新课标高一数学人教版必修1第一章教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§1.1 集合
教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论
的基础上。

另一方面,集合论及其所反映的数学思想,在越来越
广泛的领域种得到应用。

课型:新授课
教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)
描述不同的具体问题,感受集合语言的意义和作用;
教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P
2-P
3
内容
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,
人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体
叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集
1
合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样
5.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)

6.常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N*或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(课本例1)
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

1
具体方法:在大括号内先写上表示这个集合元素的一般符号及取
值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元
素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2.(课本例2)
说明:(课本P5最后一段)
思考3:(课本P6思考)
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。

下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪
种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采
用列举法。

(三)课堂练习(课本P6练习)
三、归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

四、作业布置
书面作业:习题1.1,第1- 4题
五、板书设计(略)
课题:§1.2集合间的基本关系
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
1
1
(4)了解与空集的含义。

教学重点:子集与空集的概念;用Venn 图表达集合间的关系。

教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
六、 引入课题
1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0 N ;(2)
;(3)-1.5 R
2、 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大
小”关系呢?(宣布课题)
七、 新课教学
(一) 集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;
如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

记作:)(A B B A ⊇⊆或
读作:A 包含于(is contained in )B ,或B 包含(contains )A
当集合A 不包含于集合B 时,记作A ⊆ B

)(A B B A ⊇⊆或
(二)
A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =
即 ⎩
⎨⎧⊆⊆⇔=A B B A B A 练习
结论:
任何一个集合是它本身的子集
1
(三) 真子集的概念 若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。

记作:A B (或B A )
读作:A 真包含于B (或B 真包含A )
举例(由学生举例,共同辨析)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set ),记作:∅
规定: 空集是任何集合的子集,是任何非空集合的真子集。

(五) 结论: ○
1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题
(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。

(2)化简集合A={x|x-3>2},B={x|x ≥5},并表示A 、B 的关系;
(七) 课堂练习
(八) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比
两个实数间的大小关系,同时还要注意区别“属于”与“包含”
两种关系及其表示方法;
(九) 作业布置
1、 书面作业:习题1.1 第5题
2、 提高作业:
○1 已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,
求实数a 的取值范围。


2 设集合}{}{}{矩形平行四边形四边形===,C ,B A , }{正方形=D ,试用Venn 图表示它们之间的关系。

板书设计(略)
课题:§1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集
的补集;(3)能用Venn图表达集合的关系及运算,体会直观图
示对理解抽象概念的作用。

课型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:
八、引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。

九、新课教学
1.并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B 读作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题(P9-10例4、例5)
1
1
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B 的交集。

2. 交集
一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。

记作:A ∩B
读作:“A 交B ” 即: A ∩B={x|∈A ,且x ∈B}
交集的Venn 图表示
说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

例题(P 9-10例6、例7)
拓展:求下列各图中集合A 与B 的并集与交集
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
3. 补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。

补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A

A
1
所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集,
记作:C U A
即:C U A={x|x ∈U 且
x ∈A}
补集的Venn 图表示
说明:补集的概念必须要有全集的限制
例题(P 12例8、例9)
4. 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,
区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。

5. 集合基本运算的一些结论:
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A
A ⊆A ∪
B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A
(C U A )∪A=U ,(C U A )∩A=∅
若A ∩B=A ,则A ⊆B ,反之也成立
若A ∪B=B ,则A ⊆B ,反之也成立
若x ∈(A ∩B ),则x ∈A 且x ∈B
若x ∈(A ∪B ),则x ∈A ,或x ∈B
6. 课堂练习
(1)设A={奇数}、B={偶数},则A ∩Z=A ,B ∩Z=B ,A ∩B=∅
(2)设A={奇数}、B={偶数},则A ∪Z=Z ,B ∪Z=Z ,A ∪B=Z
1
___;
__________C B A _____,__________C B A }2
5x 0x |x {C }3x 1|x {B }2x 4|x {A )4(__________B A }Z 2
1m |m {B }Z 2n |n {A )3(==≥≤=≤≤-=≤≤-==∈+=∈= 那么,或,,集合,则,集合 十、 归纳小结(略)
十一、 作业布置
3、 书面作业:P 13习题1.1,第6-12题
4、 提高内容:
(1) 已知X={x|x 2+px+q=0,p 2-4q>0},A={1,3,5,7,9},B={1,4,7,10},

