x1) 0,A (x2 ) 1,显然应有: f (A) ( y) 1。
因此应有: f (A) ( y)
f
(x)
y
A
(
x)
(2)扩张原理:设映射f : X Y,模糊集A X,则
A经f 映射后为Y中模糊集f ( A), f (A) ( y) sup A (x)。
f (x)y
直观解释:
y
f (x)
f (A)
x
A
x
对于有限论域X x1, ,xn,sup即为。
例2:设X 1,2,……,6,Y a,b,c,d,
a,x 1,2,3 f (x) b,x 4,5
c,x 6
A 1 0.2 0.1 0.9 13 5 6
x m
u u
0
x [l,m] x [m,u] x (,l) (u, )
则称I为三角模糊数,l和u分别称为下、上界。
记为I (l,m,u)。
例6中的两个模糊数均为三角模糊数。
对称的三角模糊数
在三角模糊数I的隶属函数
xl
m
l
I
(
x)
x m
性质:(1)A是凸模糊集 A的任意截集A是一个区间, [0,1]。
证: 对任 [0,1],若x,z A,即A (x) ,A(z) 。 不妨设x z,则对任y [x,z],A ( y) A (x) A (z) ,
y A,这说明,若两点在A中,则以两点为端点的整 个区间也包含于A, A只能是一个区间。(注:这里关 键要证是一个区间而非多个)。
模糊数学方法

经典集合论只能把自己的表现力限制在那些有明确外延 的概念和事物上,它明确地限定:每个集合都必须由明 确的元素构成,元素对集合的隶属关系必须是明确的, 决不能模棱两可。
但是,在客观世界中还普遍存在着大量的模糊现象。由 于现代科技所面对的系统日益复杂,模糊性总是伴随着 复杂性出现。
各门学科,尤其是人文、社会学科及其它“软科学” 的数学化、定量化趋向把模糊性的数学处理问题推向 中心地位。
0.6 0.6 0.5 B x1 x2 x3
d A, B 0.8 0.6 0.4 0.6 0.7 0.5 0.6 1 A, B d A, B 0.2 3 e A, B 0.2 3 A, B 0.2 A和 B 的 在有限论域X上有两个模糊子集 A 和 B ,
2 2 A 2 A, A e A, B n n
x x
i 1 A i B i
n
2
1 0 1 A x1 x2 x3
1 1 0 B x1 x2 x3
A, A 0.3 B, B 0.433 A 0.6 B 0.866
欧几里得距离定义如下: 绝对欧几里得距离: e A, B
x x
i 1 A i B i
n
2
1 相对欧几里得距离: A, B e A, B n
怎样用距离来描述一个模糊集合的模糊程度呢?要定 义一个跟 A 最贴近的集合,这个集合用来 A 表示,如 A 的相应元素的隶属度 果 A 里某元素的隶属度>0.5, 为1,如果<=0.5,则相应的隶属度为0,即
模糊数学-模糊数学基本知识

隶属函数参数化
1. 三角形隶属函数
0
trig ( x;
a,
b,
c)
x a ba
cx
cb
0
xa a xb b xc
cx
trig(x; a,b, c) max(min( x a , c x), 0) ba cb
参数a,b,c确定了三角形MF三个顶点的x坐标。
2. 梯形隶属函数
0
xa
trap(x, a, b, c, d )
g(x;50,20)
bell(x:20,4,50)
❖ (2)模糊子集运算的基本性质
模糊集合间的并、交、补(余)运算 具有如下的性质.
1)幂等律 A~ A~ A~, A~ A~ A~
2)交换律 A~ B~ B~ A~; A~ B~ B~ A~
3)结合律 ( A~ B~) C~ A~ (B~ C~),
论域U上的模糊集A由隶属函数uA来表征, uA的大小反映了x对于模糊子集的从属程度。 模糊子集完全由隶属函数来描述。
❖ 模糊子集的表示方法 (1)向量法
(2)查德表示法 有限集 无限集
模糊集举例 例4 设U={1,2,3,4,5,6}, A表示“靠近4”的数,则 AF (U),各数属于A的程度A(ui) 如表。
经典集合论的例子: 设U={ 红桃,方块,黑桃,梅花 }
V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V
解: U×V={ (红桃,A),(红 桃, 2),……,(
梅花, K) }
35
模糊关系论例子: 设有一组学生U:
U={ 张三,李四,王五 } 他们对球类运动V:
( A~ B~) C~ A~ (B~ C~).
