对概率论与数理统计的认识
哈工大概率论与数理统计第三版
![哈工大概率论与数理统计第三版](https://img.taocdn.com/s3/m/40d02c5efbd6195f312b3169a45177232f60e438.png)
哈工大概率论与数理统计第三版《哈工大概率论与数理统计第三版》是一本深入浅出的数学基础教材,它囊括了概率论和数理统计的相关概念、原理和应用。
本书内容丰富,涵盖了多个重要的概念和定理,对于深入理解和掌握概率论和数理统计的知识具有重要意义。
在接下来的文章中,我将以从简到繁的方式,逐步深入探讨《哈工大概率论与数理统计第三版》中的一些重要内容和理论,帮助读者更好地理解这本教材,并对概率论和数理统计有一个全面、深刻的认识。
一、概率论的基本概念和原理在《哈工大概率论与数理统计第三版》中,概率论的基本概念和原理是学习的重点之一。
概率论作为一门独立的数学学科,是研究随机现象的规律性和统计规律的一门学科,其理论和方法对于解决实际问题具有重要的应用价值。
教材中介绍了概率的定义、性质和常见的概率分布,如离散型随机变量和连续型随机变量的概率分布,以及它们的性质和应用。
通过对这些基本概念和原理的学习,读者可以建立起对概率论的基本认识和理解。
二、数理统计的基本概念和方法除了概率论,数理统计是另一个重要的学习内容。
数理统计是利用数学的方法对统计数据进行分析和推断的一门学科,是概率论的一种应用。
在《哈工大概率论与数理统计第三版》中,数理统计的基本概念和方法也得到了详细的介绍和阐述。
教材中介绍了样本和总体的概念,以及常见的统计推断方法,如点估计、区间估计和假设检验等。
通过对这些内容的深入学习,读者可以了解数理统计的基本原理和方法,有助于他们更好地应用数理统计的知识进行实际问题的分析和解决。
三、概率论与数理统计的应用除了学习概率论和数理统计的基本概念和原理,教材中还介绍了概率论和数理统计在实际问题中的应用。
在金融、医学、工程等领域,概率论和数理统计的方法被广泛应用于数据分析、风险评估、质量控制等方面。
通过学习这些应用实例,读者可以更好地理解概率论和数理统计的实际应用,并将理论知识转化为实际工作中的技能。
总结回顾通过本文的阐述,我希望读者对《哈工大概率论与数理统计第三版》有了更深入的了解和认识。
概率论与数理统计
![概率论与数理统计](https://img.taocdn.com/s3/m/d6f29852571252d380eb6294dd88d0d233d43c02.png)
概率论与数理统计概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:P(A|B) = P(AB)/P(B)其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
学习概率论与数理统计的意义
![学习概率论与数理统计的意义](https://img.taocdn.com/s3/m/13162723f68a6529647d27284b73f242326c3144.png)
学习概率论与数理统计的意义
生活中最重要的问题,其中绝大多数在实质上只是概率的问题。
概率论是生活真正的领路人,如果没有对概率的某种估计,那么我们就寸步难行,无所作为。
概率统计理论与方法的应用几乎遍及所有科学技术领域、工农业生产和国民经济的各个部门中。
例如气象、水文、地震预报、人口控制及预测都与概率论紧密相关;产品的抽样验收,新研制的药品能否在临床中应用,均需要用到假设检验;寻求最佳生产方案要进行实验设计和数据处理;电子系统的设计,火箭卫星的研制与发射都离不开可靠性估计;处理通信问题,需要研究信息论。
统计学、概率论和数理统计的区别和联系
![统计学、概率论和数理统计的区别和联系](https://img.taocdn.com/s3/m/d05cfd44c950ad02de80d4d8d15abe23492f035d.png)
统计学、概率论和数理统计的区别和联系今天我们就来说说统计学、概率论和数理统计为什么要说他们呢,因为这⼏个字眼⼤家肯定是已经⽆数次地碰到过了,但他们究竟代表了什么,以及他们之间的区别与联系,相信⼤家平时肯定是没怎么关注过,⽽是更多的混为⼀谈。
然⽽今天,随着⼤数据与数据科学的热⽕朝天,这⼏个词重新被⼤家给予了⾼度关注,特别是统计学。
原因也很⾃然:分析思维是数据科学的核⼼思维⽅式,⽽分析思维就是关于计算与统计的思维。
统计思维⽣长的⼟壤就是概率论和数理统计。
1、统计学⾸先说说统计学,关于这个词其实是个历史遗留问题。
因为从统计学的发展历史来看,最早的统计学和国家经济学有密切的关系。
统计学的英⽂是“statistic”,其实它是源于意⼤利⽂的“stato”,意思是“国家”、“情况”,也就是后来英语⾥的state(国家),在⼗七、⼗⼋世纪,统计学很多时候都是以经济学的姿态出现的。
根据维基百科:By the 18th century, the term 'statistics' designated the systematic collection of demographic and economic data by states. For at least two millennia, thesedata were mainly tabulations of human and material resources that might betaxed or put to military use.统计学最开始来源于经济学和政治学。
