2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷(解析版)

合集下载

2019年汕头市初三数学上期末试卷(带答案)

2019年汕头市初三数学上期末试卷(带答案)
二、填空题
13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.
14.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.
15.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.
16.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.
2.A
解析:A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
(1)画树状图或列表,写出点P所有可能的坐标;
(2)求出点P在以原点为圆心,5为半径的圆上的概率.
22.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:
A.2B.1C.0D.﹣1
4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣1
5.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是( )
3.A
解析:A
【解析】

九年级上册汕头数学期末试卷中考真题汇编[解析版]

九年级上册汕头数学期末试卷中考真题汇编[解析版]

九年级上册汕头数学期末试卷中考真题汇编[解析版]一、选择题1.下列方程中,是关于x 的一元二次方程的为( )A .2210x x+= B .220x x --= C .2320x xy -= D .240y -= 2.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定3.下列说法中,不正确的是( )A .圆既是轴对称图形又是中心对称图形B .圆有无数条对称轴C .圆的每一条直径都是它的对称轴D .圆的对称中心是它的圆心 4.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( )A .12B .13C .23D .165.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .6 6.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020 B .﹣2020C .2021D .﹣2021 7.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 8.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75 9.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点10.下列条件中,一定能判断两个等腰三角形相似的是( )A .都含有一个40°的内角B .都含有一个50°的内角C .都含有一个60°的内角D .都含有一个70°的内角11.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( )A .12×108B .1.2×108C .1.2×109D .0.12×109 12.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm2.14.将边长分别为2cm,3cm,4cm的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm.15.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.16.如图,由边长为1的小正方形组成的网格中,点,,,A B C D为格点(即小正方形的顶点),AB与CD相交于点O,则AO的长为_________.17.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且12mn=,则m+n的最大值为___________.18.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是.19.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm=,扇形的圆心角120θ=,则该圆锥的母线长l为___cm.20.一元二次方程x2﹣4=0的解是._________21.数据8,8,10,6,7的众数是__________.22.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).23.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.24.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题25.如图,二次函数2y x bx c =-++的图像经过()0,3M ,()2,5N --两点.(1)求该函数的解析式;(2)若该二次函数图像与x 轴交于A 、B 两点,求ABM ∆的面积;(3)若点P 在二次函数图像的对称轴上,当MNP ∆周长最短时,求点P 的坐标.26.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.27.如图,在▱ABCD 中,点E 是边AD 上一点,延长CE 到点F ,使∠FBC =∠DCE ,且FB 与AD 相交于点G .(1)求证:∠D =∠F ;(2)用直尺和圆规在边AD 上作出一点P ,使△BPC ∽△CDP ,并加以证明.(作图要求:保留痕迹,不写作法.)28.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y (件)与销售单价 x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?29.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 ;(3)△A 2B 2C 2的面积是 平方单位.30.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根. 31.如图①,抛物线y =x 2﹣(a +1)x +a 与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C .已知△ABC 的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P ,使得∠POB =∠CBO ,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图②,M 是抛物线上一点,N 是射线CA 上的一点,且M 、N 两点均在第二象限内,A 、N 是位于直线BM 同侧的不同两点.若点M 到x 轴的距离为d ,△MNB 的面积为2d ,且∠MAN =∠ANB ,求点N 的坐标.32.如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.2210x x+=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.A解析:A【解析】【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲.【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙故选:A【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C 圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C ,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴【点睛】此题主要考察对称轴图形和中心对称图形,难度不大4.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:21 63 ,故选:B.【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.5.C解析:C【解析】【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.6.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a 代入已知方程,即可求得a 2+3a 的值,然后再代入求值即可.【详解】解:根据题意,得a 2+3a ﹣1=0,解得:a 2+3a =1,所以a 2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键7.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.8.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,2222247555 BC BE⎛⎫-=-=⎪⎝⎭.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.9.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.10.C解析:C【解析】试题解析:因为A,B,D给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.11.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120 000 000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=11511=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题13.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.15.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.16.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵AB=∴AO=故答案为:9【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.17.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽, ∴AE BE BF CF =,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.18.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.19.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 20.x=±2【解析】移项得x2=4,∴x=±2.故答案是:x=±2.解析:x=±2【解析】移项得x 2=4,∴x=±2.故答案是:x=±2.21.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.22.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l •R ,(l 为弧长). 23.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m +1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.24.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】 当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时,=0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

2018-2019学年九年级(上)期末数学试卷5套及答案解析

2018-2019学年九年级(上)期末数学试卷5套及答案解析

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分) 2018.11.61.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.关于的一元二次方程的一个根是,则的值为()A. B. C. D.3.已知为矩形的对角线,则图中与一定不相等的是()A. B.C. D.4.一个三角形三遍的长分别为,,,另一个与它相似的三角形的最长边是,则该三角形的最短边是()A. B. C. D.5.下列各点不在反比例函数上的是()A. B. C. D.6.如图,在的正方形网格中,连接两格点,,线段与网格线的交点为点,则为()A. B. C. D.7.小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B.?①③C.③④D.‚②④8.如图所示电路,任意闭合两个开关,能使灯亮起来的概率是()A. B. C. D.9.如图,是三个反比例函数,,在轴上方的图象,由此观察得到、、的大小关系为()A. B.C. D.10.如图,矩形的周长是,以,为边向外作正方形和正方形,若正方形和的面积之和为,那么矩形的面积是()A. B. C. D.二、填空题(每小题4分,共20分)11.方程的二次项系数是________.12.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.13.在平面直角坐标系中,直线与反比例函数的图象的一个交点,则的值为________.14.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字,,每天每次从每组中抽出一张,两张牌的数字之积为的概率为________.15.如图,在平行四边形中,交于交于,,,则的长为________.三、解答题(满分50分)16.如图,已知,利用尺规作出一个新三角形,使新三角形与对应线段比为(不写作法,保留作图痕迹).17.一只不透明的袋子中装有个质地,大小均相同的小球,这些小球分别标有,,,,甲,乙两人每次同时从袋中各随机取出个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:如果实验继续进行下去,根据上表提供数据,出现和为的频率将稳定在它的概率附近,估计出现和为的概率是.如果摸出这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表或画树状图的方法说明理由.18.如图所示,某小区计划在一块长米,宽米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径是多少?(精确到 . )19.已知,如图,,,.请你添加一个条件,使相似于,你添加的条件是________;若,,在的条件下,求的长度.20.如图,已知平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.21.如图,在平面直角坐标系中,一次函数与轴轴分别交于点,与反比例函数在第一象限交于点.写出点,,的坐标.过轴上的点作平行于轴的直线分别与直线和反比例函数交于点,求的面积.22.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知:如图,四边形是“等对角四边形”,,,.则________度,________度.在探究“等对角四边形”性质时:小红画了一个“等对角四边形 ”(如图),其中,,此时她发现成立.请你证明此结论;已知:在“等对角四边形 ”中,,,,.求对角线的长.答案1. 【答案】A【解析】根据常见几何体的三视图确定即可得.【解答】解:、长方体的主视图和左视图均为矩形,符合题意;、圆锥的主视图和左视图均为等腰三角形,不符合题意;、正方体的主视图和左视图均为正方形,不符合题意;、球的主视图和左视图均为圆,不符合题意;故选:.2. 【答案】B【解析】根据一元二次方程的解的定义把代入方法得到关于的一次方程,然后解一次方程即可.【解答】解:把代入方程得,解得.故选.3. 【答案】D【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:、对顶角相等,一定相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、一定不相等,因为,,故符合题意.故选:.4. 【答案】B【解析】首先设与它相似的三角形的最短边的长为,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为,∵一个三角形三边的长分别为,,,另一个与它相似的三角形的最长边是,∴,解得:.故选.5. 【答案】C【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点不在反比例函数的图象上,故本选项符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意.故选.6. 【答案】C【解析】构建如图所示的图形,利用平行线分线段成比例得到.【解答】解:如图,∵ ,∴.故选.7. 【答案】B【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选.8. 【答案】C【解析】先根据题意画出树状图,得出共有种情况,再根据能使灯亮起来的情况有种,即可得出能使灯亮起来的概率.【解答】解:根据题意画树状图如下:∵共有种情况,能使灯亮起来的情况有种,∴能使灯亮起来的概率是,故选:.9. 【答案】C【解析】根据反比例函数图象上点的坐标特点可得,进而可分析、、的大小关系.【解答】解:读图可知:三个反比例函数的图象在第二象限;故;,在第一象限;且,的图象距原点较远,故有:;综合可得:.故选:.10. 【答案】B【解析】设,,根据题意列出方程,,利用完全平方公式即可求出的值.【解答】解:设,,∵正方形和的面积之和为∴ ,∵矩形的周长是∴ ,∵ ,∴ ,∴ ,∴矩形的面积为:故选11. 【答案】【解析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程的二次项系数是,故答案为:.12. 【答案】太阳光,通过作图发现相应的直线是平行关系【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13. 【答案】【解析】将代入中求出值,进而即可得出点的坐标,由点的坐标利用反比例函数图象上点的坐标特征即可求出值,此题得解.【解答】解:当时,,∴点的坐标为.∵点在反比例函数的图象上,∴ .故答案为:.14. 【答案】【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图得:由树状图可知共有种可能,两张牌的和为的有种,所以概率,故答案为:.15. 【答案】【解析】由于,所以,又因为,所以,所以,从而可求出的长度.【解答】解:∵ ,∴ ,∵ ,∴ ,∴∴,,∴故答案为:16. 【答案】解:如图,即为所求作三角形.【解析】平面内任取一点,作射线、、,再射线上分别截取、、,顺次连接、、即可得.【解答】解:如图,即为所求作三角形.17. 【答案】; 假设,则(和为),所以,的值不能为.【解析】利用频率估计概率结合表格中数据得出答案即可;; 假设,根据题意先列出树状图,得出和为的概率,再与进行比较,即可得出答案.【解答】解:根据随着实验的次数不断增加,出现“和为 ”的频率是,故出现“和为 ”的概率是;; 假设,则(和为),所以,的值不能为.18. 【答案】每个扇形的半径大约是 . .【解析】根据个扇形的面积是长方形荒地面积的一半即可得出关于的一元二次方程,解之即可得出结论.【解答】解:根据题意得:,解得: . , . (舍去).19. 【答案】; ∵ ,,,∴,即,解得.【解析】根据相似三角形的判定定理即可得出结论;; 根据相似三角形的性质即可得出结论.【解答】解: ∵ ,,∴ ,∴可以添加的条件是.; ∵ ,,,∴,即,解得.20. 【答案】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得,∴ ,∴ ,∴四边形是菱形;; (2)根据有一个角是的菱形是正方形.由题意易得,∵四边形是菱形,∴ ,∴四边形是正方形.【解答】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.21. 【答案】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.【解析】分别将、代入中求出与之对应的、的值,由此即可得出点、的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点的坐标;; 将分别代入一次函数和反比例函数解析式中求出值,由此即可得出点、的坐标,进而即可得出的长度,由点、的坐标即可得出线段的长度,再利用三角形的面积公式即可求出的面积.【解答】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.22. 【答案】,【解析】过点于点,交于点点作于,则即的最小再根据,分可知是等腰角三角形,由锐角角函数的定义即可出的长.【解答】解:过点作于,于点,点作于,则即为的最值,∵,,平分,等腰角三角形,故的最小值为.。