X B X ,A X =∅= ,试求p 、q ;
(2) 集合A={x|x 2+px-2=0},B={x|x 2-x+q=0},若A B={-2,0,1},
求p 、q ;
(3) A={2,3,a 2+4a+2},B={0,7,a 2+4a-2,2-a},且A B ={3,
7},求B
课题:§1.2.1函数的概念
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅
把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻
画函数,高中阶段更注重函数模型化的思想.
教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关
系的重要数学模型,在此基础上学习用集合与对应的语言来刻画
函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程:
十二、 引入课题
1.复习初中所学函数的概念,强调函数的模型化思想;
2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思
想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
备用实例:
我国2003年4月份非典疫情统计:
3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖
关系;
4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否
是函数关系.
十三、新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).
注意:
○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素:
1
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)
(二)典型例题
1.求函数定义域
课本P20例1
解:(略)
说明:
○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;
○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
○3函数的定义域、值域要写成集合或区间的形式.
巩固练习:课本P22第1题
2.判断两个函数是否为同一函数
课本P21例2
解:(略)
说明:
○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

巩固练习:
○1课本P22第2题
○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?
(1)f ( x ) = (x -1) 0;g ( x ) = 1
1
1
(2)f ( x ) = x ; g ( x ) =
2x
(3)f ( x ) = x 2;f ( x ) = (x + 1) 2 (4)f ( x ) = | x | ;g ( x ) = 2x
(三)课堂练习
求下列函数的定义域
(1)|x |x 1
)x (f -=
(2)x
111)x (f +=
(3)5x 4x )x (f 2+--=
(4)1x x 4)x (f 2
--=
(5)10x 6x )x (f 2+-= (6)13x x 1)x (f -++-= 十四、 归纳小结,强化思想
从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

十五、 作业布置
课本P 28 习题1.2(A 组) 第1—7题 (B 组)第1题
课题:§1.2.2映射
教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;
(2)结合简单的对应图示,了解一一映射的概念.
教学重点:映射的概念.
教学难点:映射的概念.
教学过程:
十六、引入课题
复习初中已经遇到过的对应:
1.对于任何一个实数a,数轴上都有唯一的点P和它对应;
2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;3.对于任意一个三角形,都有唯一确定的面积和它对应;
4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应;5.函数的概念.
十七、新课教学
1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射(mapping)(板书课题).
2.先看几个例子,两个集合A、B的元素之间的一些对应关系(1)开平方;
(2)求正弦
(3)求平方;
(4)乘以2;
3.什么叫做映射?
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射(mapping).
记作“f:A→B”
说明:
(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.
(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一
1
个的意思。

4.例题分析:下列哪些对应是从集合A到集合B的映射?
(1)A={P | P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={ P | P是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;
(3)A={三角形},B={x | x是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)A={x | x是新华中学的班级},B={x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:
将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f改为:每一个学生都对应他的班级,那么对应f:B A 是从集合B到集合A的映射吗?
5.完成课本练习
十八、作业布置
补充习题
课题:§1.2.2函数的表示法
教学目的:(1)明确函数的三种表示方法;
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函
数;
(3)通过具体实例,了解简单的分段函数,并能简单应用;
(4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识.
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?
分段函数的表示及其图象.
教学过程:
十九、引入课题
5.复习:函数的概念;
6.常用的函数表示法及各自的优点:
1
(1)解析法;
(2)图象法;
(3)列表法.
二十、新课教学
(一)典型例题
例1.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记
本需要y元.试用三种表示法表示函数y=f(x) .
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析
表达式,可以是图象,也可以是对应值表.
解:(略)
注意:
○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点
等等,注意判断一个图形是否是函数图象的依据;
○2解析法:必须注明函数的定义域;
○3图象法:是否连线;
○4列表法:选取的自变量要有代表性,应能反映定义域的特征.
巩固练习:
课本P27练习第1题
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的
成绩及班级及班级平均分表:
第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95
张城90 76 88 75 86 80
赵磊68 65 73 72 75 82
班平均
88.2 78.3 85.4 80.3 75.7 82.6 分
请你对这三们同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?
怎么分析?借助什么工具?
解:(略)
1
注意:
○1本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;
○2本例能否用解析法?为什么?
巩固练习:
课本P27练习第2题
例3.画出函数y = | x | .
解:(略)
巩固练习:课本P27练习第3题
拓展练习:
任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系.
课本P27练习第3题
例4.某市郊空调公共汽车的票价按下列规则制定:
(1)乘坐汽车5公里以内,票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).
已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.
解:设票价为y元,里程为x公里,同根据题意,
如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量x的取值范围是{x∈N*| x ≤19}.
由空调汽车票价制定的规定,可得到以下函数解析式:
1
1
⎪⎪⎩⎪
⎪⎨⎧=543
2y 19
151********≤<≤<≤<≤<x x x x (*N x ∈)
根据这个函数解析式,可画出函数图象,如下图所示:
注意:

1 本例具有实际背景,所以解题时应考虑其实际意义; ○
2 本题可否用列表法表示函数,如果可以,应怎样列表? 实践与拓展:
请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)
说明:象上面两例中的函数,称为分段函数.
注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
二十一、 归纳小结,强化思想
理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法. 二十二、 作业布置
课本P 28 习题1.2(A 组) 第8—12题 (B 组)第2、3题
1
课题:§1.3.1函数的单调性
教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及
其几何意义;
(2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性.
教学重点:函数的单调性及其几何意义.
教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程:
二十三、 引入课题
1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:

1 随x 的增大,y 的值有什么变化? ○
2 能否看出函数的最大、最小值? ○
3 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律:
1

f(x) = x
○1 从左至右图象上升还是下降 ______? ○
2 在区间 ____________ 上,随着x 大,f(x)的值随着 ________ .
2.f(x) = -2x+1
○1 从左至右图象上升还是下降 ______?

2 在区间 ____________ 上,随着x 大,f(x)的值随着 ________ .
3.f(x) = x2 Array
○1在区间____________ 上,f(x)
着x的增大而________ .
○2在区间____________ 上,f(x)
着x的增大而________ .
二十四、新课教学
(一)函数单调性定义
1.增函数
一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function).
思考:仿照增函数的定义说出减函数的定义.(学生活动)
注意:
○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部
性质;
○2必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) .
2.函数的单调性定义
如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函
数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单
调区间:
3.判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
○1任取x1,x2∈D,且x1<x2;
○2作差f(x1)-f(x2);
○3变形(通常是因式分解和配方);
○4定号(即判断差f(x1)-f(x2)的正负);
○5下结论(即指出函数f(x)在给定的区间D上的单调性).
(二)典型例题
1
1
例1.(教材P 34例1)根据函数图象说明函数的单调性. 解:(略)
巩固练习:课本P 38练习第1、2题
例2.(教材P 34例2)根据函数单调性定义证明函数的单调性. 解:(略)
巩固练习:
○1 课本P 38练习第3题;

2 证明函数x
x y 1
+=在(1,+∞)上为增函数. 例3.借助计算机作出函数y =-x 2 +2 | x | + 3的图象并指出它的的单调区间. 解:(略)
思考:画出反比例函数x
y 1
=的图象. ○
1 这个函数的定义域是什么?

2 它在定义域I 上的单调性怎样?证明你的结论. 说明:本例可利用几何画板、函数图象生成软件等作出函数图象. 二十五、 归纳小结,强化思想
函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:
取 值 → 作 差 → 变 形 → 定 号 → 下结论 二十六、 作业布置
1. 书面作业:课本P 45 习题1.3(A 组) 第1- 5题. 2. 提高作业:设f(x)是定义在R 上的增函数,f(xy)=f(x)+f(y), ○1 求f(0)、f(1)的值; ○
2 若f(3)=1,求不等式f(x)+f(x-2)>1的解集. 课题:§1.3.2函数的奇偶性
教学目的:(1)理解函数的奇偶性及其几何意义;
(2)学会运用函数图象理解和研究函数的性质;
(3)学会判断函数的奇偶性.
教学重点:函数的奇偶性及其几何意义.
教学难点:判断函数的奇偶性的方法与格式.
教学过程:
二十七、引入课题
1.实践操作:(也可借助计算机演示)
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
○1以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;
问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.
○2以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:
问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.
2.观察思考(教材P39、P40观察思考)
1。

相关文档
最新文档