17世纪的经济学家William Petty和他的《政治算术》⼀书揭开了统计学的起源(维基百科):The birth of statistics is often dated to 1662, when John Graunt, along with William Petty, developed early human statistical and census methods that provided a framework for modern demography. He produced the first life table, giving probabilities of survival to each age. Hisbook Natural and Political Observations Made upon the Bills of Mortality usedanalysis of the mortality rolls to make the first statistically basedestimation of the population of London.所以从⼀开始,统计学就跟经济学、政治学密不可分的。
概率论与数理统计学习心得(3篇)
![概率论与数理统计学习心得(3篇)](https://img.taocdn.com/s3/m/b8de8d16e55c3b3567ec102de2bd960591c6d95c.png)
概率论与数理统计学习心得概率论与数理统计是数学中非常重要的一门学科,它研究的是不确定性和统计规律。
在我的学习过程中,我深刻认识到它对于科学研究和实际应用的重要性。
通过学习概率论与数理统计,我对于随机事件的发生规律有了更加深入的了解,并且能够运用统计方法对真实世界中的数据进行分析,提取有用的信息。
以下是我学习概率论与数理统计的一些心得体会。
首先,在学习概率论方面,我深刻认识到概率的本质是对随机事件发生的可能性的度量。
学习概率论的过程中,我充分了解了概率的基本概念,诸如样本空间、随机事件、事件的概率等等。
同时,我也学习了概率的基本运算规则,例如事件的并、交、差等。
通过理论知识的学习和实例的练习,我逐渐掌握了如何计算复杂事件的概率,比如利用条件概率、全概率公式和贝叶斯公式等。
这些知识使我能够对不确定性进行有条理的量化,并且能够运用这些方法解决实际问题。
在学习数理统计方面,我认识到统计是从数据中获取信息的一种科学方法。
学习数理统计的过程中,我了解了统计的基本概念、统计数据的处理和统计推断等内容。
学习统计的基本方法包括数据的整理、描述统计和推断统计。
通过学习数据整理的方法,我能够对收集到的数据进行清洗、整理和概括。
在描述统计方法的学习中,我学会了如何用图表、统计指标和数值特征等来描述数据的特征和规律。
在推断统计的学习中,我了解了如何通过样本来推断总体的统计特征,并对所得到的统计结果进行合理的推断和判断。
这些方法使我能够从大量的数据中提取有用的信息,并对数据的真实情况进行合理的判断。
此外,学习概率论与数理统计还使我了解了一些常见的概率分布和统计分布。
在学习概率分布的过程中,我接触到了一些经典的概率分布,如二项分布、泊松分布、正态分布等。
通过学习这些分布的特点和性质,我能够对实际问题中的随机现象建立起合理的数学模型,并进行定量分析和预测。
在学习统计分布的过程中,我了解了一些常见的统计分布,如t分布、卡方分布、F分布等。
浅谈概率论与数理统计在生活中的应用
![浅谈概率论与数理统计在生活中的应用](https://img.taocdn.com/s3/m/6e392538178884868762caaedd3383c4bb4cb430.png)
浅谈概率论与数理统计在生活中的应用浅谈概率论与数理统计在生活中的应用一、引言概率论与数理统计是数学的重要分支,它们在生活中扮演着至关重要的角色。
概率论研究的是随机现象的规律性,而数理统计则通过对已知数据进行推理和分析来得出结论。
这两个学科的知识可以帮助我们更好地理解生活中的各种现象,并能够提供科学的决策依据。
本文将从多个角度探讨概率论与数理统计在生活中的应用。
二、金融投资中的风险控制金融投资是人们追求财富增值的一种方式,而风险控制是成功投资的关键。
概率论与数理统计的方法可以帮助投资者在制定投资策略时更全面地考虑风险因素。
例如,通过分析历史股价数据,可以使用统计模型来预测未来股价的波动情况,从而做出相应的投资决策。
此外,概率论还可以帮助投资者评估不同投资组合的风险和回报,选择最优的投资标的。
三、医学诊断中的准确判断在医学诊断中,准确判断患者的病情和预测疾病发展趋势对患者的治疗和康复至关重要。
概率论与数理统计的方法可以提供科学的依据来辅助医生进行准确判断。
例如,在进行疾病筛查时,可以通过统计模型计算出患病的概率,进而指导医生进行深入的检查和诊断。
此外,根据大量病例数据的统计分析,可以找到某种疾病的高危因素,并在早期进行预防和干预。
四、市场调查与产品开发市场调查和产品开发是企业决策的重要环节。
概率论与数理统计的方法可以帮助企业分析市场需求、预测产品销售量,并评估产品的风险与效益。
例如,通过抽样调查与统计分析,可以了解消费者对某种产品的需求状况,进而指导企业进行产品定位和市场营销策略的制定。
此外,概率论与数理统计还可以帮助企业评估产品的质量与可靠性,确保产品符合市场需求。
五、社会决策与公共政策制定社会决策和公共政策制定时需要考虑到各种不确定因素和风险。
概率论与数理统计的方法可以为决策者提供客观、科学的参考。
例如,在社会福利政策制定中,可以通过模型推断分析不同政策方案对于受益人的影响,从而选择最优的政策方案。
概率论与数理统计(完整版)
![概率论与数理统计(完整版)](https://img.taocdn.com/s3/m/4a5471936c175f0e7dd13759.png)
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称为 A与B的和事 . 件
即AB ,中至少有一 ,称个 为 A与 发 B的 生和 ,记AB.