【精选3份合集】2018-2019年广东省名校九年级上学期期末经典数学试题

【精选3份合集】2018-2019年广东省名校九年级上学期期末经典数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程22320x x -+=的根的情况( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .有两个实数根 【答案】B【分析】根据方程的系数结合根的判别式,可得出△=−7<0,进而可得出该方程没有实数根.【详解】22320x x -+=a =2,b =-3,c =2,∵△=b 2−4ac =9−4×2×2=−7<0,∴关于x 的一元二次方程22320x x -+=没有实数根.故选:B .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.2.在单词probability (概率)中任意选择一个字母,选中字母“i”的概率是( )A .211B .29C .12D .911 【答案】A【解析】字母“i ”出现的次数占字母总个数的比即为选中字母“i ”的概率.【详解】解:共有11个字母,每个字母出现的可能性是相同的,字母i 出现两次,其概率为211. 故选:A .【点睛】本题考查简单事件的概率,利用概率公式求解是解答此题的关键.3.图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是( )A .B .C .D .【答案】D 【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【详解】从上面看,图2的俯视图是正方形,有一条对角线.故选:D.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为()A.a﹣b=1 B.a﹣b=﹣1 C.a﹣b=0 D.a﹣b=±1【答案】B【分析】把x=﹣a代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案.【详解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故选:B.【点睛】此题考查一元二次方程的解,是方程的解即可代入方程求其他未知数的值或是代数式的值.5.如图,O是正方形ABCD与正六边形AEFCGH的外接圆.则正方形ABCD与正六边形AEFCGH 的周长之比为()A.22:3B.2:1C.2:3D.1:3【答案】A【解析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出周长之间的关系;【详解】设此圆的半径为R,2R,它的内接正六边形的边长为R , 内接正方形和外切正六边形的边长比为2R :R=2:1.正方形ABCD 与正六边形AEFCGH 的周长之比=42:6=22:3故答案选:A ;【点睛】考查了正多边形和圆,解决圆的相关问题一定要结合图形,掌握基本的图形变换.找出内接正方形与内接正六边形的边长关系,是解决问题的关键.6.如图,AB 是⊙O 的直径,CD 是⊙O 的弦. 若∠BAD=24°, 则C ∠的度数为()A .24°B .56°C .66°D .76°【答案】C【分析】先求出∠B 的度数,然后再根据圆周角定理的推论解答即可.【详解】∵AB 是⊙O 的直径∴90BDA ∠=︒∵ ∠BAD=24°∴180902466ABD ∠=︒-︒-︒=︒又 ∵AD AD =∴C BAD ∠=∠=66°故答案为:C.【点睛】本题考查了圆周角定理的推论:①在同圆或等圆中同弧或等弧所对圆周角相等;②直径所对圆周角等于90°7.如图所示,CD ∥AB ,OE 平分∠AOD ,OF ⊥OE ,∠D=50°,则∠BOF 为( )A .35°B .30°C .25°D .20°【答案】C【解析】试题分析:CD∥AB,∠D=50°则∠BOD=50°.则∠DOA=180°-50°=130°.则OE平分∠AOD,∠EOD=65°.∵OF⊥OE,所以∠BOF=90°-65°=25°.选C.考点:平行线性质点评:本题难度较低,主要考查学生对平行线性质及角平分线性质的掌握.8.下图中反比例函数kyx=与一次函数y kx k=-在同一直角坐标系中的大致图象是()A.B.C.D.【答案】B【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【详解】(1)当k>0时,一次函数y=kx﹣k 经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:B.【点睛】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.9.如图所示,二次函数22y x x k =-++的图像与x 轴的一个交点坐标为(3,0),则关于x 的一元二次方程220x x k -++=的解为( )A .123,2x x ==-B .123,1x x ==-C .121,1x x ==-D .123,3x x ==-【答案】B 【分析】先确定抛物线的对称轴,然后根据抛物线的对称性确定图象与x 轴的另一个交点,再根据二次函数与一元二次方程的关系解答即可.【详解】解:∵二次函数22y x x k =-++的对称轴是直线1x =,图象与x 轴的一个交点坐标为(3,0), ∴图象与x 轴的另一个交点坐标为(﹣1,0),∴一元二次方程220x x k -++=的解为123,1x x ==-.故选:B .【点睛】本题考查了二次函数的图象与性质以及二次函数与一元二次方程的关系,属于常考题型,熟练掌握基本知识是解题的关键.10.不等式组542(1)2532132x x x x +≥-⎧⎪+-⎨->⎪⎩的解集是( ) A .2x ≤B .2x ≥-C .22x -<≤D .22x -≤<【答案】D【分析】根据不等式的性质解不等式组即可.【详解】解: 542(1)2532132x x x x +≥-⎧⎪+-⎨->⎪⎩化简可得:22x x ≥-⎧⎨<⎩ 因此可得22x -≤<故选D.【点睛】本题主要考查不等式组的解,这是中考的必考点,应当熟练掌握.11.二次函数y = x 2+2的对称轴为( )A .2x =B .0x =C .2x =-D .1x =【答案】B 【分析】根据二次函数的性质解答即可.【详解】二次函数y = x 2+2的对称轴为直线0x =.故选B .【点睛】本题考查了二次函数y=a(x-h)2+k(a ,b ,c 为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k 的性质是解答本题的关键. y=a(x-h)2+k 是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(h ,k ),对称轴是x=h .12.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB=20°,则∠BOD 等于( )A .20°B .30°C .40°D .60°【答案】C 【解析】试题分析:由线段AB 是⊙O 的直径,弦CD 丄AB ,根据垂径定理的即可求得:BC BD =,然后由圆周角定理可得∠BOD=2∠CAB=2×20°=40°.故选C .考点:圆周角定理;垂径定理.二、填空题(本题包括8个小题)13.如图,在矩形ABCD 中,∠ABC 的角平分线BE 与AD 交于点E ,∠BED 的角平分线EF 与DC 交于点F ,若AB=8,DF=3FC ,则BC=__________.【答案】2+1.【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据△EFD ∽△GFC 得出比例式,DF=3FC 计算得出CG 与DE 的倍数关系,并根据BG=BC+CG 进行计算即可.【详解】解:延长EF 和BC ,交于点G∵矩形ABCD 中,∠B 的角平分线BE 与AD 交于;∴∠ABE=∠AEB=45°,∴AB=AE=8,∴直角三角形ABE 中,2又∵∠BED 的角平分线EF 与DC 交于点F ,∴∠BEG=∠DEF∵AD ∥BC∴∠G=∠DEF∴∠BEG=∠G∴2,∵∠G=∠DEF ,∠EFD=∠GFC ,∴△EFD ∽△GFC∵DF=3FC ,133CG CF CF DE DF CF === 设CG=x ,DE=3x ,则AD=8+3x=BC∵BG=BC+CG∴2=8+3x+x解得x=2-1,∴BC=8+3(2-1)21,故答案为:2+1.【点睛】本题主要考查矩形的性质、相似三角形性质和判定以及等腰三角形的性质,解决问题的关键是得出BG=BE ,从而进行计算.14.将抛物线22y x =-向上平移一个单位后,又沿x 轴折叠,得新的抛物线,那么新的抛物线的表达式是_____.【答案】21y x =-+【分析】先确定抛物线y=x2﹣2的二次项系数a= 1,顶点坐标为(0,﹣2),向上平移一个单位后(0,﹣1),翻折后二次项系数a= -1,顶点坐标变为(0,1),然后根据顶点式写出新抛物线的解析式.【详解】抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于x轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣x2+1.故答案为:y=﹣x2+1.【点睛】此题考查抛物线的平移规律:左加右减,上加下减,翻折口开口方向改变,但是大小没变,因此二次项系数改变的只是符号,正确掌握平移的规律并运用解题是关键.15.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②244b aca->0;③ac-b+1=0;④OA·OB=ca-.其中正确结论的个数是______个.【答案】1【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2−4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(−c,0),再把A(−c,0)代入y=ax2+bx+c得ac2−bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=−x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=ca,于是OA•OB=ca-,则可对④进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2−4ac>0,而a<0,∴244b aca-<0,所以②错误;∵C(0,c),OA=OC,∴A(−c,0),把A(−c,0)代入y=ax2+bx+c得ac2−bc+c=0,∴ac−b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=ca,∴OA•OB=ca-,所以④正确.故答案为:1.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.16.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.【答案】3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=3.∵正方形的中心在原点O,∴直线AB的解析式为:x=2.∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).∵点P在反比例函数3yx(k>0)的图象上,∴k=2×3=2.∴此反比例函数的解析式为:.17.抛物线y=2(x−3)2+4的顶点坐标是__________________.【答案】 (3,4)【解析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4). 【点睛】本题主要考查二次函数的图像与性质.18.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.【答案】404033【解析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB =80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x 海里/时,3小时后到达小岛的北偏西45°的C 处,由题意得:AB =80海里,BC =3x 海里,在直角三角形ABQ 中,∠BAQ =60°,∴∠B =90°−60°=30°,∴AQ =12AB =40,BQ =, 在直角三角形AQC 中,∠CAQ =45°,∴CQ =AQ =40,∴BC =40+3x ,解得:x/时;. 【点睛】 本题考查的是解直角三角形,熟练掌握方向角是解题的关键.三、解答题(本题包括8个小题)19.为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本. (1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a 的值至少是多少?【答案】(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x ,则经过两次增长以后图书馆有书7100(1+x )2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a 的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x ,根据题意得 7100(1+x )2=10800,即(1+x )2=1.44,解得:x 1=0.2,x 2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a 的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.20.A ,B ,C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B ,C 两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。

九年级上册汕头数学全册期末复习试卷中考真题汇编[解析版]

九年级上册汕头数学全册期末复习试卷中考真题汇编[解析版]

九年级上册汕头数学全册期末复习试卷中考真题汇编[解析版]一、选择题1.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .105C .33D .10102.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人3.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .44.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-5.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10 B .10,9C .8,9D .9,106.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80° B .40° C .50° D .20° 7.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( )A .a =±1B .a =1C .a =﹣1D .无法确定8.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .349.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.510.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)11.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm12.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π-C .3π-D .3π-13.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上 B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的14.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③15.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108B .1.2×108C .1.2×109D .0.12×109二、填空题16.抛物线286y x x =++的顶点坐标为______.17.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).18.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.19.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .20.数据2,3,5,5,4的众数是____.21.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 22.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.23.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.24.如图,正方形ABCD 的顶点A 、B 在圆O 上,若23AB =cm ,圆O 的半径为2cm ,则阴影部分的面积是__________2cm .(结果保留根号和π)25.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.26.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 27.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.28.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MNPM=_____.29.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.已知234x y z x z y+===,则_______ 三、解答题31.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 32.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于3,请直接写出圆心B 的横坐标B x 的取值范围.33.解方程:2670x x --=34.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b的值;(2)当b取正数时,求此时方程的根,35.已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b-mx<0的解集(直接写出答案).四、压轴题36.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.37.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 38.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.39.如图,在⊙O 中,弦AB 、CD 相交于点E ,AC =BD ,点D 在AB 上,连接CO ,并延长CO 交线段AB 于点F ,连接OA 、OB ,且OA 5tan ∠OBA =12. (1)求证:∠OBA =∠OCD ;(2)当△AOF 是直角三角形时,求EF 的长;(3)是否存在点F ,使得S △CEF =4S △BOF ,若存在,请求EF 的长,若不存在,请说明理由.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案. 【详解】解:如图作CD ⊥AB 于D, 22, tanA=21222CD AD ==, 故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.B解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=2, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.4.C解析:C 【解析】【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案. 【详解】解:∵(1)(2)0x x --=, ∴x -1=0或x -2=0, 解得:1x =或2x =. 故选:C. 【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.5.D解析:D 【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10, 最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10; 故选D .考点:众数;中位数.6.C解析:C 【解析】∵∠BOC=2∠BAC ,∠BAC=40° ∴∠BOC=80°, ∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50° 故选C .7.C解析:C 【解析】 【分析】将(0,0)代入y =(a ﹣1)x 2﹣x+a 2﹣1 即可得出a 的值. 【详解】解:∵二次函数y =(a ﹣1)x 2﹣x+a 2﹣1 的图象经过原点, ∴a 2﹣1=0, ∴a =±1, ∵a ﹣1≠0, ∴a≠1, ∴a 的值为﹣1. 故选:C .本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.8.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解.【详解】 如图,∵∠C =90°,AC =8,BC =6,∴AB 222268BC AC +=+10,∴sin B =84105AC AB ==. 故选:A .【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.9.C解析:C【解析】【分析】因为OCP 和ODQ 为直角三角形,根据勾股定理可得OP 、DQ 、PQ 的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证CPE ∽DQE ,可得CP DQ =PE EQ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE 的长度可得.【详解】解:∵在⊙O 中,直径AB=20,即半径OC=OD=10,其中CP ⊥AB ,QD ⊥AB ,∴OCP 和ODQ 为直角三角形, 根据勾股定理:2222OP=OC PC =106--,2222DQ=OD OQ =106--,∴PQ=OP+OQ=14,又∵CP ⊥AB ,QD ⊥AB ,垂直于用一直线的两直线相互平行,∴CP //DQ ,且C 、D 连线交AB 于点E ,∴∠PCE=∠EDQ ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE ∽DQE ,故CP DQ =PE EQ, 设PE=x ,则EQ=14-x ,∴68=x 14-x,解得x=6, ∴OE=OP-PE=8-6=2,故选:C .【点睛】 本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE 与DQE 相似,并得出线段的比例关系.10.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .11.B解析:B【解析】【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案.【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.12.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34AAB BD∠=∠=∠=∠,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =2602123602π⨯-⨯=23π 故选B . 13.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,∴二次函数与x轴的另一个交点的坐标为(1,0),∴当x=1时,有a+b+c=0,故结论③错误;④∵抛物线的开口向下,对称轴x=﹣1,∴当x<﹣1时,函数值y随着x的增大而增大,∵﹣5<﹣1则y1<y2,则结论④正确故选:C.【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.15.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120 000 000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题16.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为解析:()4,10--【解析】【分析】 直接利用公式法求解即可,横坐标为:2b a -,纵坐标为:244ac b a-. 【详解】解:由题目得出: 抛物线顶点的横坐标为:84221b a -=-=-⨯; 抛物线顶点的纵坐标为:22441682464104414ac b a -⨯⨯--===-⨯ 抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.17.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S =故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.18.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.19.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BENK 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.【详解】解:如 解析:133【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.20.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.21.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠m解析:2【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.22.-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB 中点且平行于y 轴的直线.【详解】解:∵ A (3,﹣解析:-3【解析】【分析】观察A (3,﹣2),B (﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B 两点关于抛物线对称轴对称,对称轴为经过线段AB 中点且平行于y 轴的直线.【详解】解:∵ A (3,﹣2),B (﹣9,﹣2)两点纵坐标相等,∴A,B 两点关于对称轴对称,根据中点坐标公式可得线段AB 的中点坐标为(-3,-2),∴抛物线的对称轴是直线x= -3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.23.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率).24.【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE ,根据90°的圆周角对应的弦是直径,可得AF 为圆的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求 解析:412333π-- 【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE ,根据90°的圆周角对应的弦是直径,可得AF 为圆O 的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求出∠AFB 和BF ,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG 、AG 和∠EOF ,最后利用S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF 计算即可.【详解】解:设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE∵四边形ABCD 是正方形∴∠ABF=90°,AD ∥BC ,BC=CD=AD=23AB =∴AF 为圆O 的直径 ∵23AB =cm ,圆O 的半径为2cm ,∴AF=4cm在Rt △ABF 中sin ∠AFB=3AB AF ,BF=222AF AB -= ∴∠AFB=60°,FC=BC -BF=()232cm∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt △AOG 中,OG=sin ∠EAF ·3cm ,AG= cos ∠EAF ·AO=1cm根据垂径定理,AE=2AG=2cm∴S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF=()21112022360OE CD FC AD AE OG π•+-•- =()211120223232232322360π•⨯+-⨯=24123cm π⎛⎫- ⎪⎝⎭故答案为:4123π-. 【点睛】 此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.25.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴OC ===∴2CP OC OP =-=2.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.26.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】 解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.27.10【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.28.【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.【详解】解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,∴点P 的坐标为(1解析:【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MN PM 即可解答本题. 【详解】解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,∴点P 的坐标为(1,2),设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()22222212422121a a a a a a a a -+-+=-+-+=2, 故答案为:2.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2MN PM. 29.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm ,则:1:2000=12:x ,解得x =24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm ,则:1:2000=12:x ,解得x =24000,24000cm =240m .故答案为240m .【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.30.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题31.(1)见解析;(2) ①当n =-3时,a =b ;②当-3<n <-1时,a >b ;③当n <-3或n >-1时,a <b【解析】【分析】(1)方法一:当y=0时,(x-m )(x-m-4)=0,解得x 1=m ,x 2=-m-4,即可得到结论;方法二:化简得y =x 2+4x -m 2-4m ,令y =0,可得b 2-4ac ≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a 与b 的大小.【详解】(1)方法一:令y =0,(x -m )(x +m +4)=0,解得x 1=m ;x 2=-m -4.当m =-m -4,即m =-2,方程有两个相等的实数根,故二次函数与x 轴有一个公共点;当m ≠-m -4,即m ≠-2,方程有两个不相等的实数根,故二次函数与x 轴有两个公共点.综上不论m 为何值,该二次函数的图像与x 轴有公共点.方法二:化简得y =x 2+4x -m 2-4m .令y =0,b 2-4ac =4m 2+16m +16=4(m +2)2≥0,方程有两个实数根.∴不论m 为何值,该二次函数的图像与x 轴有公共点.(2)由题意知,函数的图像的对称轴为直线x =-2①当n =-3时,a =b ;②当-3<n <-1时,a >b③当n <-3或n >-1时,a <b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,并且注意分情况讨论.32.(1)②;(2)±1;(3)23-<B x <3或73-<B x <23-- 【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k 的正负分类讨论,作图后根据最美三角形的定义求解EF ,利用勾股定理求解AF ,进一步确定∠AOF 度数,最后利用勾股定理确定点F 的坐标,利用待定系数法求k .(3)本题根据⊙B 在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB 的度数,继而按照最美三角形的定义,分别以△BND ,△BMN 为媒介计算BD 长度,最后与OD 相减求解点B 的横坐标范围.【详解】(1)如下图所示:∵PM 是⊙O 的切线,∴∠PMO=90°,当⊙O 的半径OM 是定值时,22PM OP OM =-∵1=2PMO S PM OM ••,∴要使PMO △面积最小,则PM 最小,即OP 最小即可,当OP ⊥l 时,OP 最小,符合最美三角形定义.故在图1三个三角形中,因为AO ⊥x 轴,故△AOP 为⊙A 与x 轴的最美三角形. 故选:②.(2)①当k <0时,按题意要求作图并在此基础作FM ⊥x 轴,如下所示:按题意可得:△AEF 是直线y=kx 与⊙A 的最美三角形,故△AEF 为直角三角形且AF ⊥OF . 则由已知可得:111=1222AEF S AE EF EF ••=⨯⨯=,故EF=1. 在△AEF 中,根据勾股定理得:22AF AE ==.∵A(0,2),即OA=2, ∴在直角△AFO 中,22=2OF OA AF AF -==,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F 点代入y=kx 可得:1k =-.②当k >0时,同理可得k=1.故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D -,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OC ODC OD∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形,∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°,在直角△BDN 中,sin BN BDN BD∠=,。