模糊数学及加权系数法

模糊数学及加权系数法
模糊数学是一种数学分支,它用来处理那些不确定或模糊的信息。
在传统的数学中,所有的变量都有确切的值,但在现实世界中,很多情况下我们无法准确地给出某个变量的确切值,这时就需要用
到模糊数学。
模糊数学的核心概念是模糊集合和隶属函数,它们可
以描述模糊的概念和模糊的关系。
模糊数学在控制系统、人工智能、决策分析等领域有着广泛的应用。
加权系数法是一种常用的决策分析方法,它是一种多属性决策
方法。
在加权系数法中,我们首先确定各个属性对最终决策的重要
程度,然后为每个属性赋予一个权重,最后将各属性的取值乘以对
应的权重并求和,得到最终的综合评价值。
这种方法简单直观,易
于实施,因此在实际决策中得到了广泛的应用。
模糊数学和加权系数法之间的关系在于,模糊数学可以用来处
理那些属性之间关系模糊的情况。
在传统的加权系数法中,我们通
常假设各个属性之间的关系是确定的,但在现实情况中,这些关系
往往是模糊的。
因此,我们可以利用模糊数学的方法来描述这种模
糊关系,然后将模糊数学的概念和方法引入到加权系数法中,从而
使得我们能够更准确地处理那些模糊的属性之间的关系,提高决策
的准确性和可靠性。
总的来说,模糊数学和加权系数法都是决策分析中重要的工具,它们可以相互结合,使得我们能够更好地处理那些模糊的信息和关系,从而更好地进行决策分析。
模糊数学评价与衡量方法教程

模糊综合评价法(见课件)模糊数学是从量的角度研究和处理模糊现象的科学.这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性.比如用某种方法治疗某病的疗效“显效”与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高”与“较高”等等.从一个等级到另一个等级间没有一个明确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡.由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性.一、单因素模糊综合评价的步骤 1. 根据评价目的确定评价指标(evaluation indicator )集合},,,{21m u u u U例如评价某项科研成果,评价指标集合为U ={学术水平,社会效益,经济效益}.2.给出评价等级(evaluation grade )集合},,,{21n v v v V如评价等级集合为V ={很好,好,一般,差}. 3.确定各评价指标的权重(weight )},,,{21m W权重反映各评价指标在综合评价中的重要性程度,且 1i . 例如假设评价科研成果,评价指标集合U ={学术水平,社会效益,经济效益}其各因素权重设为}4.0,3.0,3.0{ W .4.确定评价矩阵R请该领域专家若干位,分别对此项成果每一因素进行单因素评价(one-way evaluation ),例如对学术水平,有50%的专家认为“很好”,30%的专家认为“好”,20%的专家认为“一般”,由此得出学术水平的单因素评价结果为 0,2.0,3.0,5.01 R同样如果社会效益,经济效益两项单因素评价结果分别为1.0,2.0,4.0,3.02 R 2.0,3.0,2.0,2.03 R那么该项成果的评价矩阵为2.03.02.02.01.02.04.03.002.03.05.0321R R R R 5.进行综合评价通过权系数矩阵W 与评价矩阵R 的模糊变换得到模糊评判集S : 设m j W 1)( ,n m ji r R )(,那么n mn m m n n m s s s r r r r r r r r r R W S ,,,,,,2121222211121121其中“ ”为模糊合成算子.进行模糊变换时要选择适宜的模糊合成算子,模糊合成算子通常有四种:(1) ),( M 算子n k r r s jkj mj jk j m j k ,,2,1,,min max )(11=符号“ ”为取小, “ ” 为取大.例如:n k s R W S 1)( =)4.03.03.0(2.03.02.02.01.02.04.03.002.03.05.0 = 2.03.03.03.0 其中)2.04.0()3.03.0()5.03.0(1 S =)2.03.03.0( =3.0其他k S ()4,3,2 k 求法相同. (2) (M ﹒), 算子n k r r s jk j mj jk j m j k ,,2,1,max )(11=例如n k s R W S 1)( =)4.03.03.0(2.03.02.02.01.02.04.03.002.03.05.0 = 08.012.012.015.0 其中)2.04.0()3.03.0()5.03.0(1 S =)08.009.015.0( =15.0其他k S ()4,3,2 k 求法相同. (3) ),( M 算子“ ”是有界和运算,即在有界限制下的普通加法运算.对t 个实数t x x x ,,,21 有t i i t x x x x 121,1min .利用),( M 算子,有n k r s m j jk j k ,,2,1,,min ,1min 1例如n k s R W S 1)( =)4.03.03.0(2.03.02.02.01.02.04.03.002.03.05.0 = 3.07.08.08.0 其中)2.04.0()3.03.0()5.03.0(1 S =)2.03.03.0( =0.8其他k S ()4,3,2 k 求法相同. (4) (M ﹒), 算子n k r s m j jk j k ,,2,1,,1min 1例如n k s R W S 1)( =)4.03.03.0(2.03.02.02.01.02.04.03.002.03.05.0 = 3.07.08.08.0 其中3.0(1 S •3.0()5.0 •4.0()3.0 •)2.0 =)08.009.015.0( =0.32以上四个算子在综合评价中的特点是:),( M 和(M ﹒), 在运算中能突出对综合评判起作用的主要因素,在确定W 时不一定要求其分量之和为1,即不一定是权向量,故为主因素突出型.),( M 和(M ﹒), 在运算时兼顾了各因素的作用,W 为名符其实的权向量,应满足各分量之和为1,故为加权平均型.最后通过对模糊评判向量S 的分析作出综合结论.一般可以采用以下三种方法:(1) 最大隶属原则模糊评判集S =),,,(21n S S S 中i S 为等级i v 对模糊评判集S 的隶属度,按最大隶属度原则作出综合结论,即),,,m ax (21n S S S MM 所对应的元素为综合评价结果.该方法虽简单易行,但只考虑隶属度最大的点,其它点没有考虑,损失的信息较多.(2) 加权平均原则加权平均原则是基于这样的思想:将等级看作一种相对位置,使其连续化.