可列个A事 1, A2件 ,的和事件记 Ak.为
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质: 性1质 . P()0.
概率论与数理统计知识点总结免费超详细版
![概率论与数理统计知识点总结免费超详细版](https://img.taocdn.com/s3/m/c3b61b5e02d8ce2f0066f5335a8102d276a261ca.png)
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。
以下是对概率论与数理统计知识点的超详细总结。
一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
随机事件通常用大写字母 A、B、C 等来表示。
(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。
(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。
2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。
3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。
4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。
5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。
6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。
(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。
2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。
3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。
概率论与数理统计知识点总结(超详细版)
![概率论与数理统计知识点总结(超详细版)](https://img.taocdn.com/s3/m/7d7140de6c85ec3a86c2c511.png)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论和数理统计(第三学期)第7章数理统计的基本概念
![概率论和数理统计(第三学期)第7章数理统计的基本概念](https://img.taocdn.com/s3/m/942495c6e518964bce847c57.png)
n i1
i
1 n
n
Ei
i1
D
D 1 n
n i 1
i
1 n2
n
Di
i 1
2
n
2
S~ 1 n
n i 1
i
2
1 n
n i 1
i2 2i
2
1 n
n
i2
i 1
2
n
i
i 1
n
2
1 n
n
i2
i 1
2
2
2
1 n
n
i2
i 1
2
E S~2
E
1 n
n
i2
i 1
23
.209
2
2 0.95
20
10
.851
当自由度n 45时,可用下面近似公式去求2 n:
x2 n
1 2
u
2
2n 1
例3
求
2 0.05
60 .
解
2 0.05
60
1 2
u0.05
2
2 60 1
1 1.645
2
119 78.798
2
3、t分布的上侧分位点
对于给定的α(0<α<1),使
2
e
xi 2 2
2
(2
) e 2
n 2
1
2 2
n i1
xi 2
在数理统计中,总体的分布往往是未知的,需 要通过样本找到一个分布来近似代替总体分布。
§7.3 分布的估计
频率分布 例 某炼钢厂生产的钢由于各种因素的影响,各炉
钢的含硅量可以看作是一个随机变量,现记录了 120炉钢的含硅量百分数,求出这个样本的频数分 布与频率分布。
概率论与数理统计
![概率论与数理统计](https://img.taocdn.com/s3/m/8b53eab71a37f111f1855b4b.png)
前言概率论与数理统计是研究自然界及人类社会活动中大量随机现象规律性的一个数学分支,它已广泛地应用于自然科学、社会科学、工程技术、军事和工农业生产中,并且与其它数学学科互相渗透或结合.概率论与数理统计不仅是数学专业学生必修的一门基础课,而且是经济学、管理学专业学生的一门基础课,应用概率论与数理统计的基本原理和方法处理实际问题的能力也是从事经济管理工作的人员所不可缺少的.由于学习概率论与数理统计需要预先掌握较多的数学知识,因而数学基础较弱的学生往往感到学习困难. 本书编者从事概率论与数理统计的教学工作多年,十分了解学生学习过程中易于混淆的概念和难以掌握的分析计算,有意编写一本既包含概率论与数理统计的基础知识和常用方法,又简洁明了易于教学和自学的经管类教材. 使学生通过本课程的学习,掌握研究随机现象的基本思想和方法,并且具备一定的分析问题和解决问题的能力.本书是根据经济管理专业概率论与数理统计教学大纲编写的教材,以介绍概率论与数理统计基本知识和方法为主,同时注意它的直观背景和实际意义.全书由两大部分组成:第一部分(第一章~第五章)是概率论,包括概率的基本概念、随机变量、随机向量、数字特征、大数定律和中心极限定理.第二部分(第六章~第九章)是数理统计,介绍数理统计最基本的概念和方法,包括抽样分布、参数估计、假设检验、方差分析与回归分析.本书的特点是:内容精简,删去了因教学时数限制及数学知识准备不足而不能讲授的部分;叙述清晰,强调基本概念和原理的理解,强调方法的实际背景和方法运用的基本步骤;例题和习题贴近经济管理领域的实际问题,力求提高学生学习兴趣的同时,对知识的应用有所启发和提示;书后附有参考答案,利于学生对学习情况进行自我检测.本书可用于经济学、管理学及部分工科专业的概率论与数理统计的教学,对从事经济管理工作的人员能以概率统计中的思想方法思考和解决实际问题亦有帮助.本书编者多年讲授概率论与数理统计这门课程,具有丰富的教学经验. 本书是在王熙照教授直接指导下,在其编著的《概率论与数理统计》的基础上,几经讲授和修改编写而成的.