汕头市金平区2018~2019学年度第一学期九年级期末教学质量评估

汕头市金平区2018~2019学年度第一学期九年级期末教学质量评估

汕头市金平区2018~2019学年度第一学期九年级期末教学质量评估物 理 科 试 题温馨提示:1.全卷共7页, 满分为100分,考试用时80分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B 铅笔把对应号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号,不能答在试卷上。

4.非选择题必须用黑色字迹的钢笔或签字笔作答, 答案必须写在答题卡各题目指定区域内的相应位置上,如需要改动,先划掉原来的答案,然后再写上新的答案。

不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效。

5.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

一、单项选择题(本大题7小题,每小题3分,共21分)在每小题列出的四个选项中。

只有一个是正确的。

请把答题卡上对应题目所选的选项涂黑。

1、我国电力供电系统全球领先,为国家经济建设和人民生活提供了强有力的保障。

如果使用不当也会给我们带来危害,下列做法符合安全用电要求的是( )A .手机充电器长期的插在插座上B .更换灯泡时要先断开电源C .使用测电笔时,手直接接触它的笔尖D .家庭电路保险丝断了,用铜丝代替保险丝2、下列电路中,电流表测L 1灯电流的是( )3、如图所示是四冲程汽油机工作状态示意图,下列说法正确的是( ) A .该图表示的是排气冲程B .该冲程是机械能转化为内能的过程C .该冲程中气缸内气体分子运动剧烈程度减弱D .该冲程中主要是通过热传递的方式改变气缸内物质的内能 4、有关热现象,下列说法中错误的是( ) A.在热传递过程中,吸收热量的物体温度升高 B.组成物质的分子之间存在引力和斥力C.城市的人工湖对气候有一定的调节作用是因为水的比热容比较大D.温度低于 0℃的室外,空气分子仍在不停地做无规则热运动5、如下图所示,同学们在实验课上连接的一些电路,闭合开关后,出现电源短路的是( )A B C D第3题图6、如图所示的电路中,电源电压保持不变。

广东汕头九年级数学上学期期末考试卷(含答案)

广东汕头九年级数学上学期期末考试卷(含答案)

广东汕头九年级数学上学期期末考试卷(含答案)总分120分 时间90分钟一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应的位置上.1.在下列四个图案中既是轴对称图形,又是中心对称图形的是( ) .A. B .C .D.2. 下列事件中,属于必然事件的是( ).A. 小明买彩票中奖B. 投掷一枚质地均匀的骰子,掷得的点数是奇数C. 等腰三角形的两个底角相等D. a 是实数,0a < 3.如图,过⊙O 上一点C 作⊙O 的切线,交⊙O 直径AB 的延长线 于点D .若∠D =40°,则∠A 的度数为( ). A .20°B .25°C .30°D .40°4.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征. 甲:函数图像经过点(1,1)-; 乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大. 则这个函数表达式可能是( ).A .=-y xB .1=y xC .2y xD .1=-y x5.如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为( ).A .4πB .6πC .8πD .12π6.关于x 的一元二次方程()22310+-+=a x x 有实数根,则a 的取值范围是( ).A .14a ≤且2a ≠- B .14a ≤ C .14a <且2a ≠- D .14a <7.图1是装了液体的高脚杯示意图(数据如图),用去一部 分液体后如图2所示,此时液面AB =( ). A .1cm B .2cm C . 3cmD .4cm8.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,设参加活动的同学有x 人, 根据题意,可列方程( ). A .(1)42-=x xB .(1)42+=x xC .(1)422-=x x D .(1)422+=x x 9. 已知抛物线y=ax 2+bx+c 的顶点为D(﹣1,3),与x 轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论: ①b 2-4ac >0; ②c ﹣a=3; ③a+b+c <0;④方程ax 2+bx+c=m(m≥2)一定有实数根,其中正确的结论为( ). A. ①②④ B. ①②③ C. ①③ D. ②③10.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( ).A .()202020202,32--B .()202120212,32C .()202020202,32 D .()201120212,32--二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确案填写在答题卡相应的位置上.11.二次函数y =4(x ﹣3)2+7的图象的顶点坐标是______.12.在2-,1-,1,2这四个数中随机取出一个数,其倒数等于本身的概率是_______. 13.若点()23,2P a b +-关于原点的对称点为()3,2Q a b -,则()20203a b +=________.14.一个三角形的两边长分别为3和5,第三边长是方程x 2-6x +8=0的根,则三角形的周长__________.15.直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为5,CD =8,则弦AC 的长为________. 16.如图,在反比例函数14y x=和2k y x =的图象上取A ,B 两点,若AB ∥x 轴,△AOB 的面积为5,则k = __ .17.如图,在△ABC 中,AB=10,AC=8,BC=6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,接PQ ,则PQ 长的最小值是________ .三、解答题(一)(本大题3小题,每小题6分,共18分).18.解方程:2810x x -+=.19.如图,OM 是⊙O 的半径,过M 点作⊙O 的切线AB ,且MA MB =,OA ,OB 分别交⊙O 于C ,D . 求证:AC BD =.20.如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4, 请直接写出点P 的坐标.四、解答题(二)(本大题3小题,每小题8分,共24分).21.已知二次函数2y x bx c =-++(b ,c 为常数)的图象经过点(0,3),(﹣1,0).(1)则b = ,c = ;(2)该二次函数图象的顶点坐标为 ; (3)在所给坐标系中画出该二次函数的大概图象; (4)根据图象,当﹣1<x <0时,y 的取值范围是 .22.如图1,在Rt △ABC 中,∠A =90°,AB=AC=12+,点D ,E 分别在边AB,AC 上,且1AD AE ==,连接DE .现将△ADE 绕点A 顺时针方向旋转,旋转角为α,如图2,连接CE ,BD ,CD .(1)当0180α︒<<︒时,求证:CE BD =;(2)如图3,当90α=︒时,延长CE 交BD 于点F ,求证:CF 垂直平分BD ;23. 渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?五、解答题(三)(本大题2小题,每小题10分,共20分).24.如图,AB是⊙O的直径,点P在⊙O上,且PA=PB,点M是⊙O外一点,MB与⊙O 相切于点B,连接OM,过点A作AC∥OM交⊙O于点C,连接BC交OM于点D.(1)求证:OD=12 AC;(2)求证:MC是⊙O的切线;(3)若152OB ,BC=12,连接PC,求PC的长.25.如图,抛物线y=14x2﹣x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,﹣3).(1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM 与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,请直接..写出点Q的坐标.参考答案与评分标准一、选择题1. B 2. C 3.B 4.D 5.D 6.A 7.C 8.A 9.B 10.C 二、填空题11. (3,7) 12. 12 13. 1 14. 1215. 416. 14 17. 1三、解答题(一)18.解: 移项,得281x x -=- --------------1分配方,得2228(4)(4)1x x -+-=----------------2分 即2(4)15x -= --------------3分解这个方程得415x -=± --------------5分1415x ∴=+,2415x =- --------------6分19.证明:OM 是⊙O 的半径,过M 点作⊙O 的切线AB ,OM AB ∴⊥, --------------1分MA MB =,ABO ∴∆是等腰三角形, --------------2分 OA OB ∴=, --------------3分OC OD =,OA OC OB OD ∴-=-, --------------5分即:AC BD =. --------------6分20.解:(1)由题意可得:点B (3,-2)在反比例函数2my x=图像上, ∴23m-=,则m =-6, ∴反比例函数的解析式为26y x=-, --------------1分 将A (-1,n )代入26y x=-, 得:661n =-=-,即A (-1,6), --------------2分将A ,B 代入一次函数解析式中,得第19题图236k b k b -=+⎧⎨=-+⎩,解得:24k b =-⎧⎨=⎩, --------------3分 ∴一次函数解析式为124y x =-+; --------------4分 (2)点P 的坐标为(1,0)或(3,0). --------------6分四、解答题(二)21.解:(1)2,3; ------------2分(2)(1,4); ------------4分 (3)如图所示: ------------6分 (4)0<y <3. ------------8分 22.证明:(1)根据题意:AB=AC ,AD=AE ,∠CAB=∠EAD=90︒, ∵∠CAE+∠BAE =∠BAD+∠BAE =90︒, ∴∠CAE=∠BAD ,--------------1分在△ACE 和△ABD 中,AC ABCAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≅△ABD(SAS), --------------3分 ∴CE=BD ; --------------4分(2)根据题意:AB=AC ,AD=AE ,∠CAB=∠EAD=90︒,在△ACE 和△ABD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≅△ABD(SAS), --------------5分∴∠ACE=∠ABD ,∵∠ACE+∠AEC=90︒,且∠AEC=∠FEB , ∴∠ABD+∠FEB=90︒, ∴∠EFB=90︒,∴CF ⊥BD ,--------------6分 ∵21,AD=AE=1,∠CAB=∠EAD=90︒, ∴222+,22+, ∴BC= CD , --------------7分∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线.--------------8分23.解:(1)若降价x 元,则每天销量可增加50x 千克, ∴()()500504830W x x =+--,整理得:2504009000W x x =-++, --------------2分 当2x =时,2502400290009600W =-⨯+⨯+=,∴每天的利润为9600元; --------------3分(2)()225040090005049800W x x x =-++=--+, ∵500-<,∴当4x =时,W 取得最大值,最大值为9800,∴降价4元,利润最大,最大利润为9800元; --------------5分(3)令9750W =,得:()297505049800x =--+, 解得:15=x ,23x =, --------------7分∵要让利于民,∴5x =,48543-=(元)∴定价为43元. --------------8分五、解答题(三) 24.证明:(1)∵AB 是⊙O 的直径,∴∠ACB=90°, 又∵AC ∥OM ,∴90BDO ACB ∠=∠=︒, ∴OD ⊥BC ,∴D 为BC 的中点,O 为AB 的中点,∴OD 为△ABC 为中位线,∴OD =12AC ; --------------3分(2)如图所示:连接OC , ∵AC ∥OM ,∴∠OAC =∠BOM ,∠ACO =∠COM , ∵OA =OC , ∴∠OAC =∠ACO , ∴∠BOM =∠COM ,在△OCM 与△OBM 中,OC OBCOM BOM OM OM ⎧⎪∠=∠⎨⎪⎩==,∴△OCM ≌△OBM(SAS)又∵MB 是⊙O 的切线, ∴∠OCM =∠OBM =90°,∴MC 是⊙O 的切线; --------------7分(3)∵AB 是⊙O 的直径∴∠ACB =∠APB =90°∵OB =152, ∴AB =15,∴PA =PB 152, ∵BC=12, ∴AC=9,过点A 作AH ⊥PC 于点H ,∵29AC OD ==,45ACH ABP ∠=∠=︒, ∴AH =CH 92222215292()()6222PH PA AH =-=-=∴PC =PH+CH 212--------------10分 25.解:(1)令y =0,x 2﹣x ﹣3=0解得,x =﹣2,或x =6, ∴A (﹣2,0),B (6,0),设直线l 的解析式为y =kx +b (k ≠0),则,解得,,∴直线l 的解析式为; --------------3分(2)如图1,根据题意可知,点P与点N的坐标分别为P(m,m2﹣m﹣3),N(m,m﹣1),∴PM=﹣m2+m+3,MN=m+1,NP=﹣m2+m+2,分两种情况:①当PM=3MN时,得﹣m2+m+3=3(m+1),解得,m=0,或m=﹣2(舍),∴P(0,﹣3);--------------5分②当PM=3NP时,得﹣m2+m+3=3(﹣m2+m+2),解得,m=3,或m=﹣2(舍),∴P(3,﹣);∴当点N是线段PM的三等分点时,点P的坐标为(3,﹣)或(0,﹣3);-----------7分(3)点Q的坐标为(0,9)或(0,﹣).(答对一个给2分,答对两个给3分) --------10分附(3)详细解答:∵直线l:与y轴于点E,∴点E的坐标为(0,﹣1),分再种情况:①如图2,当点Q在y轴的正半轴上时,记为点Q1,过Q1作Q1H⊥AD于点H,则∠Q1HE=∠AOE=90°,∵∠Q1EH=∠AEO,∴△Q1EH∽△AEO,∴,即∴Q1H=2HE,∵∠Q1DH=45°,∠Q1HD=90°,∴Q1H=DH,∴DH=2EH,∴HE=ED,连接CD,∵C(0,﹣3),D(4,﹣3),∴CD⊥y轴,∴ED=,∴,,∴,∴Q1O=Q1E﹣OE=9,∴Q1(0,9);②如图3,当点Q在y轴的负半轴上时,记为点Q2,过Q2作Q2G⊥AD于G,则∠Q2GE=∠AOE=90°,∵∠Q2EG=∠AEO,∴△Q2GE∽△AOE,∴,即,∴Q2G=2EG,∵∠Q2DG=45°,∠Q2GD=90°,∴∠DQ2G=∠Q2DG=45°,∴DG=Q2G=2EG,∴ED=EG+DG=3EG,由①可知,ED=2,∴3EG=2,∴,∴,∴,∴,,综上,点Q的坐标为(0,9)或(0,﹣).。