为了能定量处理,不妨用“n ,,2,1 ”依次表示各等级,并称其为各等级的秩.然后用S 中对应分量将各等级的秩加权求和,得到被评事物的相对位置.这就是加权平均原则,可表示为n i k ini ki iss u 11*)((12-1)其中k 为待定系数(k =1或k =2),目的是控制较大的i s 所起的作用.可以证明,当 k 时,加权平均原则就是最大隶属原则.例如:对 2.0,3.0,3.0,3.0 S ,评价等级集合为V ={很好,好,一般,差},各等级赋值)(i 分别为{4,3,2,1},仿照普通加权平均法的计算公式,有1k u =2.03.03.03.02.013.023.033.04 =2.64即该项成果的综合评价结果为好稍偏一般.(3) 模糊向量单值化如果给等级赋予分值,然后用S 中对应的隶属度将分值加权求平均就可以得到一个点值,便于比较排序.设给n 个等级依次赋予分值n c c c ,,,21 ,一般情况下(等级由高到低或由好到差),n c c c 21,且间距相等,则模糊向量可单值化为n i k ini ki iss cc 11 (12-2)其中k 的含义与作用同(12-1)中的k 相同.多个被评事物可以依据(12-2)式由大到小排出次序.以上三种方法可以依据评价目的来选用,如果需要序化,可选用后两种方法,如果只需给出某事物一个总体评价结论,则用第一种方法.二、多级模糊综合评判有些情况因为要考虑的因素太多,而权重难以细分,或因各权重都太小,使得评价失去实际意义,为此可根据因素集中各指标的相互关系,把因素集按不同属性分为几类.可先在因素较少的每一类(二级因素集)中进行综合评判,然后再对综合评判的结果进行类之间的高层次评判.如果二级因素集中有些类含的因素过多,可对它再作分类,得到三级以至更多级的综合评判模型.注意要逐级分别确定每类的权重.以二级综合评判为例给出其数学模型: 设第一级评价因素集为},,,{21m u u u U各评价因素相应的权重集为},,,{21m W第二级评价因素集为},,,{21ik i i i u u u U m i ,,2,1相应的权重集为},,,{21ik i i i W相应的单因素评判矩阵为:nk jl i r R k l ,,2,1二级综合评判数学模型为m mR W R W R W W B 2211三、模糊综合评判应用举例某地对区级医院2001~2002年医疗质量进行总体评价与比较,按分层抽样方法抽取两年内某病患者1250例,其中2001年600例,2002年650例.患者年龄构成与病情两年间差别没有统计学意义,观察三项指标分别为疗效、住院日、费用.规定很好、好、一般、差的标准见表12-1,病人医疗质量各等级频数分布见表12—2.表12-1 很好、好、一般、差的标准指标 很好 好 一般 差 疗效 治愈 显效 好转 无效 住院日≤1516~20 21~25 >25 费用(元) ≤14001400~1801800~220>2200表12-2 两年病人按医疗质量等级的频数分配表 指标很好 质量好 等级一般差疗效01年 02年 160 170380 41020 1040 60 住院日01年 02年 180 200 250 310130 12040 20费用 01年 02年 130 110270 320130 12070 100现综合考虑疗效、住院日、费用三项指标对该医院2001与2002两年的工作进行模糊综合评价.1.据评价目的确定评价因素集合评价因素集合为U ={疗效,住院日,费用}. 2.给出评价等级集合如评价等级集合为V ={很好,好,一般,差}. 3.确定各评价因素的权重设疗效,住院日,费用各因素权重依次为0.5,0.2,0.3,即)(3.0,2.0,5.0 W 4.2001年与2002年两个评价矩阵R 分别为600/70600/130600/270600/130600/40600/130600/250600/180600/40600/20600/380600/1601R=117.0217.0450.0217.0067.0217.0417.0300.0067.0033.0633.0267.0650/100650/120650/320650/110650/20650/120650/310650/200650/60650/10650/410650/1702R=154.0185.0492.0169.0031.0185.0477.0308.0092.0015.0631.0262.05.综合评价作权系数矩阵W 与评价矩阵R 的模糊乘积运算.如果突出疗效,且只需对该地区级医院2001~2002年医疗质量进行总体工作情况给出一个总体评价结论,可采用),( M 算子,确定模糊评判集S ,按最大隶属度原则进行评判:n k s R W S 111)( = )3.02.05.0(117.0217.0450.0217.0067.0217.0417.0300.0067.0033.0633.0267.0 = 117.0217.0500.0267.0n k s R W S 122)( = )3.02.05.0(154.0185.0492.0169.0031.0185.0477.0308.0092.0015.0631.0262.0= 154.0185.0500.0262.0按最大隶属度原则,两年最大隶属度均为0.500,可以认为对某地区区级医院2001年与2002年医疗质量评价结果均为“好”.如果突出疗效,且对该地区级医院2001~2002年医疗质量进行排序,也可采用),( M 算子确定的模糊评判集S ,按加权平均原则进行评判:实用标准文案文档将评价等级很好,好,一般,差分别赋值为4,3,2,1.2001年的评价结果为41411)(iiiiikssu=117.0217.0500.0267.0117.01217.02500.03267.04=2.833 2002年的评价结果为41411)(iiiiikssu=154.0185.0500.0262.0154.01185.02500.03262.04=2.790 2001年的工作质量略好于2002年.以上评判结果均没有充分兼顾住院日与费用的作用,如果充分考虑各因素的作用在作权系数矩阵W与评价矩阵R的模糊运算的时候可以采用),(M算子或(M﹒), 算子.。
Python数学实验与建模课件第14章模糊数学

第14章
14.1模糊数学基本概念
第7页
定义 14.2 论域U 到[ 0 , 1闭]区间上的任意映射 M : U [0,1], u M (u),
都确定了U 上的一个模糊集合, M (u)叫做 M 的隶属函数,或称为u对 M 的 隶属度。记作 M {(u, M(u)) | u U },使得 M(u) 0.5的点称为模糊集 M 的 过渡点,此点最具有模糊性。
(0.3 0.2) (0.35 0.4) (0.1 0.2)]
[0.3 0.2 0.1, 0.3 0.2 0.1, 0.2 0.35 0.1]
[0.3, 0.3, 0.35].