王熙照教授对全书及其细节都提出了许多宝贵意见,在此,特向王教授表示深深的谢意.编者在编写过程中参阅了多本教材,并采用了其中的部分例题与习题,在此一并向原作者表示感谢.由于编者水平所限,书中定有许多不妥之处,恳请读者批评指正.郭迎春2014年1月于河北大学目录前言第1章随机事件与概率§1.1 随机事件§1.2 随机事件的概率§1.3 条件概率与乘法公式§1.4 全概率公式与逆概率公式§1.5 事件的独立性§1.6独立试验序列习题一第2章随机变量及其分布§2.1 随机变量的概念§2.2 离散型随机变量§2.3 连续型随机变量§2.4 随机变量的分布函数§2.5 随机变量函数的分布习题二第3章随机向量及其分布§3.1 多维随机向量及其分布函数§3.2 二维随机向量及其分布§3.3 边缘分布§3.4 随机变量的独立性§3.5 二维随机向量函数的分布§3.6 条件分布习题三第4章数字特征§4.1 数学期望§4.2 方差§4.3 随机向量的数字特征§4.4 矩习题四第5章大数定律和中心极限定理§5.1 大数定律§5.2 中心极限定理习题五第6章抽样分布§6.1 统计量§6.2抽样分布习题六第7章参数估计§7.1 点估计§7.2 正态总体参数的区间估计习题七第8章假设检验§8.1 假设检验的基本概念§8.2 单个正态总体参数的假设检验*§8.3两个正态总体参数的假设检验习题八*第9章方差分析与回归分析初步§9.1方差分析§9.2 一元线性回归与最小二乘法§9.3 一元线性回归的显著性检验§9.4 一元线性回归的应用习题九附表附表1 二项分布累计概率值表附表2 泊松分布概率值表附表3 标准正态分布函数表附表4 t分布表分布表附表5 2附表6 F分布表习题答案第1章随机事件及其概率在自然界和人类社会生活中普遍存在着两类现象:一类是在一定条件下必然出现的现象,称为确定性现象. 例如:向上抛一颗石子必然下落,同性电荷互相排斥,等等. 另一类是在一定条件下我们无法准确预知其结果的现象,称为随机现象.例如:掷一枚硬币,可能出现正面或反面;观察某妇产科新生婴儿的性别,可能为男或女;检查一匹布上的疵点数,结果可能是{0,1,2,}中的某一个;将来某日某种股票的价格是多少,等等. 在对这类现象进行观察或试验时,有多种可能结果,且事先不能预知哪一个结果会发生.虽然随机现象具有偶然性和不确定性,但在对它们进行大量重复观察或试验时,随机现象会呈现出某种固有的规律性.比如,在多次重复掷一枚硬币的试验中,出现正面和反面的次数大约各占一半;持续大量的观察某地新生儿的性别,会发现新生儿男女比例基本固定;多次测量某个零件的直径,结果会稳定在某个数值附近,等等.这种在大量重复试验或观察中呈现出的固有规律性称为统计规律性.概率论和数理统计是研究随机现象统计规律性的一门数学学科.为了能够运用数学工具对随机现象进行分析,首先应该选择适当的数学语言描述随机现象,建立恰当的数学模型,为进一步研究随机现象打下基础.本章主要介绍概率论的基本概念---随机事件及其概率.§1.1 随机事件1.1.1 随机事件研究随机现象统计规律性的基本方法是对随机现象进行大量的重复试验或观察,这种观察或实验称为随机试验.例如:掷一枚硬币,观察出现正面还是反面;掷一颗骰子,观察向上的点数;用千分卡尺测量某个零件的直径;从一批产品中任取一件,观察其是合格品还是次品;等等.随机试验具有以下三个特点:(1) 在相同的条件下可以重复进行;(2) 每次试验的可能结果不止一个,并且事先知道试验的所有可能结果;(3) 每次试验之前不能预知哪一个结果会出现.通过随机试验来了解随机现象,首先应明确随机试验所有的可能结果.把随机试验E 的每个可能结果称为该随机试验的样本点,通常用ω表示;把所有样本点的集合称为随机试验的样本空间,通常用Ω表示.例 1 在掷一枚硬币的试验中,有两个可能的结果:出现正面和反面. 令H 表示出现正面,T 表示出现反面,则样本空间为{,}H T Ω=.例2 掷一枚骰子,观察出现的点数,所有可能的结果有6个,若用(1,2,,6)i i =表示出现i 点,则样本空间为{1,2,3,4,5,6}Ω=.例3 检测某液晶显示器上暗点的个数,所有可能的结果有可列无穷多个,该试验的样本空间为{0,1,2,}Ω=.例4 测试某个灯泡的使用寿命,则样本空间为{|,0}t t R t Ω=∈≥.例5观察某人向半径为20厘米的圆形靶子射击的弹着点的位置.假定没有脱靶的情形,以靶心为原点建立平面直角坐标系,则样本空间为222{(,)|20}x y x y Ω=+≤.在研究随机现象时,我们常会关心是否出现满足某种条件的样本点.例如,在检测液晶显示器暗点个数的试验中,常会关心暗点数是否超过某个规定的数目;在产品抽样检验时,常会关心抽出的次品数是否少于规定的次品数目,等等.这些样本点构成样本空间的子集.随机试验E 的样本空间Ω的子集称为随机事件,简称事件,通常用,,A B C 表示.在一次随机试验中,当且仅当某事件的一个样本点出现时,称该事件发生.如:在上述例1的随机试验中,{}A H =为一个事件,表示出现正面;在例2的随机试验中,{1,3,5}A =为一个事件,表示掷出了奇数点;在例3中,{0,1,,10}A =为一个事件,表示暗点数不超过10个;在例4中,{|1000}A t t =>为一事件,表示灯泡的使用寿命大于1000小时。
概率论与数理统计 思政
![概率论与数理统计 思政](https://img.taocdn.com/s3/m/b81b0fc5a1116c175f0e7cd184254b35effd1a58.png)
概率论与数理统计思政概率论与数理统计在现代社会中扮演着重要的角色,它们不仅仅是一门学科,更是一种思维方式和解决问题的工具。
作为当代大学生,我们接触到的大部分知识都是通过这两门学科进行学习和探索的。
然而,这些学科的学习并不仅仅是为了掌握知识,更重要的是培养我们的思政意识和价值观念。
概率论是研究随机现象发生的可能性的学科。
在我们的日常生活中,随机现象无处不在。
比如,我们购买彩票、参与抽奖、投资理财等,都涉及到概率的计算和分析。
通过学习概率论,我们可以更好地认识到自己的决策可能面临的风险和机会,从而做出更明智的选择。
概率论也可以帮助我们理解和应对突发事件,如自然灾害、疫情等,从而减少损失并提高自身的抵抗能力。