2018-2019学年九年级第一学期数学期末考试广东期卷

2018-2019学年九年级第一学期数学期末考试广东期卷

九年级数学 第1页(共4页)图2A B CD 图3 2018-2019九年级第一学期数学期末考试广东卷第一部分(选择题,共36分)一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.矩形具有而菱形不具有的性质是A .对角线互相平分B .对角线互相垂直C .对角线相等D .是中心对称图形2.关于二次函数322+-=x y ,下列说法中正确..的是 A .它的开口方向是向上 B .当x <–1时,y 随x 的增大而增大C .它的顶点坐标是(–2,3)D .当x = 0时,y 有最小值是33.sin60°的值是 A .21 B .23 C .1 D 4.图15.用配方法解方程642=+x x ,下列配方正确的是A .()2242=+x B .()1022=+x C .()822=+x D .()622=+x6.图2是我们学过的反比例函数图象,它的函数解析式可能是A .x y 2-=B .x y 2=C .2x y -=D .2x y -=7.如图3,已知∠BAD =∠CAD ,则下列条件中不一定能....使 △ABD ≌△ACD 的是A .∠B =∠C B .∠BDA =∠CDAC .AB =ACD .BD =CD 8.过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为 A .91 B .31 C .21 D .32A .B .C .九年级数学 第2页(共4页)甲小刚 图7 AB C D EF 图5 O 9.如图4,已知A 是反比例函数xy 3=(x > 0)图象上的一个 动点,B 是x 轴上的一动点,且AO=AB .那么当点A 在图象上自左向右运动时,△AOB 的面积A .增大B .减小C .不变D .无法确定10.如图5,已知AD 是△ABC 的高,EF 是△ABC 的中位线,则下列结论中错误..的是 A .EF ⊥AD B .EF=21BC C .DF=21AC D .DF=21AB11.某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x ,则可列方程为A .()140012002=+x B .()140012003=+x C .()200114002=-x D .()()1400120012002002=++++x x 12.如图6,已知抛物线5621+-=x x :y l 与x 轴分别交于A 、B 两点,顶点为M .将抛物线l 1沿x 轴翻折后再向左平移得到抛物线l 2.若抛物线l 2过点B ,与x 轴的另一个交点为C ,顶点为N ,则四边形AMCN 的面积为A .32B .16C .50D .40 第二部分(非选择题,共64分)二、填空题(每小题3分,共12分。

2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷(解析版)

2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷(解析版)

2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷一、选择题(本大题10小题,每题3分,共30分)在每小题列出的四个选项中,只有一个是正确.1.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1B.﹣3C.5D.12.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.3.下列事件中,必然事件是()A.抛一枚硬币,正面朝上B.打开电视频道,正在播放《今日视线》C.射击运动员射击一次,命中10环D.地球绕着太阳转4.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5B.7.5C.9.5D.85.双曲线y=在第一、三象限内,则k的取值范围是()A.k>0B.k<0C.k>1D.k<16.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm27.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°8.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k<﹣C.k<3D.k>﹣39.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=17810.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D 方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.方程2x2﹣6=0的解是.12.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.13.抛物线y=3(x﹣2)2+5的顶点坐标是.14.若点(p,2)与(﹣3,q)关于原点对称,则p+q=.15.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.16.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为cm.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2﹣6x﹣40=018.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?19.已知:AB为⊙O的直径.(1)作OB的垂直平分线CD,交⊙O于C、D两点;(2)在(1)的条件下,连接AC、AD,则△ACD为三角形.四、解答题(二)(本大题共3小题,每小题6分,共21分)20.小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?21.某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?22.如图,将矩形ABCD绕点C旋转得到矩形EFCG,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.五、解答题(三)(本大题共3小题,每题9分,共27分)23.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.24.如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB 于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O 的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.25.已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每题3分,共30分)在每小题列出的四个选项中,只有一个是正确.1.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1B.﹣3C.5D.1【解答】解:把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选:D.2.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.【解答】解:A、不是中心对称图形的卡片,故此选项错误;B、是中心对称图形的卡片,故此选项正确;C、不是中心对称图形的卡片,故此选项错误;D、不是中心对称图形的卡片,故此选项错误;故选:B.3.下列事件中,必然事件是()A.抛一枚硬币,正面朝上B.打开电视频道,正在播放《今日视线》C.射击运动员射击一次,命中10环D.地球绕着太阳转【解答】解:A、抛一枚硬币,正面朝上是随机事件;B、打开电视频道,正在播放《今日视线》是随机事件;C、射击运动员射击一次,命中10环是随机事件;D、地球绕着太阳转是必然事件;故选:D.4.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5B.7.5C.9.5D.8【解答】解:连接OA,∵AB⊥OD,∴AC=AB=4,设⊙O的半径为x,则OC=x﹣1,由勾股定理得,OA2=AC2+OC2,即x2=16+(x﹣1)2,解得,x=,答:⊙O的半径为.故选:A.5.双曲线y=在第一、三象限内,则k的取值范围是()A.k>0B.k<0C.k>1D.k<1【解答】解:∵函数图象在第一、三象限,∴k﹣1>0,解得k>1.故选:C.6.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm2【解答】解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.7.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°【解答】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.8.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k<﹣C.k<3D.k>﹣3【解答】解:∵关于x的方程x2﹣2x+3k=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×3k>0,解得:k<.故选:A.9.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=178【解答】解:设横、纵道路的宽分别为x米、2x米,则每块草坪的相邻两边的长度分别为(50﹣2x)米、(30﹣x)米,根据题意得:(50﹣2x)×(30﹣x)=178×6,故选:A.10.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D 方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A.B.C.D.【解答】解:根据两个动点的运动状态可知(1)当0≤t≤1时,S=,此时抛物线开口向上;(2)当1≤t≤2.5时,S==3,此时,函数值不变,函数图象为平行于x轴的线段;(3)当2.5≤t≤3.5时,S=×3×(7﹣2t))=﹣t+.S随t的增大而减小.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)11.方程2x2﹣6=0的解是x1=,x2=﹣.【解答】解:方程2x2﹣6=0,即x2=3,开方得:x=±,解得:x1=,x2=﹣,故答案为:x1=,x2=﹣12.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=12.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=,解得:n=12,故答案为:12.13.抛物线y=3(x﹣2)2+5的顶点坐标是(2,5).【解答】解:∵y=3(x﹣2)2+5,∴抛物线顶点坐标为(2,5),故答案为:(2,5).14.若点(p,2)与(﹣3,q)关于原点对称,则p+q=1.【解答】解:∵点(p,2)与(﹣3,q)关于原点对称,∴p=3,q=﹣2,∴p+q=3﹣2=1.故答案为:1.15.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为4.【解答】解:设D(x,y),∵反比例函数y=的图象经过点D,∴xy=2,∵D为AB的中点,∴B(x,2y),∴OA=x,OC=2y,∴S矩形OABC=OA•OC=x•2y=2xy=2×2=4,故答案为:4.16.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为3cm.【解答】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2﹣6x﹣40=0【解答】解:x2﹣6x﹣40=0(x﹣10)(x+4)=0,∴x﹣10=0或x+4=0,∴x1=10,x2=﹣4.18.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?【解答】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮感染中平均一台电脑感染11台.19.已知:AB为⊙O的直径.(1)作OB的垂直平分线CD,交⊙O于C、D两点;(2)在(1)的条件下,连接AC、AD,则△ACD为等边三角形.【解答】解:(1)如图,CD为所作;(2)连接OC、OD、BC、BD,如图,∵CD垂直平分OB,∴OC=CB,DO=DB,∴OC=BC=OB=BD,∴△OCB、△OBD都是等边三角形,∴∠ABC=∠ABD=60°,∴∠ADC=∠ACD=60°,∴△ACD为等边三角形.故答案为等边.四、解答题(二)(本大题共3小题,每小题6分,共21分)20.小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?【解答】解:(1)画树状图如下:(2)不公平,理由如下:由树状图知共有12种等可能结果,其中两种颜色相同的有4种结果,两种颜色不同的有8种结果,所以小明获胜的概率为=,小亮获胜的概率为=,因为>,所以小亮获胜的可能性大,故此游戏不公平.21.某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?【解答】解:(1)由题意:w=(﹣2x+240)•x﹣2200=﹣2x2+240x﹣2200(50≤x≤80).(2)w=﹣2x2+240x﹣2200=﹣2(x2﹣120x)﹣2200=﹣2(x﹣60)2+5000.∵x是整数,50≤x≤80,∴当x=60时,w取得最大值,最大值为5000.答:影院将电影票售价定为60元/张时,每天获利最大,最大利润是5000元.22.如图,将矩形ABCD绕点C旋转得到矩形EFCG,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.【解答】解:(1)证明:∵矩形FECG由矩形ABCD旋转得到,∴FE=AB=DC,∠F=∠EDC=90°,FH∥EC,∴∠FHE=∠CED.在△EDC和△HFE中,,∴△EDC≌△HFE(AAS);(2)∵△EDC≌△HFE,∴EH=EC.∵矩形FECG由矩形ABCD旋转得到,∴EH=EC=BC,EH∥BC,∴四边形BEHC为平行四边形.∵∠BCE=60°,EC=BC,∴△BCE是等边三角形,∴BE=BC,∴四边形BEHC是菱形.五、解答题(三)(本大题共3小题,每题9分,共27分)23.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x ﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.【解答】解:(1)设点B的坐标为(a,0),∵∠ABO=90°,AB=BO,∴点A的坐标为(a,﹣a),∵点A在直线y=﹣3x﹣4上,∴﹣a=﹣3a﹣4,解得,a=﹣2,即点A的坐标为(﹣2,2),∵点A在反比例函数y=上,∴k=﹣4;(2)∵点D与点O关于AB对称,∴点D的坐标为(﹣4,0)∴OD=4,∴DB=BA=2,则∠ADB=45°,∵直线y=﹣3x﹣4交y轴于C点,∴点C的坐标为(0,﹣4),∴OD=OC,∴∠ODC=45°,∴∠ADC=∠ADB+∠ODC=90°,即△ACD是直角三角形;(3)设点E的坐标为(m,﹣),∵S△OCE=S△OCD,∴×4×4=×4×(﹣m),解得,m=﹣4,∴点E的坐标为(﹣4,1).24.如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB 于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O 的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.【解答】证明(1):∵AB是⊙O的直径,∴∠ADB=∠ADB=90°,∵CD平分∠ACB,∴=,∴AD=BD,∴△ABD是等腰直角三角形.(2)由旋转的性质得,∠EDE'=90°,DE=DE',∵∠ADB=90°,∴∠ADE=∠BDE',∵AD=BD,∴△ADE≌△BDE'(SAS),∴∠DAE=∠DBE',∵∠EAD=∠DCB=45°,∠ABD=∠DCA=45°,∴∠OBE'=∠ABD+∠DBE'=90°,∴BE′为⊙O的切线;(3)解:∵点F为的中点,∴∠FAD=∠DAB=22.5°,取AG的中点H,连结DH,∵∠ADB=90°,∴DH=AH=GH,∴∠ADH=∠FAD=22.5°,∴∠DHF=∠ADH+∠FAD=45°,∵∠AFD=∠ACD=45°,∴∠DHF=∠AFD,∴DH=DF=1,∴AG=2DH=2.25.已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.【解答】解:(1)抛物线的了表达式为:y=(x﹣4)(x+2)=x2﹣x﹣4;(2)设点D(m,m2﹣m﹣4),S=S△OBC+S△OCD+S△ODA=AO×y D=+=[﹣(m2﹣m﹣4)]=﹣(m﹣2)2+16,当m=2时,S的最大值为16;(3)∠BPC=45°,则BC对应的圆心角为90°,如图作圆R,则∠BRC=90°,圆R交函数对称轴为点P,过点R作y轴的平行线交过点C与x轴的平行线于点N、交x轴于点M,设点R(m,n).∵∠BMR+∠MRB=90°,∠MRB+∠CRN=90°,∴∠CRN=∠MBR,∠BMR=∠RNC=90°,BR=RC,∴△BMR≌△RNC(AAS),∴CN=RM,RN=BM,即m+2=n+4,﹣n=m,解得:m=1,n=﹣1,即点R(1,﹣1),即点R在函数对称轴上,圆的半径为:=,则点P的坐标为:(1,﹣1+)或(1,﹣1﹣).。