第14章
14.1模糊数学基本概念
#程序文件 Pex14_6.py import numpy as np a=np.array([0.3,0.35,0.1]); aa=np.tile(a,(len(a),1)) b=np.array([[0.3,0.5,0.2],[0.2,0.2,0.4],[0.3,0.4,0.2]]) c=np.minimum(aa.T,b) # 两个矩阵的元素对应取最小值 T=c.max(axis=0) # 矩阵逐列取最大值 print("T=",T)
x
A。描述这一事实的是特征函数
A(
x
)
1, 0,
唯一确定。
x A, 即集合 A由特征函数 x A,
第14章
14.1模糊数学基本概念
第6页
在模糊数学中,称没有明确边界(没有清晰外延)的集合为模糊集合。 常用大写字母来表示。元素属于模糊集合的程度用隶属度来表示。用于计算 隶属度的函数称为隶属函数。它们的数学定义如下。
的模糊集 M 和 N 可表示为
M
模糊决策与分析方法

例如:• L(x) max 0,1 x p ,( p 0),
当p 1时,图形如下:
• L(x) exp( x p )( p 0)
(2)L-R型模糊数
设L和R为模糊数的参照函数,若模糊数I的隶属函数为
为模糊数。
(2)区间数 任意闭区间[a,b]是模糊数,称区间数。 区间数也可记[a, a],其中a和a分别为下限和上限; 还可记A= m(A), w( A) ,其中m和w分别为中点和半宽。 区间数的运算:设[a,b],[c,d ]为二区间数。则 •[a,b] [c,d ] [a c,b d ] •[a,b] [c,d ] [a d,b c] •[a,b][c,d ] [min(ac,ad,bc,bd ),max(ac,ad,bc,bd )]
2、模糊数 (1)模糊数
R1中的正则模糊集I,若其任意截集I是一个闭区间, 则称I是一个模糊数。 [0,1]
几何表示:(模糊数与凸模糊集的区别)
是开区间
1
1
比较:
模糊数
正则,即的最大值为1 左(右)连续
凸模糊集
的最大值可以小于1
A
可以开,故
可以左(右)侧不连续
A
故模糊数必然为凸模糊集,但凸模糊集不一定
优化
应用:模糊决策与分析
评价 预测
控制
一、模糊集及其隶属函数
1、论域X(研究对象的全体、全集)
普通集A:边界清晰 模糊集A:边界模糊 2、特征函数与隶属函数
A A X
A的特征函数
A
(
x)
1 0
x A x A
模糊数学方法2PPT课件

图2.6 重叠指数定义
14
2. 确定隶属函数的方法 ① 模糊统计法
对论域U上的一个确定元素u0,考虑n个有 模糊集合A属性的普通集合A*以及元素u0对 A*的归属次数。u0对A*的归属次数和n的比 值就是元素u0对模糊集合A的隶属度:
A(u0)ln i mu0A*n的次数(2.4)
15
② 专家经验法:有专家的实际经验给出模糊信息的 处理算式或相应权系数来确定函数的方法。
模糊数学是研究和处理模糊性现象的数学方法。是 把模糊的问题化为确定性问题的基础,是数据处理常用 的方法。
模糊数学应用广泛 农业,林业,气象,环境,地 质勘探,医学,经济管理等
4
从精确到模糊
精确
答案确定:要么是,要么不是 f : A → {0,1} 他是学生?他不是学生?
模糊
答案不定:也许是,也许不是,也许介于之间 μA : U → [0,1] 他是成年人?他不是成年人?他大概是成年人?