数理统计是研究如何从数据中提取信息和进行推断的学科。
在当今信息爆炸的时代,我们每天都会面对大量的数据。
如何从这些数据中找到有用的信息并进行分析,成为了我们必须面对的挑战。
数理统计帮助我们了解数据的分布规律、变异程度、相关性等,从而更好地理解现象背后的本质,并做出准确的判断和决策。
例如,在疫情防控中,数理统计可以帮助我们对病毒传播的规律和趋势进行预测,为决策者提供科学依据。
概率论与数理统计的学习也有助于培养我们的思政意识和价值观念。
在学习过程中,我们需要进行大量的数据分析和推理,这要求我们客观公正、理性思考。
同时,我们也会接触到一些社会问题,如贫富差距、环境污染、社会不公等,这些问题需要我们关注,并思考如何用概率论和数理统计的知识来解决。
通过思考这些问题,我们可以更好地认识到社会的现状和存在的问题,培养我们的社会责任感和担当精神。
概率论与数理统计的学习过程中,我们还需要进行大量的实践和应用。
通过实际问题的解决,我们可以将所学的知识与实际结合起来,并提高我们的分析和解决问题的能力。
例如,在统计调查中,我们需要设计合理的样本、选择适当的统计方法,并对数据进行分析和解释。
这些实践活动不仅可以巩固我们的理论知识,还可以培养我们的团队合作能力和创新精神。
《概率论与数理统计》笔记
![《概率论与数理统计》笔记](https://img.taocdn.com/s3/m/267d680aaf1ffc4ffe47aca2.png)
《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
概率论与数理统计知识点总结
![概率论与数理统计知识点总结](https://img.taocdn.com/s3/m/3eb2dba6ba1aa8114531d917.png)
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为
;
在已知X=x的条件下,Y的条件分布密度为
(7)独立性
一般型
F(X,Y)=FX(x)FY(y)
离散型
有零不独立
连续型
f(x,y)=fX(x)fY(y)
直接判断,充要条件:
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。
。
(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
离散型
已知 的分布列为
,
的分布列( 互不相等)如下:
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2)≥F(x,y1);
(3)F(x,y)分别对x和y是右连续的,即
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为
;
Y的边缘分布为
学习概率的心得体会
![学习概率的心得体会](https://img.taocdn.com/s3/m/c1d0d2c19b89680203d8256a.png)
学习概率的心得体会【篇一:概率论与数理统计学习心得】《概率论与数理统计》学习心得材料01 薛飞 2010021023随着学习的深入,我们在大二下学期开了《概率论与数理统计》这一门课。
概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。
学习这门课,不仅能培养我们的理论学习能力,也能在日后给科研及生活提供一种解决问题的工具。
说实话,这门课给我的第一印象就是它可能很难很抽象,很难用于实际生活中,并且对于这门课的安排与流程我并没有太确切的认识。
但在第一节课上听了老师的讲解我才理出了一些头绪。
这门课分为概率论与数理统计两个部分,其中概率论部分又是数理统计的基础。
我们所要课程就是围绕着这两大部分来学习的。
如今经过了一学期的学习,在收获了不少知识的同时也颇有些心得体会。
首先,它给我们提供了一种解决问题的的新方法。
我们在解决问题不一定非要从正面进行解决。
在某些情形下,我们可以进行合理的估计,然后再去解决有关的问题。
并且,概率论的思维方式不是确定的,而是随机的发生的思想。
其次,在这门课程学习中,我意识到其实概率论与数理统计才是与生活紧密相连的。
它用到高数的计算与思想,却并不像高数那样抽象。
而且老师所讲例题均与日常生产和生活相关,让我明白了日常生产中如何应用数学原理解决问题,我想假设检验便是很好的诠释。
最后,概率论与数理统计应该被视为工具学科,因为它对其他学科的学习是不可少的。
它对统计物理的学习有重要意义,同时对于学习经济学的人在探究某些经济规律也是十分重要的。
总之,通过学习这门课程,我们可以更理性的对待生活中的一些问题,更加谨慎的处理某些问题。
最后,感谢老师近半年来的辛苦教学与谆谆教导!【篇二:概率论与数理统计学习心得】概率论与数理统计学习心得摘要:通过概率论与数理统计这门课的学习,我掌握了基本的概率论的知识,当然学习中也曾遇到过很多的问题。
对概率论与数理统计的理解
![对概率论与数理统计的理解](https://img.taocdn.com/s3/m/0ecc5a6a3a3567ec102de2bd960590c69ec3d8ec.png)
对概率论与数理统计的理解
概率论和数理统计是数学中的两个重要分支之一。
概率论研究的
是随机现象和随机事件发生的规律,包括概率的概念、随机变量及其
分布、随机过程、极限定理等内容。
而数理统计则是在已知随机现象
发生的概率分布的基础上,对数据进行收集、描述、分析、推断等一
系列有关指标的研究,包括描述统计、参数估计、假设检验、方差分
析等内容。
概率论和数理统计的应用范围非常广泛,涵盖了自然科学、社会科学、经济学、工程技术等众多领域,是科学研究和实际应用中
必不可少的工具之一。
2024年学习概率与数理统计总结(三篇)
![2024年学习概率与数理统计总结(三篇)](https://img.taocdn.com/s3/m/1dd0059f0d22590102020740be1e650e53eacf7c.png)
2024年学习概率与数理统计总结概率与数理统计是一门研究随机现象及其规律的数学学科,广泛应用于自然科学、社会科学、工程技术等领域。