广东汕头市金平区九年级数学2017-2018学年上学期期末试卷(带答案解析)

广东汕头市金平区九年级数学2017-2018学年上学期期末试卷(带答案解析)

2017-2018学年广东省汕头市金平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)已知x=1是方程x2+px+1=0的一个实数根,则p的值是()A.0 B.1 C.2 D.﹣2【考点】A3:一元二次方程的解.【解答】解:把x=1代入方程x2+px+1=0得:1+p+1=0,即p=﹣2,故选:D.2.(3分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C. D.【考点】P3:轴对称图形;R5:中心对称图形.【解答】解:A、是轴对称图形,也是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.3.(3分)反比例函数y=﹣2x的图象在()A.第二、四象限B.第一、三象限C.第一、二象限D.第三、四象限【考点】G4:反比例函数的性质.【解答】解:反比例函数y=﹣2x的图形在:第二、四象限.故选:A.4.(3分)下列事件为必然事件的是()A.打开电视机,它正在播广告B.六边形的外角和是360°C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上【考点】X1:随机事件.【解答】解:A、是随机事件,故A不符合题意;B、是必然事件,故B符合题意;C、是不可能事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:B.5.(3分)正方形的边长为2,则正方形外接圆的半径是()A.1 B.√2C.√3D.2【考点】MM:正多边形和圆.【解答】解:∵正方形的边长为2,由中心角只有四个可得出:360°4=90°,∴中心角是:90°,正方形的外接圆半径是:sin∠AOC=AC OA,∵AC=22=1,∠AOC=45°,∴OA=√22×2=√2,故选:B.6.(3分)m是方程x2+x﹣1=0的根,则式子2m2+2m+2016的值为()A.2013 B.2016 C.2017 D.2018【考点】A3:一元二次方程的解.【解答】解:∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,∴m2+m=1,∴2m2+2m+2016=2(m2+m)+2016=2×1+2016=2018.故选:D.7.(3分)若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.1cm B.2cm C.3cm D.4cm【考点】MP:圆锥的计算.【解答】解:圆锥的侧面展开图的弧长为2π×6÷2=6π(cm),∴圆锥的底面半径为6π÷2π=3(cm),故选:C.8.(3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【考点】M2:垂径定理;M5:圆周角定理.【解答】解:∵AB是直径,AB⊥CD,̂=BD̂,∴BC∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选:B.9.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送2070张照片.如果全班各有x名同学,根据题意,列出方程为()A.x(x﹣1)=2070 B.x(x﹣1)=2070×2 C.x(x+1)=2070 D.2x(x+1)=2070【考点】AD:一元二次方程的应用.【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=2070.故选:A.10.(3分)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有()个.A.1 B.2 C.3 D.4【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【解答】解:抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,故①错误;由于对称轴为x=﹣1,∴x=﹣3与x=1关于x=﹣1对称,∵x=﹣3时,y<0,∴x=1时,y=a +b +c <0,故③正确; ∵对称轴为x=﹣b 2a=﹣1,∴2a ﹣b=0,故②正确; ∵顶点为B (﹣1,3), ∴y=a ﹣b +c=3, ∴y=a ﹣2a +c=3, 即c ﹣a=3,故④正确; 故选:C .二、填空题(本题6小题,每题4分,共24分)11.(4分)方程(x ﹣3)(x +2)=0的根是 x=3或x=﹣2 . 【考点】A8:解一元二次方程﹣因式分解法.【解答】解:∵(x ﹣3)(x +2)=0. ∴x ﹣3=0或x +2=0, 解得:x=3或x=﹣2, 故答案为:x=3或x=﹣2.12.(4分)在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是58,则这个袋子中有红球 5 个.【考点】X4:概率公式.【解答】解:设这个袋子中有红球x 个,∵摸到红球的概率是58,∴x x+3=58, ∴x=5, 故答案为:5.13.(4分)如图,已知桥拱形状为抛物线,其函数关系式为y=﹣14x2,当水位线在AB位置时,水面的宽度为12m,这时水面离桥拱顶部的距离是9m.【考点】HE:二次函数的应用.【解答】解:根据题意,当x=6时,原式=﹣14×62=﹣9,即水面离桥拱顶部的距离是9m,故答案为:9m.14.(4分)如图,在矩形ABCD中,AB=10,AD=6,矩形ABCD绕点A逆时针旋转一定角度得矩形AB′C′D′,若点B的对应点B′落在边CD上,则B′C的长为2.【考点】LB:矩形的性质;R2:旋转的性质.【解答】解:由旋转的性质得到AB=AB′=10,在直角△AB′D中,∠D=90°,AD=6,AB′=AB=10,所以B′D=√AB′2−AD2=√102−62=8,所以B′C=10﹣B′D=2.故答案是:2.15.(4分)如图,△ABC,AC=3,BC=4,∠C=90°,⊙O为△ABC的内切圆,与三边的切点分别为D、E、F,则⊙O的面积为π(结果保留π)【考点】MI:三角形的内切圆与内心.【解答】解:连接OE、OF,∵AC=3,BC=4,∠C=90°,∴AB=5,∵⊙O为△ABC的内切圆,D、E、F为切点,∴FB=DB,CE=CF,AD=AF,OE⊥BC,OF⊥AC,又∵∠C=90°,OF=OE,∴四边形ECFO为正方形,∴设OE=OF=CF=CE=x,∴BE=4﹣x,FA=3﹣x;∴DB=4﹣x,AD=3﹣x,∴3﹣x+4﹣x=5,解得:x=1,则⊙O的面积为:π.故答案为:π.16.(4分)如图,正方形ABCD 的边长为2,AD 边在x 轴负半轴上,反比例函数y=kx(x <0)的图象经过点B 和CD 边中点E ,则k 的值为 ﹣4 .【考点】G6:反比例函数图象上点的坐标特征;LE :正方形的性质.【解答】解:∵正方形ABCD 的边长为2, ∴AB=AD=2,设B (k2,2),∵E 是CD 边中点,∴E (k2﹣2,1),∴k2﹣2=k , 解得:k=﹣4, 故答案为:﹣4.三、解答题一(本题共3小题,每小题6分,共18分) 17.(6分)解方程:x 2﹣2x ﹣3=0.【考点】A8:解一元二次方程﹣因式分解法.【解答】解:原方程可以变形为(x ﹣3)(x +1)=0 x ﹣3=0,x +1=0 ∴x 1=3,x 2=﹣1.18.(6分)某公司2016的年利润为250万元,该公司拓展业务,预计该公司2018年的年利润为360万元.求2016年至2018年该公司的年利润平均增长率. 【考点】AD :一元二次方程的应用.【解答】解:设这两年该企业年利润平均增长率为x .根据题意得250(1+x)2=360,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.19.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°.(1)用直尺和圆规作⊙O,使圆心O在BC边,且⊙O经过A,B两点上(不写作法,保留作图痕迹);(2)连接AO,求证:AO平分∠CAB.【考点】M5:圆周角定理;N3:作图—复杂作图.【解答】(1)解:如图,⊙O为所作;(2)证明:∵OA=OB,∴∠OAB=∠B=30°,而∠CAB=90°﹣∠B=60°,∴∠CAO=∠BAO=30°,∴OC平分∠CAB.四、解答题二(本题共3小题,每小题7分,共21分)20.(7分)小王、小李在班里选拔赛中并列第一名,小王提议通过摸球的方式来决定谁代表班级参加学校数学竞赛,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去参加,否则就是小李去参加.(1)用树状图或列表法求出小王去参加的概率;(2)小李说:“可以,这种规则公平”,你认同他的说法吗?请说明理由.【考点】X6:列表法与树状图法;X7:游戏公平性.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于5的情况有6种,所以P(小王)=612=12;(2)公平,理由如下:∵P(小王)=12,P(小李)=12,∴规则公平.21.(7分)如图,足球场上守门员在O处开出一记手跑高球,球从地面1.4米的A处抛出(A在y轴上),运动员甲在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面3.2米高,球落地点为C点.(1)求足球开始抛出到第一次落地时,该抛物线的解析式.(2)足球第一次落地点C距守门员多少米?【考点】HE:二次函数的应用.【解答】解:(1)设抛物线的解析式为y=a(x﹣6)2+3.2,将点A(0,1.4)代入,得:36a+3.2=1.4,解得:a=﹣0.05,则抛物线的解析式为y=﹣0.05(x ﹣6)2+3.2;(2)当y=0时,﹣0.05(x ﹣6)2+3.2=0, 解得:x 1=﹣2(舍),x 2=14,所以足球第一次落地点C 距守门员14米.22.(7分)已知,点P 是等边三角形△ABC 中一点,线段AP 绕点A 逆时针旋转60°到AQ ,连接PQ 、QC . (1)求证:PB=QC ;(2)若PA=3,PB=4,∠APB=150°,求PC 的长度.【考点】KD :全等三角形的判定与性质;KK :等边三角形的性质;R2:旋转的性质.【解答】(1)证明:∵线段AP 绕点A 逆时针旋转60°到AQ , ∴AP=AQ ,∠PAQ=60°,∴△APQ 是等边三角形,∠PAC +∠CAQ=60°, ∵△ABC 是等边三角形, ∴∠BAP +∠PAC=60°,AB=AC , ∴∠BAP=∠CAQ , 在△BAP 和△CAQ 中 {BA =CA∠BAP =∠CAQ AP =AQ, ∴△BAP ≌△CAQ (SAS ), ∴PB=QC ;(2)解:∵由(1)得△APQ 是等边三角形, ∴AP=PQ=3,∠AQP=60°, ∵∠APB=150°,∴∠PQC=150°﹣60°=90°, ∵PB=QC , ∴QC=4,∴△PQC 是直角三角形, ∴PC=√PQ 2+QC 2=√32+42=5.五、解答题三(本题共3小题,每小题9分,共27分)23.(9分)如图,直线y=2x 与反比例函数y=kx(x >0)的图象交于点A (4,n ),AB ⊥x 轴,垂足为B . (1)求k 的值;(2)点C 在AB 上,若OC=AC ,求AC 的长;(3)点D 为x 轴正半轴上一点,在(2)的条件下,若S △OCD =S △ACD ,求点D 的坐标.【考点】G8:反比例函数与一次函数的交点问题.【解答】解(1)∵直线y=2x 与反比例函数y=kx(k ≠0,x >0)的图象交于点A(4,n ),∴n=2×4=8, ∴A (4,8), ∴k=4×8=32,∴反比例函数为y=32x.(2)设AC=x ,则OC=x ,BC=8﹣x , 由勾股定理得:OC 2=OB 2+BC 2, ∴x 2=42+(8﹣x )2, x=5, ∴AC=5;(3)设点D 的坐标为(x ,0) 分两种情况:①当x >4时,如图1, ∵S △OCD =S △ACD ,∴12OD•BC=12AC•BD , 3x=5(x ﹣4), x=10,②当0<x <4时,如图2, 同理得:3x=5(4﹣x ),x=52, ∴点D 的坐标为(10,0)或(52,0).24.(9分)如图1,四边形ABCD内接于⊙O,AC为⊙O的直径,AC与BD交于点E,且AE=AB,DA=DB.(1)求证:AB=CB;̂,(2)如图2,△ABC绕点C逆时针旋转30°得到△FGC,点A经过的路径为AF 若AC=4,求图中阴影部分面积S;(3)在(2)的条件下,连接FB,求证:FB为⊙O的切线.【考点】MR:圆的综合题.【解答】(1)证明:如图1中,∵DA=DB,∴∠DAB=∠DBA,∵AE=AB,∴∠AEB=∠ABE,∴∠AEB=∠DAB,∴∠EAD+∠ADE=∠EAD+∠EAB,∴∠EAB=∠ADE,∵∠ADE=∠ACB,∴∠EAB=∠ACB,∴AB=BC.(2)如图2中,设AB的延长线交FG于M,连接CM,在BC上取一点N,使得CN=NM.∵△ABC是等腰直角三角形,AC=4,∴AB=BC=2√2,∵BC=CG,CM=CM,∴Rt△CBM≌Rt△CGM,∴∠MCB=∠MCG=15°,∵NC=NM,∴∠NCM=∠NMC=15°,∴∠MNB=30°,设BM=a,则MN=CN=2a,BN=√3a,∴2a+√3a=2√2,∴a=4√2﹣2√6,∴S阴=2×12×BM×BC=(4√2﹣2√6)×2√2=16﹣8√3.(3)如图2﹣1中,连接OB、BF、作FH⊥AC于H.∵∠ACF=30°,∠FHC=90°,∴FH=12CF=12AC=OA=OB,∵BA=BC,OA=OC,∴BO⊥AC,∴FH∥OB,∴四边形OBFH是平行四边形,∵∠BOH=90°,∴四边形OBFH是矩形,∴∠OBF=90°,即OB ⊥BF ; ∴BF 是⊙O 的切线.25.(9分)已知直线y=x +3交x 轴于点A ,交y 轴于点B ,抛物线y=﹣x 2+bx +c 经过点A 、B .(1)A 点坐标 (﹣3,0) ,B 点坐标 (0,3) ,抛物线解析式 y=﹣x 2﹣2x +3 ;(2)点C (m ,0)在线段OA 上(点C 不与A 、O 点重合),CD ⊥OA 交AB 于点D ,交抛物线于点E ,若DE=√2AD ,求m 的值;(3)点M 在抛物线上,点N 在抛物线的对称轴上,在(2)的条件下,是否存在以点D 、B 、M 、N 为顶点的四边形为平行四边形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【考点】HF :二次函数综合题.【解答】解:(1)当x=0时,y=3, ∴B (0,3), 当y=0时,x +3=0, x=﹣3,∴A (﹣3,0),把A (﹣3,0),B (0,3)代入抛物线y=﹣x 2+bx +c 中得:{−9−3b +c =0c =3,解得:{b =−2c =3,∴抛物线的解析式为:y=﹣x 2﹣2x +3,故答案为:(﹣3,0);(0,3);y=﹣x 2﹣2x +3; (2)∵CD ⊥OA ,C (m ,0),∴D (m ,m +3),E (m ,﹣m 2﹣2m +3),∴DE=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∵AC=m+3,CD=m+3,由勾股定理得:AD=√2(m+3),∵DE=√2AD,∴﹣m2﹣3m=2(m+3),m2+5m+6=0,(m+3)(m+2)=0,m1=﹣3(舍),m2=﹣2;(3)存在,分两种情况:①以BC为一边,如图1,设对称轴与x轴交于点G,∵C(﹣2,0),∴D(﹣2,1),E(﹣2,3),∴E与B关于对称轴对称,∴BE∥x轴,∵四边形DNMB是平行四边形,∴BD=MN,BD∥MN,∵∠DEB=∠NGM=90°,∠EDB=∠GNM,∴△EDB≌△GNM,∴NG=ED=2,∴N(﹣1,﹣2);②当BD为对角线时,如图2,M在抛物线的顶点,N是对称轴与x轴的交点,此时四边形BMDN是平行四边形,此时N(﹣1,0);综上所述,点N的坐标为(﹣1,﹣2)或(﹣1,0).。