1
“年轻”(u)=
1u52521
0u25 25u120
1
“年老”(u)=
1u52521
0u50 50u120
9
一、模糊集合论的基础知识
隶属函数图
10
模糊集合的隶属函数
1. 确定隶属函数的原则 隶属函数的确定应遵守一些基本原则。 ① 表示隶属函数的模糊集合必须是凸模糊集合 通常,某一模糊概念的隶属函数的确定应首先从
常见隶属函数有以下类型:
偏小型
中间型
偏大型
1.矩形型
Ax
1 0
xa xa
Ax
Ax10
xa或xb axb
Ax
A
x
0 1
xa xa
模糊数学方法_数学建模ppt课件

;
eA,B n AxiBxi2
i1
• 相对欧几里得距离:
A,B 1 eA,B
n
-
12
模糊集合的相似度
• 用1减去相对距离,则可以得到相似度的概念. • 相似度,也可以理解为贴近度.有多种理论模型.
-
13
【0,1】区间上的算子
• [0,1]区间上的一个二元运算称为算子. • 这里的二元运算是广义的二元运算.例如常规乘法
• 设以人的岁数作为论域U=[0,120],单位是“岁”, 那么“年轻”,“年老”,都是U上的模糊子集。 隶属函数如下:
• “年轻”(u)= 1
1u52521
0u25 25u120
• “年老”(u)= 1 1u52521
0u50 50u120
-
8
模糊集合与经典集合的联系
• 一就般叫λ地截,集用或Aλλ表 水示平集. Ax的x的集合,这个集合
• 支撑集,即所有λ>0的λ截集的并集 .
-
9
模糊集合的一个实际例子
• 假定有甲乙两个顾客商 场买衣服,他们主要考
虑三个因素:
• 花色式样(x1); • 耐穿程度(x2); • 价格(x3);
顾客甲 确定的 隶属度
顾客乙 确定的 隶属度
花色 式样 x1 0.8
0.6
耐穿 程度 x2 0.4
0.6
价格 x3 0.7
模糊数学方法
理学院 韩邦合
-
1
模糊数学:程度化 思想解决模糊概念
• 一个人有了10万根头发,当然不能算秃头。不是秃头的人, 掉了一根头发,仍然不是秃头。按照这个道理,让一个不 是秃头的人一根一根地减少头发,就得出一条结论:没有 一根头发的光头也不是秃头!
数学建模——模糊数学方法

• 模糊矩阵的λ-截矩阵
设A = (aij)m×n,对任意的∈[0, 1],称 A= (aij())m×n,为模糊矩阵A的 - 截矩阵, 其中
当aij≥ 时,aij() =1; 当aij< 时,aij() =0. 显然,A的 - 截矩阵为布尔矩阵.
1 0.5 0.2 0
1 1 0 0
A
0.5 0.2 0
还可用向量表示法 A=(0,0.2,0.4,0.6,0.8,1)
•模糊集的运算
相等:A = B A(x) = B(x); 包含:AB A(x)≤B(x); 并:A∪B的隶属函数为
(A∪B)(x)=A(x)∨B(x); 交:A∩B的隶属函数为
(A∩B)(x)=A(x)∧B(x); 余:Ac的隶属函数为
(0.3, 0.5, 0.2 , 0) 同样对声音有:0.4, 0.3, 0.2 , 0.1) 对价格为: (0.1, 0.1, 0.3 , 0.5) 所以有模糊评价矩阵:
0.3 0.5 0.2 0 P 0.4 0.3 0.2 0.1
0.1 0.1 0.3 0.5
设三个指标的权系数向量: A ={图像评价,声音评价,价格评价} =(0.5, 0.3, 0.2)
B=A⊙P(其中⊙为模糊乘法),根据运算⊙的 不同定义,可得到不同的模型
模型1 M(Λ,V)——主因素决定型
bj max{( ai pij ) |1 i n}( j 1,2,, n)
模型2 M(٠,ν)——主因素突出型
bj max{(ai pi j )1 i n}( j 1,2,, m)
例4: 利用模糊综合评判对20加制药厂经 济效益的好坏进行排序
因素集:
U={u1,u2,u3,u4}为反映企业经济效益的主 要指标
模糊数学方法与应用

模糊数学方法与应用概述模糊数学是一种用来处理不确定性和模糊性问题的数学方法。
它的基本思想是将模糊性和不确定性引入数学模型中,以便更好地描述和解决现实世界中的复杂问题。
模糊数学的应用非常广泛,包括工程、经济、管理、决策等领域。
本文将介绍模糊数学的基本原理以及它在实际应用中的一些具体案例。
模糊数学的基本原理模糊数学的核心是模糊集合理论,它是对传统集合理论的扩展和推广。
在传统集合理论中,一个元素要么属于一个集合,要么不属于一个集合,不存在模糊性。
而在模糊集合理论中,一个元素可以以一定的隶属度属于一个集合,这个隶属度是介于0和1之间的一个实数。
例如,对于一个人的年龄来说,年轻人和老年人是两个模糊集合,一个人可以以0.7的隶属度属于年轻人,以0.3的隶属度属于老年人。
模糊数学的应用案例1. 控制系统模糊控制理论是模糊数学的一个重要应用领域。