____年,我在学习概率与数理统计的过程中,深入理解了其基本概念、理论框架和应用方法,逐渐掌握了分析和解决实际问题的能力。
以下是我的总结,共____字。
第一部分:概率论基础1. 概率的基本概念1.1 随机试验与样本空间1.2 事件与事件的概率1.3 概率的性质与运算1.4 条件概率与独立性1.5 贝叶斯定理与全概率公式2. 概率分布2.1 随机变量与概率分布函数2.2 离散型随机变量与概率质量函数2.3 连续型随机变量与概率密度函数2.4 随机变量的函数的分布2.5 多维随机变量的联合分布3. 随机变量的数字特征3.1 期望、方差和标准差3.2 协方差、相关系数与独立性3.3 经典概型的数字特征4. 大数定律与中心极限定理4.1 大数定律的概念和类型4.2 中心极限定理的概念和形式第二部分:数理统计基础1. 统计推断的基本思想1.1 参数估计和假设检验的基本概念1.2 点估计与区间估计1.3 假设检验的步骤和原理2. 参数估计2.1 最大似然估计方法及其性质2.2 矩估计方法及其性质2.3 无偏估计与有效估计2.4 偏差和均方误差3. 置信区间估计3.1 单个参数的置信区间3.2 多个参数的置信区间4. 假设检验4.1 基本概念和步骤4.2 正态总体的参数假设检验4.3 非正态总体的参数假设检验4.4 假设检验中的错误和功效函数第三部分:数理统计方法1. 统计分布检验1.1 卡方分布及其检验1.2 t分布及其检验1.3 F分布及其检验2. 方差分析2.1 单因素方差分析2.2 多因素方差分析2.3 协方差分析3. 相关与回归分析3.1 相关分析3.2 简单线性回归分析3.3 多元线性回归分析4. 非参数统计方法4.1 秩和检验4.2 秩和检验4.3 秩和检验4.4 Wilcoxon检验第四部分:实际应用及案例分析1. 生物医学领域的概率与数理统计应用1.1 生物样本分析的统计方法1.2 临床试验的统计设计和分析1.3 遗传学研究中的统计方法2. 社会科学领域的概率与数理统计应用2.1 调查数据的统计分析2.2 社会行为与态度的统计分析2.3 教育统计与评估分析3. 工程技术领域的概率与数理统计应用3.1 可靠性分析与维修3.2 质量控制与工艺改进3.3 金融与风险管理的统计分析通过学习概率与数理统计,我深刻认识到其在实际问题中的重要性和应用广泛性。
概率论与数理统计 学习心得-概率统计总结心得
![概率论与数理统计 学习心得-概率统计总结心得](https://img.taocdn.com/s3/m/eb2736f7f80f76c66137ee06eff9aef8941e48a7.png)
—《概率论与数理统计》由于其理论及应用的重要性,目前在我国高等数学教育中,已与高等数学和线性代数渐成鼎足之势。
学生们在学习《概率论与数理统计》时通常的反映之一是“课文看得懂,习题做不出".概率论习题的难做是有名的.要做出题目,至少要弄清概念,有些还要掌握一定的技巧。
这句话说起来简单,但是真正的做起来就需要花费大量的力气。
不少学生在学习时,只注重公式、概念的记忆和套用,自己不对公式等进行推导。
这就造成一个现象:虽然在平时的做题过程中,自我感觉还可以;尤其是做题时,看一眼题目看一眼答案,感觉自己已经掌握的不错了,但一上了考场,就考砸。
这就是平时的学习过程中只知其一,不知其二,不注重对公式的理解和推导造成的。
比方说,在我们教材的第一章,有这样一个公式:A—B=bar(AB)=A—AB,这个公式让很多人迷糊,因为这个公式本身是错误的,在教材后面的例题1-15中证明利用了这个公式,很多人就用教材上这个错误的公式套用,结果看不懂.其实这个公式正确的应该是A-B=AbarB=A—AB.这是一个应用非常多的公式,而且考试的时候一般都会考的公式.在开始接触这个公式的时候就应该自己进行推导,发现这个错误,而不是看到这个公式之后,记住,然后运用到题目中去。
大家在看书的时候注意对公式的推导,这样才能深层次的理解公式,真正的灵活运用。
做到知其一,也知其二。
现在概率统计的考试试题难度,学员呼声不一,有的人感觉非常难,而且最让他们难以应对的是基础知识,主要涉及排列组合、导数、积分、极限这四部分。
现在就这部分内容给大家分析一下。
说这部分是基础,本身就说明这些知识不是概率统计研究的内容,他们只是在研究概率统计的时候不可缺少的一些工具。
即然这样,在考试中就不会对这部分内容作过多的考察,也会尽量避免大家在这些方面丢分.分析到这里,就要指出一些人在学习这门课的“战术失误”。
有些人花大量的力气学习微积分,甚至学习概率统计之前,将微积分重新学一遍,这是不可取的。
概率与数理统计学习心得(4篇)
![概率与数理统计学习心得(4篇)](https://img.taocdn.com/s3/m/626d2d9d370cba1aa8114431b90d6c85ec3a8834.png)
概率与数理统计学习心得概率与数理统计学是一门非常重要的数学学科,它涵盖了很多实际问题的解决方法和理论推导。
我在学习这门课程的过程中,充分体会到了它的重要性和应用价值。
以下是我在学习概率与数理统计学这门课程过程中的一些心得体会。
首先,概率与数理统计学是一门相对抽象的数学学科,需要基于一定的数学理论进行推导和证明。
在学习中,我注意到了概率与数理统计学与其他数学学科的联系,如微积分、线性代数等。
这些数学知识为概率与数理统计学的学习提供了基础,并且帮助我更好地理解与应用概率与数理统计学的方法和理论。
其次,概率与数理统计学强调对实际问题的建模和分析。
概率与数理统计学的方法可以帮助我们从现实问题中提取出关键信息,建立数学模型,并通过概率与统计方法进行分析。
在学习中,我通过大量的例题和实例,掌握了使用概率与统计方法解决实际问题的技巧和方法。
通过实际问题的建模和解决,我对概率与数理统计学的应用价值有了更深刻的认识。
第三,概率与数理统计学需要严谨的思维和逻辑推理能力。
在学习中,我发现很多概率与统计的定理和方法都需要进行严密的推导和证明。
一点的偏差或者错误都可能导致错误的结论。
因此,我在学习概率与数理统计学过程中,养成了审慎思考和严谨推理的习惯。
这不仅在学习中起到了积极的作用,而且在解决实际问题时也能够提高我的分析和判断能力。