(2019秋)汕头市金平区九年级上期末数学试卷(有答案)-精编.doc

(2019秋)汕头市金平区九年级上期末数学试卷(有答案)-精编.doc

2019-2020学年广东省汕头市金平区九年级(上)期末数学试卷一、选择题(每题3分,共30分)1.(3分)已知x=1是方程x2+px+1=0的一个实数根,则p的值是()A.0 B.1 C.2 D.﹣22.(3分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C. D.3.(3分)反比例函数y=﹣的图象在()A.第二、四象限B.第一、三象限C.第一、二象限D.第三、四象限4.(3分)下列事件为必然事件的是()A.打开电视机,它正在播广告B.六边形的外角和是360°C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上5.(3分)正方形的边长为2,则正方形外接圆的半径是()A.1 B.C.D.26.(3分)m是方程x2+x﹣1=0的根,则式子2m2+2m+2016的值为()A.2013 B.2016 C.2017 D.20187.(3分)若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.1cm B.2cm C.3cm D.4cm8.(3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°9.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送2070张照片.如果全班各有x名同学,根据题意,列出方程为()A.x(x﹣1)=2070 B.x(x﹣1)=2070×2 C.x(x+1)=2070 D.2x(x+1)=207010.(3分)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(本题6小题,每题4分,共24分)11.(4分)方程(x﹣3)(x+2)=0的根是.12.(4分)在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球个.13.(4分)如图,已知桥拱形状为抛物线,其函数关系式为y=﹣x2,当水位线在AB位置时,水面的宽度为12m,这时水面离桥拱顶部的距离是.14.(4分)如图,在矩形ABCD中,AB=10,AD=6,矩形ABCD绕点A逆时针旋转一定角度得矩形AB′C′D′,若点B的对应点B′落在边CD上,则B′C的长为.15.(4分)如图,△ABC,AC=3,BC=4,∠C=90°,⊙O为△ABC的内切圆,与三边的切点分别为D、E、F,则⊙O的面积为(结果保留π)16.(4分)如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=(x<0)的图象经过点B和CD边中点E,则k的值为.三、解答题一(本题共3小题,每小题6分,共18分)17.(6分)解方程:x2﹣2x﹣3=0.18.(6分)某公司2016的年利润为250万元,该公司拓展业务,预计该公司2018年的年利润为360万元.求2016年至2018年该公司的年利润平均增长率.19.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°.(1)用直尺和圆规作⊙O,使圆心O在BC边,且⊙O经过A,B两点上(不写作法,保留作图痕迹);(2)连接AO,求证:AO平分∠CAB.四、解答题二(本题共3小题,每小题7分,共21分)20.(7分)小王、小李在班里选拔赛中并列第一名,小王提议通过摸球的方式来决定谁代表班级参加学校数学竞赛,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去参加,否则就是小李去参加.(1)用树状图或列表法求出小王去参加的概率;(2)小李说:“可以,这种规则公平”,你认同他的说法吗?请说明理由.21.(7分)如图,足球场上守门员在O处开出一记手跑高球,球从地面1.4米的A处抛出(A 在y轴上),运动员甲在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面3.2米高,球落地点为C点.(1)求足球开始抛出到第一次落地时,该抛物线的解析式.(2)足球第一次落地点C距守门员多少米?22.(7分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.五、解答题三(本题共3小题,每小题9分,共27分)23.(9分)如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;=S△ACD,求点D的坐标.(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD24.(9分)如图1,四边形ABCD内接于⊙O,AC为⊙O的直径,AC与BD交于点E,且AE=AB.(1)DA=DB,求证:AB=CB;(2)如图2,△ABC绕点C逆时针旋转30°得到△FGC,点A经过的路径为,若AC=4,求图中阴影部分面积S;(3)在(2)的条件下,连接FB,求证:FB为⊙O的切线.25.(9分)已知直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)A点坐标,B点坐标,抛物线解析式;(2)点C(m,0)在线段OA上(点C不与A、O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE=AD,求m的值;(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2019-2020学年广东省汕头市金平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)已知x=1是方程x2+px+1=0的一个实数根,则p的值是()A.0 B.1 C.2 D.﹣2【解答】解:把x=1代入方程x2+px+1=0得:1+p+1=0,即p=﹣2,故选:D.2.(3分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C. D.【解答】解:A、是轴对称图形,也是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.3.(3分)反比例函数y=﹣的图象在()A.第二、四象限B.第一、三象限C.第一、二象限D.第三、四象限【解答】解:反比例函数y=﹣的图形在:第二、四象限.故选:A.4.(3分)下列事件为必然事件的是()A.打开电视机,它正在播广告B.六边形的外角和是360°C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上【解答】解:A、是随机事件,故A不符合题意;B、是必然事件,故B符合题意;C、是不可能事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:B.5.(3分)正方形的边长为2,则正方形外接圆的半径是()A.1 B.C.D.2【解答】解:∵正方形的边长为2,由中心角只有四个可得出:=90°,∴中心角是:90°,正方形的外接圆半径是:sin∠AOC=,∵AC=,∠AOC=45°,∴OA=,故选:B.6.(3分)m是方程x2+x﹣1=0的根,则式子2m2+2m+2016的值为()A.2013 B.2016 C.2017 D.2018【解答】解:∵m是方程x2+x﹣1=0的根,∴m2+m﹣1=0,∴m2+m=1,∴2m2+2m+2016=2(m2+m)+2016=2×1+2016=2018.故选:D.7.(3分)若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.1cm B.2cm C.3cm D.4cm【解答】解:圆锥的侧面展开图的弧长为2π×6÷2=6π(cm),∴圆锥的底面半径为6π÷2π=3(cm),故选:C.8.(3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选:B.9.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送2070张照片.如果全班各有x名同学,根据题意,列出方程为()A.x(x﹣1)=2070 B.x(x﹣1)=2070×2 C.x(x+1)=2070 D.2x(x+1)=2070【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=2070.故选:A.10.(3分)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,故①错误;由于对称轴为x=﹣1,∴x=﹣3与x=1关于x=﹣1对称,∵x=﹣3时,y<0,∴x=1时,y=a+b+c<0,故③正确;∵对称轴为x=﹣=﹣1,∴2a﹣b=0,故②正确;∵顶点为B(﹣1,3),∴y=a﹣b+c=3,∴y=a﹣2a+c=3,即c﹣a=3,故④正确;故选:C.二、填空题(本题6小题,每题4分,共24分)11.(4分)方程(x﹣3)(x+2)=0的根是x=3或x=﹣2.【解答】解:∵(x﹣3)(x+2)=0.∴x﹣3=0或x+2=0,解得:x=3或x=﹣2,故答案为:x=3或x=﹣2.12.(4分)在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球5个.【解答】解:设这个袋子中有红球x个,∵摸到红球的概率是,∴=,∴x=5,故答案为:5.13.(4分)如图,已知桥拱形状为抛物线,其函数关系式为y=﹣x2,当水位线在AB位置时,水面的宽度为12m,这时水面离桥拱顶部的距离是9m.【解答】解:根据题意,当x=6时,原式=﹣×62=﹣9,即水面离桥拱顶部的距离是9m,故答案为:9m.14.(4分)如图,在矩形ABCD中,AB=10,AD=6,矩形ABCD绕点A逆时针旋转一定角度得矩形AB′C′D′,若点B的对应点B′落在边CD上,则B′C的长为2.【解答】解:由旋转的性质得到AB=AB′=10,在直角△AB′D中,∠D=90°,AD=6,AB′=AB=10,所以B′D==8,所以B′C=10﹣B′D=2.故答案是:2.15.(4分)如图,△ABC,AC=3,BC=4,∠C=90°,⊙O为△ABC的内切圆,与三边的切点分别为D、E、F,则⊙O的面积为π(结果保留π)【解答】解:连接OE、OF,∵AC=3,BC=4,∠C=90°,∴AB=5,∵⊙O为△ABC的内切圆,D、E、F为切点,∴FB=DB,CE=CF,AD=AF,OE⊥BC,OF⊥AC,又∵∠C=90°,OF=OE,∴四边形ECFO为正方形,∴设OE=OF=CF=CE=x,∴BE=4﹣x,FA=3﹣x;∴DB=4﹣x,AD=3﹣x,∴3﹣x+4﹣x=5,解得:x=1,则⊙O的面积为:π.故答案为:π.16.(4分)如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=(x<0)的图象经过点B和CD边中点E,则k的值为﹣4.【解答】解:∵正方形ABCD的边长为2,∴AB=AD=2,设B(,2),∵E是CD边中点,∴E(﹣2,1),∴﹣2=k,解得:k=﹣4,故答案为:﹣4.三、解答题一(本题共3小题,每小题6分,共18分)17.(6分)解方程:x2﹣2x﹣3=0.【解答】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.18.(6分)某公司2016的年利润为250万元,该公司拓展业务,预计该公司2018年的年利润为360万元.求2016年至2018年该公司的年利润平均增长率.【解答】解:设这两年该企业年利润平均增长率为x.根据题意得250(1+x)2=360,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.19.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°.(1)用直尺和圆规作⊙O,使圆心O在BC边,且⊙O经过A,B两点上(不写作法,保留作图痕迹);(2)连接AO,求证:AO平分∠CAB.【解答】(1)解:如图,⊙O为所作;(2)证明:∵OA=OB,∴∠OAB=∠B=30°,而∠CAB=90°﹣∠B=60°,∴∠CAO=∠BAO=30°,∴OC平分∠CAB.四、解答题二(本题共3小题,每小题7分,共21分)20.(7分)小王、小李在班里选拔赛中并列第一名,小王提议通过摸球的方式来决定谁代表班级参加学校数学竞赛,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去参加,否则就是小李去参加.(1)用树状图或列表法求出小王去参加的概率;(2)小李说:“可以,这种规则公平”,你认同他的说法吗?请说明理由.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于5的情况有6种,所以P (小王)==;(2)公平,理由如下:∵P (小王)=,P (小李)=,∴规则公平.21.(7分)如图,足球场上守门员在O 处开出一记手跑高球,球从地面1.4米的A 处抛出(A 在y 轴上),运动员甲在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面3.2米高,球落地点为C 点.(1)求足球开始抛出到第一次落地时,该抛物线的解析式.(2)足球第一次落地点C 距守门员多少米?【解答】解:(1)设抛物线的解析式为y=a (x ﹣6)2+3.2,将点A (0,1.4)代入,得:36a +3.2=1.4,解得:a=﹣0.05,则抛物线的解析式为y=﹣0.05(x ﹣6)2+3.2;(2)当y=0时,﹣0.05(x ﹣6)2+3.2=0,解得:x 1=﹣2(舍),x 2=14,所以足球第一次落地点C 距守门员14米.22.(7分)已知,点P 是等边三角形△ABC 中一点,线段AP 绕点A 逆时针旋转60°到AQ ,连接PQ 、QC .(1)求证:PB=QC ;(2)若PA=3,PB=4,∠APB=150°,求PC 的长度.【解答】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=150°,∴∠PQC=150°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===5.五、解答题三(本题共3小题,每小题9分,共27分)23.(9分)如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;=S△ACD,求点D的坐标.(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD【解答】解(1)∵直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(4,n),∴n=2×4=8,∴A(4,8),∴k=4×8=32,∴反比例函数为y=.(2)设AC=x,则OC=x,BC=8﹣x,由勾股定理得:OC2=OB2+BC2,∴x2=42+(8﹣x)2,x=5,∴AC=5;(3)设点D的坐标为(x,0)分两种情况:①当x>4时,如图1,=S△ACD,∵S△OCD∴OD•BC=AC•BD,3x=5(x﹣4),x=10,②当0<x<4时,如图2,同理得:3x=5(4﹣x),x=,∴点D的坐标为(10,0)或(,0).24.(9分)如图1,四边形ABCD内接于⊙O,AC为⊙O的直径,AC与BD交于点E,且AE=AB.(1)DA=DB,求证:AB=CB;(2)如图2,△ABC绕点C逆时针旋转30°得到△FGC,点A经过的路径为,若AC=4,求图中阴影部分面积S;(3)在(2)的条件下,连接FB,求证:FB为⊙O的切线.【解答】(1)证明:如图1中,∵DA=DB,∴∠DAB=∠DBA,∵AE=AB,∴∠AEB=∠ABE,∴∠AEB=∠DAB,∴∠EAD+∠ADE=∠EAD+∠EAB,∴∠EAB=∠ADE,∵∠ADE=∠ACB,∴∠EAB=∠ACB,∴AB=BC.(2)如图2中,设AB的延长线交FG于M,连接CM,在BC上取一点N,使得CN=NM.∵△ABC是等腰直角三角形,AC=4,∴AB=BC=2,∵BC=CG,CM=CM,∴Rt△CBM≌Rt△CGM,∴∠MCB=∠MCG=15°,∵NC=NM,∴∠NCM=∠NMC=15°,∴∠MNB=30°,设BM=a,则MN=CN=2a,BN=a,∴2a+a=2,∴a=4﹣2,BM×BC=(4﹣2)×=16﹣8.∴S阴=2××(3)如图2﹣1中,连接OB、BF、作FH⊥AC于H.∵∠ACF=30°,∠FHC=90°,∴FH=CF=AC=OA=OB,∵BA=BC,OA=OC,∴BO⊥AC,∴FH∥OB,∴四边形OBFH是平行四边形,∵∠BOH=90°,∴四边形OBFH是矩形,∴∠OBF=90°,即OB⊥BF;∴BF是⊙O的切线.25.(9分)已知直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)A点坐标(﹣3,0),B点坐标(0,3),抛物线解析式y=﹣x2﹣2x+3;(2)点C(m,0)在线段OA上(点C不与A、O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE=AD,求m的值;(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【解答】解:(1)当x=0时,y=3,∴B(0,3),当y=0时,x+3=0,x=﹣3,∴A(﹣3,0),把A(﹣3,0),B(0,3)代入抛物线y=﹣x2+bx+c中得:,解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3,故答案为:(﹣3,0);(0,3);y=﹣x2﹣2x+3;(2)∵CD⊥OA,C(m,0),∴D(m,m+3),E(m,﹣m2﹣2m+3),∴DE=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∵AC=m+3,CD=m+3,由勾股定理得:AD=(m+3),∵DE=AD,∴﹣m2﹣3m=2(m+3),m2+5m+6=0,(m+3)(m+2)=0,m1=﹣3(舍),m2=﹣2;(3)存在,分两种情况:①以BC为一边,如图1,设对称轴与x轴交于点G,∵C(﹣2,0),∴D(﹣2,1),E(﹣2,3),∴E与B关于对称轴对称,∴BE∥x轴,∵四边形DNMB是平行四边形,∴BD=MN,BD∥MN,∵∠DEB=∠NGM=90°,∠EDB=∠GNM,∴△EDB≌△GNM,∴NG=ED=2,∴N(﹣1,﹣2);②当BD为对角线时,如图2,M在抛物线的顶点,N是对称轴与x轴的交点,此时四边形BMDN是平行四边形,此时N(﹣1,0);综上所述,点N的坐标为(﹣1,﹣2)或(﹣1,0).。