传统的控制系统设计需要精确的数学模型和准确的参数,但是在现实问题中,很难得到完全准确的模型和参数。
模糊控制理论通过引入模糊逻辑和模糊推理的方法,可以处理这些不确定性和模糊性的问题。
例如,模糊控制器可以根据当前的温度、湿度等参数来控制空调的温度和风速,以提供一个舒适的室内环境。
2. 人工智能模糊数学在人工智能领域也有广泛的应用。
在模糊推理中,基于模糊集合的推理可以处理不完全和不确定的信息。
例如,通过使用模糊推理系统,可以根据一些模糊的规则和输入信息来进行判断和决策。
模糊神经网络是一种基于模糊数学的人工神经网络模型,它可以用来解决一些复杂的分类和模式识别问题。
3. 经济与金融在经济学和金融学中,模糊数学可以用来处理一些模糊和不确定的经济和金融问题。
例如,模糊数学可以用来描述和分析不完全和不确定的市场需求、价格波动等。
另外,模糊集合和模糊推理可以用来建立一些模糊决策模型,以辅助经济和金融决策。
4. 交通运输交通运输领域是另一个模糊数学的重要应用领域。
在交通规划和交通控制中,模糊数学可以用来处理交通流量、交通信号等模糊和不确定的问题。
模糊数学方法

四 模糊数学方法模糊数学方法,是一种研究和处理模糊现象的新型数学方法。
这一方法,是由美国自动控制专家查德(L.A.Zadeh)于1965年首次提出来的。
20多年来,模糊数学方法在自然科学和社会科学研究的各个领域得到了广泛应用。
4.1糊子集及其运算在经典集合论中,一个元素对于一个集合,要么属于,要么不属于,二者必居其一,绝不允许模棱两可。
这一要求就从根本上限定了以经典集合论为基础的常规数学方法的应用范围,它只能用来研究那些具有绝对明确的界限的事物和现象。
但是,在现实世界中,并非所有事物和现象都具有明确的界限。
譬如,“高与矮”,“好与坏”,“美与丑”,……,这样一些概念之间就没有绝对分明的界限。
严格说来,这些概念就是没有绝对的外延,这些概念被称之为模糊概念,它们不能用一般集合论来描述,而需要用模糊集合论去描述。
4.1.1子集及其表示方法1.模糊子集(1)隶属函数:在经典集合论中,一个元素x 和一个集合A 之间的关系只能有x A ∈或者x A ∉这两种情况。
集合可以通过其特征函数来刻划,每一个集合A 都有一个特征函数C A (x),其定义如下:由于经典集合论的特征函数只允许取0与1两个值,故与二值逻辑{0,1}相对应。
模糊数学是将二值逻辑{0,1}拓广到可取[0,1]闭区间上任意的无穷多个值的连续值逻辑。
因此,也必须把特征函数作适当的拓广,这就是隶属函数μ(x),它满足:0≤μ(x)≤1 (2)(1)式也可以记作μ(x)∈[0,1](2)模糊子集的定义:1965年,查德首次给出了模糊子集的如下定义:设U 是一个给定的论域(即讨论对象的全体范围),μA :x →[0,1]是U 到[0,1]闭区间上的一个映射,如果对于任何x ∈U ,都有唯一的μA (x)∈[0,1]与之对应,则该映射便给定了论域U 上的一个模糊子集,μA 称做 的隶属函数,μA (x)称做x 对 的隶属度。
2.模糊子集的表示方法通过上述关于模糊子集的定义可以看出,一个模糊子集完全由其隶属函数所刻划。
模糊数学方法详细介绍

A x e
A x
A x
A x
1
0
1
a
x
0
1
a
x
0
a
x
偏小型
6.柯西型
1 1 A x 1 x a xa x a A x
中间型
1 1 x a
偏大型
0 1 A x 1 x a xa xa
A x A x
0 k xa b x c x A ba cxd 1
xd
A x
1
0
1
a
b
1
cd x
0
x
0 a b
a
b
x
偏小型
4. 型 k 0
1 A x k xa e
现实中的模糊概念——例如:厚、薄、美、丑、 早晨、中午、晴天、阴天、优、劣,蔬菜、水 果、感冒、合格品、次品等 量的分类
确定性 经典数学 量 随机性 随机数学 不确定性模糊性 模糊数学
模糊数学
1965年美国加利福尼亚大学控制专家扎德(zadeh L.A)在《information and control》杂志上发表了一 篇开创性论文“Fuzzy sets”这标志着模糊数学的诞生。 模糊数学是研究和处理模糊性现象的数学方法。是 把模糊的问题化为确定性问题的基础,是数据处理常用 的方法。
说明:排中律不成立,即
A A U, A
c c
一、模糊集合论的基础知识
U = {甲, 乙, 丙, 丁} A = “矮子” 隶属函数A= (0.9, 1, 0.6, 0) B = “瘦子” 隶属函数B= (0.8, 0.2, 0.9, 1) 找出 C = “既矮又瘦” C = A∩B = ( 0.9∧0.8 , 1∧0.2 , 0.6∧0.9 , 0∧1 ) = ( 0.8, 0.2, 0.6, 0) 甲和丙比较符合条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y= X ~