最后,概率与数理统计学是数理科学的基础,也是很多其他学科的基础。
在学习过程中,我发现概率与数理统计学的思想和方法经常被应用到其他学科中,如物理学、经济学、计算机科学等。
因此,掌握概率与统计的基本理论和方法,不仅可以提高数学的应用能力,也可以为其他学科的学习提供帮助。
总之,概率与数理统计学是一门重要的数学学科,它的学习对于培养严谨的思维能力、提高数学应用能力和分析问题的能力具有重要意义。
通过学习,我对概率与数理统计学的重要性和应用价值有了更深刻的认识,也取得了一定的学习成果。
在今后的学习中,我将继续深入学习概率与数理统计学的相关知识,不断巩固和拓展所学的知识,并将其应用到实际问题的解决中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对概率论与数理统计的认识院系数学与信息工程系专业数学与应用数学姓名刘建丽对概率论与数理统计的认识摘要概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。
加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。
这是当前课程改革的大势所趋。
加强应用概率的意识,不仅仅是学习的需要,更是工作生活必不可少的。
人类认识到随机现象的存在是很早的,但书上讲的都是理论知识,我们不仅仅要学好理论知识,应用理论来实践才是重中之重。
学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。
关键字:概率论实践解决问题一,学科历史三四百年前在欧洲许多国家,贵族之间盛行赌博之风。
掷骰子是他们常用的一种赌博方式。
因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。
有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大。
17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。
这是什么原因呢?后人称此为著名的德·梅耳问题。
又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。
如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。
数学家们“参与”赌博。
参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。
他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。
这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。
帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。
而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。
1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。
这本书迄今为止被认为是概率论中最早的论著。
因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。
这一时期被称为组合概率时期,计算各种古典概率。
在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。
雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。
大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。
雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。
1713年,雅可布的著作《猜度术》出版。
遗憾的是在他的大作问世之时,雅可布已谢世8年之久。
雅可布的侄子尼古拉·贝努利也真正地参与了“赌博”。
他提出了著名的“圣彼得堡问题”:甲乙两人赌博,甲掷一枚硬币到掷出正面为一局。
若甲掷一次出现正面,则乙付给甲一个卢布;若甲第一次掷得反面,第二次掷得正面,乙付给甲2个卢布;若甲前两次掷得反面,第三次得到正面,乙付给甲22个卢布。
一般地,若甲前n -1次掷得反面,第n次掷得正面,则乙需付给甲2n-1个卢布。
问在赌博开始前甲应付给乙多少卢布才有权参加赌博而不致亏损乙方?尼古拉同时代的许多数学家研究了这个问题,并给出了一些不同的解法。
但其结果是很奇特的,所付的款数竟为无限大。
即不管甲事先拿出多少钱给乙,只要赌博不断地进行,乙肯定是要赔钱的。
随着18、19世纪科学的发展,人们注意到某些生物、物理和社会现象与机会游戏相似,从而由机会游戏起源的概率论被应用到这些领域中,同时也大大推动了概率论本身的发展。
法国数学家拉普拉斯将古典概率论向近代概率论进行推进,他首先明确给出了概率的古典定义,并在概率论中引入了更有力的数学分析工具,将概率论推向一个新的发展阶段。
他还证明了“煤莫弗——拉普拉斯定理”,把橡莫弗的结论推广到一般场合,还建立了观测误差理论和最小二乘法。
拉普拉斯于1812年出版了他的著作《分析的概率理论》,这是一部继往开来的作品。
这时候人们最想知道的就是概率论是否会有更大的应用价值。
是否能有更大的发展成为严谨的学科。
概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。
1906年,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。
1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。
如何把概率论建立在严格的逻辑基础上,这是从概率诞生时起人们就关注的问题,这些年来,好多数学家进行过尝试,终因条件不成熟,一直拖了三百年才得以解决。
20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。