广东省汕头市2018_2019学年九年级数学上学期期末教学质量监测试卷

广东省汕头市2018_2019学年九年级数学上学期期末教学质量监测试卷

广东省汕头市2018-2019学年九年级数学上学期期末教学质量监测试卷说明:全卷共4页 满分120分 考试时间100分钟 一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中既是中心对称图形又是轴对称图形的是( )2.在平面直角坐标系中,点P(-3,4)关于原点对称的点的坐标是( )A. (3,4)B. (3,-4)C. (4,-3)D. (-3.已知关于x 的一元二次方程082=-+mx x 的一个根为1,则m 的值为( )A .1B .-8C .-7D .74.将抛物线2x y =向左平移2单位,再向上平移3个单位,则所得的抛物线解析式为( )A .()322++=x yB .()322+-=x yC .()322-+=x y D .()322--=x y5.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有( )A .12个B .14个C .18个D .28个6.若反比例函数ny x=的图象经过点(2,-1),则该反比例函数的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是( ) A .4B .5C .6D .78.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .1000(1+x)2=1000+440B .1000(1+x)2=440C .440(1+x)2=1000D .1000(1+2x)=1000+4409.如图,在⊙O 中,若点C 是AB 的中点,∠A=50°, 则∠BOC=( )A .40°B .45°C .50°D .60°10.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )9题图A .41->k B .41->k 且0k ≠ C .41-<k D .41-≥k 且0k ≠二、填空题(本大题6小题,每题4分,共24分)11.二次函数y=4(x ﹣3)2+7的图象的顶点坐标是 . 12.已知:25(m 2)my x -=-是反比例函数,则m= .13.三角形两边长分别为3和6,第三边的长是方程x 2﹣13x+36=0的根,则该三角形的周长为 .14.设O 为△ABC 的内心,若∠A=48°,则∠BOC= . 15.如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP ′重合,若AP=1,那么线段PP ′的长等于 . 15题图 16.从甲、乙、丙、丁4名学生中随机抽取2名学生担任数学小组长,则抽取到甲和乙概率为 .三、解答题(本大题3小题,每题6分,共18分)17.如图,已知AB 是O ⊙的直径,过点O 作弦BC 交过点A 的切线AP 于点P ,连结AC .求证:ABC POA △∽△.17题图18.为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式为 “双人组”.小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.19.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,;(2)求在旋转过程中,CA 所扫过的面积.19题图四、解答题:(本题包括3小题,每小题7分,共21分)20.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元. (1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?21.如图,直线y =x +2与y 轴交于点A ,与反比例函数(0)ky k x=≠的图象交于点C ,过点C作CB ⊥x 轴于点B ,AO=2BO ,求反比例函数的解析式.22.如图,△ABC 中,∠BAC=120o,以BC 为边向外作等边△BCD ,把△ABD 绕着D 点按顺时针方向旋转60o后到△ECD的位置。

2019-2020学年广东汕头金平区九年级上数学期末试题

2019-2020学年广东汕头金平区九年级上数学期末试题

2019-2020学年度(上)金平区九年级期末质量监测数学试卷参考答案一.选择题(本题共10小题,每小题3分,共30分)1.D2.C3.D4.D5.C6.C7.B8.B9.A 10.A二.填空题(本题共7小题,每小题4分,共28分)11. 1 12. 4 13. 3 14.2024 15.-2416. 24π17.②④三.解答题(一)(本题共3小题,每小题6分,共18分)18.解:配方得:x2﹣4x+4=9,1分即(x﹣2)2=9,3分开方得:x﹣2=±3,4分解得:x1=5,x2=﹣1.6分(错一个扣1分)(其他解法参考给分)19.(1)旋转中心是 B ,1分旋转角度是60 度;2分(2)证明:∵△ABC是等边三角形,∴∠ABC=60°,3分∴旋转角是60°;∴∠DBD′=60°,4分又∵BD=BD′,5分∴△BDD′是等边三角形.6分20.解:(1)如图,CD为所求;(3分,没结论扣1分)(2)连接OD,∵⊙O的直径AB=10,∴∠ACB=90°,AO=DO=5. 4分∵CD平分∠ACB,∴∠ACD=12∠ACB=45°.∴∠AOD=2∠ACD=90°. 5分在Rt△AOD中,==6分(其他解法参考给分)四.解答题(二)(本题共3小题,每小题8分,共24分)21.解:(1)(40-2x),2分D(2)根据题意得方程:x(40-2x)=150,4分解得:x1=5,x2=15,6分当x1=5时,40-2x=30>25(不合题意,舍去),当x2=15时,40-2x=10<25(符合题意).7分答:花园面积为150米2时,篱笆AB长为15米.8分22.解:(1);2分(2)记这三个项目分别为A、B、C,3分画树状图为:5分共有9种等可能的结果数,6分其中小红和小青被分配到同一个项目组的结果数为3,7分所以小红和小青被分到同一个项目组进行志愿服务的概率为=.8分23.解:(1)把点A(2,a)代入y=﹣x+6,得a=-2+6,解得:a=4,∴A(2,4)1分把A(2,4)代入反比例函数y=,∴k=2×4=8;2分∴反比例函数的表达式为y=8x;3分(2)∵一次函数y=﹣x+6的图象与x轴交于点C,∴C(6,0),4分设M(x,0),∴MC=|6﹣x|,5分∴S△AMC=|6﹣x|×4=10,6分∴x=1或x=11,7分∴M的坐标为(1,0)或(11,0). 8分五.解答题(三)(本题共2小题,每小题10分,共20分)24.(1)①证明:∵AB为⊙O的直径,∴∠BCA=90°. 1分∵BC AC=,∴∠CBA=∠BAC=45°,∠BOC=90°.∴∠BCO=45°.∵BD平分∠CBA,∴∠CBD=∠DBA. 2分∵∠CED=∠CBD+∠BCE,∠CDE=∠ABD+∠BAC,∴∠CED=∠CDE.∴CE=CD;3分②解法一:如图,取BD中点G,连接OG,∵O为AB的中点,∴AD=2OG,OG∥AD. 4分∴∠OGE=∠CDE.∵∠OEG=∠CED,∠CED=∠CDE,∴∠OGE=∠OEG. 5分∴OG=OE=1.∴AD=2OG=2;6分解法二:如图,作EM⊥BC,垂足为M,∵BD平分∠CBA,EO⊥AB,∴EM=EO=1. 4分∵∠BCO=45°.∴∠MEC=∠BCE=45°.∴CM=EM=1.∴==∴. 5分∴1.在Rt△AOD中,AC= 1)2==.∴AD=AC-CD=2;6分解法三:如图,作DN⊥AB,垂足为N.(余下略)(2)证明(法一):如图,在BC上截取BP=AD,连接DP. 7分∵∠CBA=∠BAC=45°,∴BC=AC.∴CP=CD.∴∠CPD=45°.∴∠BPD=135°. 8分由旋转性质得,∠BDF=90°,BD=FD.∴∠BDC+∠FDA=90°.∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF.∴△DFA≌△BDP(SAS). (SAS没写不扣分)∴∠FAD=∠DBO=135°. 9分∴∠FAB=∠FAD-∠BAC=135°-45°=90°.∴OA⊥AF.∴AF为⊙O的切线.10分证法二:如图,延长DA到Q,使DQ=CB. 7分由旋转性质得,∠BDF=90°,BD=FD.∴∠BDC+∠FDA=90°.∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF.∴△DFQ≌△BDC(SAS). (SAS没写不扣分)∴FQ=CD,∠DQF=∠BCD=90°. 8分∵BC AC,∴BC=AC.∴DQ=AC.∴AQ=DC.∴FQ=DC.∴∠FAQ=∠AFQ=45°. 9分∴∠FAB=180°-∠FAQ-∠BAC=90°.∴OA⊥AF.∴AF为⊙O的切线.10分证法三:作FH⊥CA交CA延长线于点H.(余下略)25.解:(1)一次函数y=-2x-2与x 轴交于点A ,则A 的坐标为(-1,0). 1分 ∵抛物线的顶点为(1,4),∴设抛物线解析式为()214y a x =-+. 2分 ∵抛物线经过点A (-1,0), ∴()20114a =--+. ∴1a =-.∴抛物线解析式为()221423y x x x =--+=-++; 3分 (2)解法一:连接OC.点C 为第一象限抛物线上一动点.点C 的横坐标为m , ∴C (m ,223m m -++).一次函数y=-2x-2与y 轴交于点B.则OB=2,∵A 的坐标为(-1,0),∴OA=1. 4分∴1112122AOBSOA OB =⋅=⨯⨯=, 22113(23)222AOC S OA m m m m =⨯⨯-++=-++,12BOC S OB m m =⨯⨯=.∴22213151912(2)222222ABC AOB AOC BOC S S S S m m m m m m =++=-+++=-++=--+. 5分当m=2时,S 的值最大,最大值为92; 6分解法二:作CE ∥y 轴,交AB 于点E. ∵A 的坐标为(-1,0),∴OA=1.点C 为第一象限抛物线上一动点.点C 的横坐标为m ,∴C (m ,223m m -++),E (m ,-2m-2).∴CE=2223(22)45m m m m m -++---=-++. 4分∴2211191(45)(2)2222ABC ACE BECSSSCE OA m m m =-=⋅=⨯⨯-++=--+. 5分 当m=2时,S 的值最大,最大值为92; 6分解法三:作CD ∥x 轴,交AB 于点D. 一次函数y=-2x-2与y 轴交于点B.则OB=2,点C 为第一象限抛物线上一动点.点C 的横坐标为m , ∴C (m ,223m m -++).把223y m m =-++代入y=-2x-2,解得x=21522m m --, ∴CD=m-(21522m m --)=215222m m -++. 4分∴221115192(2)(2)222222ABC BCD ADC S S S CD OB m m m =-=⋅=⨯⨯-++=--+. 5分当m=2时,S 的值最大,最大值为92; 6分解法四:构造矩形CC 1C 2C 3. (或构造梯形BCC 3C 2) 一次函数y=-2x-2与y 轴交于点B.则OB=2, ∵A 的坐标为(-1,0),∴OA=1.点C 为第一象限抛物线上一动点.点C 的横坐标为m , 设点C 的纵坐标为n ,∴223n m m =-++,CC 1=n+2,CC 3=m+1,C 3A=m ,AC 2=2,C 2B=1,BC 1=m. 4分1111(1)(2)(2)(1)2112222ABCSm n m n n m n m =++-+-+-⨯⨯=++ =2215192(2)2222m m m -++=--+. 5分当m=2时,S 的值最大,最大值为92; 6分解法五:设过点C 平行直线AB 的直线l 的解析式为y=-2x+b ,由直线l 与抛物线解析式组成方程组,消掉y ,由△=0,求b 的值.(余下略)(3)点M 的坐标为(0,-1)、(0,5)、(0,3172+)或(0,3172-).10分(对一个得一分)。