~
×R
~
= (0.167,0.333,0.417,0.083)
二、模糊综合评判的原理 (1)确定评价指标集合论域U: (2)确定评语集合论域V:
R=
~
r11 r21 rm1
r12 … r1n r22 … r2n rm2 … rmn
其中0≤rij≤1,1≤i≤m,1≤j≤n。 模糊矩阵是研究模糊关系的重要工具,当它用来表示模糊关系时,其中 rij表示集合A中第i个元素和集合B中第个j元素之间的关联程度,例14-7中小组 成员外语成员与外语学科的关联程度可以用如下矩阵形式表示它们之间的模糊 关系。
2、集合的基本运算 并集、交集、差集、补集。 三、模糊集合及其隶属函数 1、模糊集合:无明确边界的集合。 2、模糊集合的特点:把原来普通集合对类属、性态的非此即彼的绝对属于 或不属于的判定,转化为对类属、性态做从0互1不同程度的相对判定。 3、隶属函数:为了将普通集合与模糊集合加以区别,把模糊集合的特征函 数称为隶属函数。
第二节 隶属函数的确定
一、隶属函数的分布统计求法 利用统计试验计算隶属函数或隶属度的步骤: 1、确定集合的因素 2、选择部分学生进行试验 3、找出各因素数据中的最大值和最小值算出分组组距、计算数据落在各 组中的数,根据次数分布情况确定较为适合的隶属度。 二、对比平均法求隶属函数
设论域U={x1,x2, x3,… ,xn} 论域中各因素之间按照某一种性为标准,以每两个因素为一组,判定它们各自们归 属这一标准的程度,并用符号g(xi,xj)表示(i,j=1,2,…,n)。 三、模糊统计法求隶属函数 模糊统计法的步骤: (1)确定论域与因素集。 (2)要求参与实验者就论域中各给出的点是否属于因素集的各元素进行投票。 (3)统计投票结果,求出隶属函数。
隶属函数 的确定
模糊综合 评判方法
模糊聚类 分析方法
第一节 模糊数学分析的基本概念
在自然科学或社会科学研究中,存在着许多定义不很严格或者说具有模糊性的概念。这里 所谓的模糊性,主要是指客观事物的差异在中间过渡中的不分明性,如某一生态条件对某种害虫、 某种作物的存活或适应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气候 对农业产量的影响程度为“较重、严重、很严重”,等等。这些通常是本来就属于模糊的概
其中,“∧”表示rij与sij相比较后取较小者 “∨”表示rij与sij相比较后取较大者
五、模糊关系合成图解法 图解法计算模糊关系的合成的步骤: 1、画出关系合成图 2、在图中找出xi到zj的各种可能途径; 3、在同一路径中相比较取隶属度最小者作为该路径 的隶属度; 4、把路径所取得隶属度中最大者作为qij的元素值; 5、画出模糊关系合成矩阵。
例14-7 设有一组同学(徐X,张X,王X),他们选修英,日,俄,法四种外语中 的任几门,他们选修和结业成绩如下: 徐X 英语 85 徐X 日语 70 徐X 俄语 75 张X 英语 90 王X 英语 70 王X 法语 80
用A表示学生集合:A={徐X,张X,王X}, 用B表示语种集合:B={英,日,俄,法}。 若用成绩除以100折合成隶属度来描述掌握外语的程度,则由如表14.10可以构 造出一个在A×B直积空间中存在的模糊关系 R ,用它来表示小组成员“掌握外 ~ 语程度”的模糊关系。 表14.10 掌握外语的程度 英语 徐X 张X 王X 0.85 0.90 0.70 俄语 0.75 0 0 日语 0.70 0 0 法语 0 0 0.8
第四节 模糊综合评判方法 一、模糊变换 1、模糊向量 对于一个有限模糊集合X可以表为: X = {x ,x ,x ,…,x } ~ 1 2 3 n xi是各元素相应的隶属度 R (xi),其中0≤xi≤1 ~ (i=1,2,…,n)对于只有一行的模糊矩阵又可以 看成模糊向量,如: X = {x1,x2,x3,…. ,xn}是一个模糊向量 ~ 2、模糊变换 现有一个模糊矩阵: R ={ rij},其中0≤rij≤1, ~ X × R =Y称为模糊变换。
3、归一化处理 由于
Y~中各元素之源自,即 y =1,为了保证处理后 y ≠1,需
i i 1 1
m
m
要进行归一化处理,其方法是取Y’i=
yi
y
1
n
,故有:
i
Y’i=0.2/1.2=0.167 Y’i=0.4/1.2=0.333 Y’i=0.5/1.2=0.417 Y’i=0.1/1.2=0.083 经归一化后的模糊变换结果为:
R=
~
0.85 0.90 0.70
0.70 0 0
0.70 0 0
0 0 0.80
三、模糊关系矩阵的运算 设 和 S 是A×B中模糊关系。 ~ ~
R
(1)
R和 S
~
的并。
~
R
~
∪
S
~
=(rij∨sij)
(2)
R和 S
~ ~
的交。
~ ~
R
~
∨
S
~
=(rij∩sij)