在这种背景下柯尔莫哥洛夫1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。
他的公理化方法成为现代概率论的基础。
现在,概率论与以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及工农业生产等诸多领域中都起着不可或缺的作用。
直观地说,卫星上天,导弹巡航,飞机制造,宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报,海洋探险,考古研究等更离不开概率论与数理统计;电子技术发展,影视文化的进步,人口普查及教育等同概率论与数理统计也是密不可分的。
根据概率论中用投针试验估计π值的思想产生的蒙特卡罗方法,是一种建立在概率论与数理统计基础上的计算方法。
借助于电子计算机这一工具,使这种方法在核物理、表面物理、电子学、生物学、高分子化学等学科的研究中重要的作用。
概率论作为理论严谨,应用广泛的数学分支正展。
二,怎样学“概率论与数理统计”概率论与数理统计”是理工科大学生的一门必修课程,也是报考硕士研究生时数学试卷中重要内容之一[其中数学一占20%,数学三占25%,数学四占25%(概率论)].由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的.首先我们从历届考研成绩进行分析,观察一下高等数学与概率统计之间有什么差异其一是概率统计的平均得分率往往低于高等数学平均得分率.其二高等数学的得分分布呈两头小中间大现象,即低分和高分比例小,而中间分数段比例大,而概率统计的得分率却是低分多,中间分数少,高分较多的现象.为什么会发生上述差异?经分析发现虽然高等数学与概率统计同属数学学科,但各有自己的特点. 高等数学主要是通过学习极限、导数和积分等知识解决有关(一维或多维)函数的有关性质和图象的问题, 它与中学的数学有着密切联系而且有着相同的思想方法和解题思路.因而在概念上理解比较容易接受(当然也有比较抽象的内容如中值定理等).另一方面由于涉及许多具体初等函数,在求导数和积分时有许多计算上的技巧,需要大量练习以熟练掌握这些技巧,因而部分学生即使概念不十分清楚,但仍能正确解答相当多的试题,在考研中得到一定的成绩.而在“概率论与数理统计”的学习中更注重的是概念的理解,而这正是广大学生所疏忽的,在考研复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚.对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件.如函数y=f(x),当x确定后y有确定的值与之对应.而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错.由于基本概念没有搞懂,即使是十分简单的题目也难以得分.从而造成低分多的现象.另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算.因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因.根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果.。
.三,学习“概率论”要注意的要点1.在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。
这实际上是一个抽象过程。
正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画. 此外若对一切实数集合B,知道P(X∈B). 那么随机试验的任一随机事件的概率也就完全确定了.所以我们只须求出随机变量X的分布P(X∈B). 就对随机试验进行了全面的刻画.它的研究成了概率论的研究中心课题.故而随机变量的引入是概率论发展历史中的一个重要里程碑.类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会.2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间.而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布.只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解.又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)·P(B)>0,则A,B独立则一定相容.类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂.3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得.计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握.3. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过.因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去.这样往往能“事半功倍”.四,价值与实际应用概率统计理论与方法的应用几乎遍及所有科学技术领域、工农业生产和国民经济的各个部门中.例如:1.气象、水文、地震预报、人口控制及预测都与概率论紧密相关;2.产品的抽样验收,新研制的药品能否在临床中应用,均需要用到假设检验;3.寻求最佳生产方案要进行实验设计和数据处理;4.电子系统的设计, 火箭卫星的研制与发射都离不开可靠性估计;5.处理通信问题, 需要研究信息论6.探讨太阳黑子的变化规律时,时间序列分析方法非常有用;7.研究化学反应的时变率,要以马尔可夫过程来描述;8.在生物学中研究群体的增长问题时提出了生灭型随机模型,传染病流行问题要用到多变量非线性生灭过程;9.许多服务系统,如电话通信、船舶装卸、机器维修、病人候诊、存货控制、可用一类概率模型来描述,其涉及到的知识就是排队论.概率论与数理统计是一门在大学数学中极为重要的课程。