【全国区级联考】广东省汕头市金平区2021届九年级(上)期末数学试卷

【全国区级联考】广东省汕头市金平区2021届九年级(上)期末数学试卷
(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
参考答案
1.D
【分析】
把x=1代入x2+px+1=0,即可求得p的值.
【详解】
把x=1代入把x=1代入x2+px+1=0,得
1+p+1=0,
A.18°B.36°C.54°D.72°
9.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送2070张照片.如果全班各有x名同学,根据题意,列出方程为( )
A.x(x﹣1)=2070B.x(x﹣1)=2070×2C.x(x+1)=2070D.2x(x+1)=2070
10.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有( )个.
【全国区级联考】广东省汕头市金平区2018届九年级(上)期末数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知x=1是方程x2+px+1=0的一个实数根,则p的值是( )
A.0B.1C.2D.﹣2
2.下列图形中,是中心对称图形,但不是轴对称图形的是( )
16.如图,正方形 的边长为 , 边在 轴负半轴上,反比例函数 的图象经过点 和 边中点 ,则 的值为__________.
三、解答题
17.解方程:x2-2x-3=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷一、选择题(本大题10小题,每题3分,共30分)在每小题列出的四个选项中,只有一个是正确.1.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1B.﹣3C.5D.12.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.3.下列事件中,必然事件是()A.抛一枚硬币,正面朝上B.打开电视频道,正在播放《今日视线》C.射击运动员射击一次,命中10环D.地球绕着太阳转4.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5B.7.5C.9.5D.85.双曲线y=在第一、三象限内,则k的取值范围是()A.k>0B.k<0C.k>1D.k<16.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm27.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°8.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k<﹣C.k<3D.k>﹣39.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=17810.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D 方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.方程2x2﹣6=0的解是.12.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.13.抛物线y=3(x﹣2)2+5的顶点坐标是.14.若点(p,2)与(﹣3,q)关于原点对称,则p+q=.15.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.16.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为cm.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2﹣6x﹣40=018.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?19.已知:AB为⊙O的直径.(1)作OB的垂直平分线CD,交⊙O于C、D两点;(2)在(1)的条件下,连接AC、AD,则△ACD为三角形.四、解答题(二)(本大题共3小题,每小题6分,共21分)20.小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?21.某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?22.如图,将矩形ABCD绕点C旋转得到矩形EFCG,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.五、解答题(三)(本大题共3小题,每题9分,共27分)23.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.24.如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB 于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O 的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.25.已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.2018-2019学年广东省汕头市金平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每题3分,共30分)在每小题列出的四个选项中,只有一个是正确.1.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1B.﹣3C.5D.1【解答】解:把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选:D.2.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.【解答】解:A、不是中心对称图形的卡片,故此选项错误;B、是中心对称图形的卡片,故此选项正确;C、不是中心对称图形的卡片,故此选项错误;D、不是中心对称图形的卡片,故此选项错误;故选:B.3.下列事件中,必然事件是()A.抛一枚硬币,正面朝上B.打开电视频道,正在播放《今日视线》C.射击运动员射击一次,命中10环D.地球绕着太阳转【解答】解:A、抛一枚硬币,正面朝上是随机事件;B、打开电视频道,正在播放《今日视线》是随机事件;C、射击运动员射击一次,命中10环是随机事件;D、地球绕着太阳转是必然事件;故选:D.4.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5B.7.5C.9.5D.8【解答】解:连接OA,∵AB⊥OD,∴AC=AB=4,设⊙O的半径为x,则OC=x﹣1,由勾股定理得,OA2=AC2+OC2,即x2=16+(x﹣1)2,解得,x=,答:⊙O的半径为.故选:A.5.双曲线y=在第一、三象限内,则k的取值范围是()A.k>0B.k<0C.k>1D.k<1【解答】解:∵函数图象在第一、三象限,∴k﹣1>0,解得k>1.故选:C.6.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm2【解答】解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.7.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°【解答】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.8.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k<﹣C.k<3D.k>﹣3【解答】解:∵关于x的方程x2﹣2x+3k=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×3k>0,解得:k<.故选:A.9.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=178【解答】解:设横、纵道路的宽分别为x米、2x米,则每块草坪的相邻两边的长度分别为(50﹣2x)米、(30﹣x)米,根据题意得:(50﹣2x)×(30﹣x)=178×6,故选:A.10.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D 方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A.B.C.D.【解答】解:根据两个动点的运动状态可知(1)当0≤t≤1时,S=,此时抛物线开口向上;(2)当1≤t≤2.5时,S==3,此时,函数值不变,函数图象为平行于x轴的线段;(3)当2.5≤t≤3.5时,S=×3×(7﹣2t))=﹣t+.S随t的增大而减小.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)11.方程2x2﹣6=0的解是x1=,x2=﹣.【解答】解:方程2x2﹣6=0,即x2=3,开方得:x=±,解得:x1=,x2=﹣,故答案为:x1=,x2=﹣12.在一个不透明的布袋中装有4个白球和n个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=12.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=,解得:n=12,故答案为:12.13.抛物线y=3(x﹣2)2+5的顶点坐标是(2,5).【解答】解:∵y=3(x﹣2)2+5,∴抛物线顶点坐标为(2,5),故答案为:(2,5).14.若点(p,2)与(﹣3,q)关于原点对称,则p+q=1.【解答】解:∵点(p,2)与(﹣3,q)关于原点对称,∴p=3,q=﹣2,∴p+q=3﹣2=1.故答案为:1.15.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为4.【解答】解:设D(x,y),∵反比例函数y=的图象经过点D,∴xy=2,∵D为AB的中点,∴B(x,2y),∴OA=x,OC=2y,∴S矩形OABC=OA•OC=x•2y=2xy=2×2=4,故答案为:4.16.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为3cm.【解答】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2﹣6x﹣40=0【解答】解:x2﹣6x﹣40=0(x﹣10)(x+4)=0,∴x﹣10=0或x+4=0,∴x1=10,x2=﹣4.18.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?【解答】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮感染中平均一台电脑感染11台.19.已知:AB为⊙O的直径.(1)作OB的垂直平分线CD,交⊙O于C、D两点;(2)在(1)的条件下,连接AC、AD,则△ACD为等边三角形.【解答】解:(1)如图,CD为所作;(2)连接OC、OD、BC、BD,如图,∵CD垂直平分OB,∴OC=CB,DO=DB,∴OC=BC=OB=BD,∴△OCB、△OBD都是等边三角形,∴∠ABC=∠ABD=60°,∴∠ADC=∠ACD=60°,∴△ACD为等边三角形.故答案为等边.四、解答题(二)(本大题共3小题,每小题6分,共21分)20.小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?【解答】解:(1)画树状图如下:(2)不公平,理由如下:由树状图知共有12种等可能结果,其中两种颜色相同的有4种结果,两种颜色不同的有8种结果,所以小明获胜的概率为=,小亮获胜的概率为=,因为>,所以小亮获胜的可能性大,故此游戏不公平.21.某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?【解答】解:(1)由题意:w=(﹣2x+240)•x﹣2200=﹣2x2+240x﹣2200(50≤x≤80).(2)w=﹣2x2+240x﹣2200=﹣2(x2﹣120x)﹣2200=﹣2(x﹣60)2+5000.∵x是整数,50≤x≤80,∴当x=60时,w取得最大值,最大值为5000.答:影院将电影票售价定为60元/张时,每天获利最大,最大利润是5000元.22.如图,将矩形ABCD绕点C旋转得到矩形EFCG,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.【解答】解:(1)证明:∵矩形FECG由矩形ABCD旋转得到,∴FE=AB=DC,∠F=∠EDC=90°,FH∥EC,∴∠FHE=∠CED.在△EDC和△HFE中,,∴△EDC≌△HFE(AAS);(2)∵△EDC≌△HFE,∴EH=EC.∵矩形FECG由矩形ABCD旋转得到,∴EH=EC=BC,EH∥BC,∴四边形BEHC为平行四边形.∵∠BCE=60°,EC=BC,∴△BCE是等边三角形,∴BE=BC,∴四边形BEHC是菱形.五、解答题(三)(本大题共3小题,每题9分,共27分)23.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x ﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.【解答】解:(1)设点B的坐标为(a,0),∵∠ABO=90°,AB=BO,∴点A的坐标为(a,﹣a),∵点A在直线y=﹣3x﹣4上,∴﹣a=﹣3a﹣4,解得,a=﹣2,即点A的坐标为(﹣2,2),∵点A在反比例函数y=上,∴k=﹣4;(2)∵点D与点O关于AB对称,∴点D的坐标为(﹣4,0)∴OD=4,∴DB=BA=2,则∠ADB=45°,∵直线y=﹣3x﹣4交y轴于C点,∴点C的坐标为(0,﹣4),∴OD=OC,∴∠ODC=45°,∴∠ADC=∠ADB+∠ODC=90°,即△ACD是直角三角形;(3)设点E的坐标为(m,﹣),∵S△OCE=S△OCD,∴×4×4=×4×(﹣m),解得,m=﹣4,∴点E的坐标为(﹣4,1).24.如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB 于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O 的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.【解答】证明(1):∵AB是⊙O的直径,∴∠ADB=∠ADB=90°,∵CD平分∠ACB,∴=,∴AD=BD,∴△ABD是等腰直角三角形.(2)由旋转的性质得,∠EDE'=90°,DE=DE',∵∠ADB=90°,∴∠ADE=∠BDE',∵AD=BD,∴△ADE≌△BDE'(SAS),∴∠DAE=∠DBE',∵∠EAD=∠DCB=45°,∠ABD=∠DCA=45°,∴∠OBE'=∠ABD+∠DBE'=90°,∴BE′为⊙O的切线;(3)解:∵点F为的中点,∴∠FAD=∠DAB=22.5°,取AG的中点H,连结DH,∵∠ADB=90°,∴DH=AH=GH,∴∠ADH=∠FAD=22.5°,∴∠DHF=∠ADH+∠FAD=45°,∵∠AFD=∠ACD=45°,∴∠DHF=∠AFD,∴DH=DF=1,∴AG=2DH=2.25.已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.【解答】解:(1)抛物线的了表达式为:y=(x﹣4)(x+2)=x2﹣x﹣4;(2)设点D(m,m2﹣m﹣4),S=S△OBC+S△OCD+S△ODA=AO×y D=+=[﹣(m2﹣m﹣4)]=﹣(m﹣2)2+16,当m=2时,S的最大值为16;(3)∠BPC=45°,则BC对应的圆心角为90°,如图作圆R,则∠BRC=90°,圆R交函数对称轴为点P,过点R作y轴的平行线交过点C与x轴的平行线于点N、交x轴于点M,设点R(m,n).∵∠BMR+∠MRB=90°,∠MRB+∠CRN=90°,∴∠CRN=∠MBR,∠BMR=∠RNC=90°,BR=RC,∴△BMR≌△RNC(AAS),∴CN=RM,RN=BM,即m+2=n+4,﹣n=m,解得:m=1,n=﹣1,即点R(1,﹣1),即点R在函数对称轴上,圆的半径为:=,则点P的坐标为:(1,﹣1+)或(1,﹣1﹣).。

相关文档
最新文档