(3)
R和 S
的补。
R=(1-Rij) S=(1-Sij)
二、模糊矩阵
1、矩阵 矩阵可以用来表现关系,如果集合A有m个元素,集合B有n个元素、我 们可以用矩阵R来表示由集合A到集合B的关系
r11 R= r21 rm1 r12 … r1n r22 … r2n rm2 …rmn
其中rij=0或1,1≤i≤m,1≤j≤n。
2、模糊矩阵 当论域A×B为有限集时,模糊关系可以用矩阵形式 来表示,该矩阵元素rij 仅在闭区间[0,1]中取值,即0 ≤rij ≤1,此矩阵称为模糊矩阵。
~
~
模糊变换的结果为:
Y={y1,y2,…,ym}
~
式中的各分量:
Yi=
k 1
(xk∧rkj)(k=1,2,…,m)
m
[例14-10]给出
X =(0.2,0.5,0.3),
~
0.2 0 0.2 0.7 0.4 0.2 0.1 0.5 0.4 0 0.1 0.1
R=
~
模糊变换:
× R Y= X ~ ~
模糊数学分 析的基概念 教育技术研究中的不确定性 普通集合及其特征函数 模糊集合及其隶属函数 隶属函数的分布统计求法 对比平均法求隶属函数 模糊统计法求隶属函灵敏 模糊关系与 模糊矩阵 模糊关系 模糊矩阵 模糊关系矩阵的运算 模糊关系的合成 模糊关系合成图解法 模糊变换 模糊综合评判的原理 模糊综合评判应用实例-网络课程评价 模糊聚类分析基本原理 模糊等价矩阵聚类法 最大树法
第三节 模糊关系与模糊矩阵
一、模糊关系 1、关系,描写事物之间联系的数学模型之一就是关系,常用符号“X”来表 示。 2、模糊关系,是普遍关系的推广,普通关系只能描述元素间关系的有无, 而模糊关系则描述元素之间关系的多少。 例14-6 在医学上常用公式:体重B(公斤)=身高A(厘米)-100来表示 标准体重,这就给出了身高(A)与体重(B)的普通关系。 若A={140,150,160,170,180} B={40,50,60,70,80} 身高与体重的普通关系如表14.8所示:
确 定 性
必 然 性
随 机 性
精 确 性
模糊数学
不 确 定 性
以事物性态、类 属边界为判据
模 糊 性
随机性与模糊性的关系
二、普通集合及其特征函数 1、集合的基本概念
论域,被讨论对象的全体叫做论域,对称全域,通常用大写字母U、E、X、Y等 来表示。 元素,组成某一集合的单个对象就称为该集合的一个元素,通常用小写字母表 示。 子集,由同一集合中的部分元素组成一个新集合,称为原集合的一个子集,通 常用大写字母表示。 集合的表示方法,把集合中的全部元素列出,并用括事情把它们括起来表示集 合的全域。
例14-4 设论域U年龄={20,35,50,65},因素A={年青人,老年人},20
个人参与投票,结果如表14.7所示:
表14.7投票结果表
U∈A的次数
u
20 20 0
35 16 0
50 2 18
65 0 19
A 年表人 老年人
则有u20对“年青人”这一概念的隶属度: μ20=20/20=1 u20对“老年人”这一概念的隶属度: μ20=0/20=0 所以,μ20={1,0}。同理可求出年龄论域中各点对于因素集的隶属度 μ35={0.8,0} μ50={0.1,0.9} μ65={0,0.95}
~
0.2 = (0.2,0.5,0.3) × 0 0.2 =(0.2,0.4,0.5,0.1)
0.7 0.4 0.3
0.1 0.5 0.4
0 0.1 0.1
式中Y 各分量的计算如下: ~
Y1=(0.2∧0.2)∨(0.5∧0)∨(0.3∧0.2) =0.2∨0∨0.2 =0.2 y2=(0.2∧0.7)∨(0.5∧0.4)∨(0.3∧0.3) =0.2∨0.4∨0.3 =0.4 y3=(0.2∧0.1)∨(0.5∧0.5)∨(0.3∧0.4) =0.1∨0.5∨0.3 =0.5 y4=(0.2∧0)∨(0.5∧0.1)∨(0.3∧0.1) =0∨0.1∨0.1 =0.1
念,为处理分析这些“模糊”概念的数据,便产生了模糊集合论。
根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一, 且仅居其一。这样的集合论本身并无法处理具体的模糊概念。为处理这些模糊概念而进行的种种 努力,催生了模糊数学。模糊数学的理论基础是模糊集。模糊集的理论是1965年美国自动控制专 家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。 模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。实践证明,模糊数学 在农业中主要用于病虫测报、种植区划、品种选育等方面,在图像识别、天气预报、地质地震、 交通运输、医疗诊断、信息控制、人工智能等诸多领域的应用也已初见成效。从该学科的发展趋 势来看,它具有极其强大的生命力和渗透力。