双曲线 题型归纳 含答案

合集下载

双曲线专题 (优秀经典练习题及答案详解)

双曲线专题 (优秀经典练习题及答案详解)

双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案)一、选择题1.以椭圆x 216+y 29=1的顶点为顶点,离心率为2的双曲线方程为( C )A .x 216-y 248=1B .y 29-x 227=1C .x 216-y 248=1或y 29-x 227=1D .以上都不对[解析] 当顶点为(±4,0)时,a =4,c =8,b =43,双曲线方程为x 216-y 248=1;当顶点为(0,±3)时,a =3,c =6,b =33,双曲线方程为y 29-x 227=1.2.双曲线2x 2-y 2=8的实轴长是( C ) A .2 B .22 C .4 D .42[解析] 双曲线2x 2-y 2=8化为标准形式为x 24-y 28=1,∴a =2,∴实轴长为2a =4.3.(全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( C )A .(2,+∞)B .(2,2 )C .(1,2)D .(1,2)[解析] 由题意得双曲线的离心率e =a 2+1a. ∴c 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C .4.(2018·全国Ⅲ文,10)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( D ) A .2 B .2 C .322D .22[解析] 由题意,得e =ca=2,c 2=a 2+b 2,得a 2=b 2.又因为a >0,b >0,所以a =b ,渐近线方程为x ±y =0,点(4,0)到渐近线的距离为42=22, 故选D .5.(2019·全国Ⅲ卷理,10)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( A ) A .324B .322C .22D .32[解析] 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 6.若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( A ) A .2 B .3 C .2D .233[解析] 设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3.根据点到直线的距离公式得2b a 2+b 2=3,解得b 2=3a 2. 所以C 的离心率e =ca =c 2a 2=1+b 2a2=2.故选A . 二、填空题7.(2019·江苏卷,7)在平面直角坐标系xOy 中,若双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是 [解析] 因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b 2=1(b >0),解得b =2,即双曲线方程为x 2-y 22=1,其渐近线方程为y =±2x .8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是__-12<k <0__.[解析] 双曲线方程可变形为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k2.又因为e ∈(1,2),即1<4-k2<2,解得-12<k <0. 三、解答题9.(1)求与椭圆x 29+y 24=1有公共焦点,且离心率e =52的双曲线的方程;(2)求实轴长为12,离心率为54的双曲线的标准方程.[解析] (1)设双曲线的方程为x 29-λ-y 2λ-4=1(4<λ<9),则a 2=9-λ,b 2=λ-4,∴c 2=a 2+b 2=5,∵e =52,∴e 2=c 2a 2=59-λ=54,解得λ=5, ∴所求双曲线的方程为x 24-y 2=1.(2)由于无法确定双曲线的焦点在x 轴上还是在y 轴上,所以可设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0).由题设知2a =12,c a =54且c 2=a 2+b 2,∴a =6,c =152,b 2=814.∴双曲线的标准方程为x 236-y 2814=1或y 236-x 2814=1.B 级 素养提升一、选择题1.如果椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,那么双曲线x 2a 2-y 2b 2=1的离心率为( A )A .52B .54C .2D .2[解析] 由已知椭圆的离心率为32,得a 2-b 2a 2=34,∴a 2=4b 2.∴a 2+b 2a 2=5b 24b 2=54.∴双曲线的离心率e =52. 2.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( C )A .m >12B .m ≥1C .m >1D .m >2[解析] 本题考查双曲线离心率的概念,充分必要条件的理解. 双曲线离心率e =1+m >2,所以m >1,选C .3.(多选题)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1、F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值可能是( BC ) A .-1 B .0 C .12D .1[解析] 由双曲线方程可知F 1(-3,0)、F 2(3,0), ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+(-y 0)(-y 0)<0, 即x 20+y 20-3<0,∴2+2y 20+y 20-3<0,y 20<13, ∴-33<y 0<33,故选BC . 4.(多选题)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( BD ) A .对任意的a ,b ,e 1>e 2 B .当a <b 时,e 1>e 2 C .对任意的a ,b ,e 1<e 2 D .当a >b 时,e 1<e 2[解析] 由条件知e 21=c 2a 2=1+b 2a2,e 22=1+⎝ ⎛⎭⎪⎫b +m a +m 2,当a >b 时,b +m a +m >ba ,∴e 21<e 22.∴e 1<e 2.当a <b 时,b +m a +m <ba ,∴e 21>e 22.∴e 1>e 2.所以,当a >b 时,e 1<e 2;当a <b 时,e 1>e 2. 二、填空题5.(2019·课标全国Ⅰ理,16)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__2__.[解析] 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,∵F 1B →·F 2B →=0,∴F 1B ⊥F 2B ,∴点B 在⊙O :x 2+y 2=c 2上,如图所示,不妨设点B 在第一象限,由⎩⎪⎨⎪⎧y =b ax x 2+y 2=c2a 2+b 2=c 2x >0,得点B (a ,b ),∵F 1A →=AB →,∴点A 为线段F 1B 的中点,∴A ⎝⎛⎭⎪⎫a -c 2,b 2,将其代入y =-b a x 得b 2=⎝⎛⎭⎫-b a ×a -c 2.解得c =2a ,故e =ca=2.6.已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为__y =±23x __.[解析] 由已知得9+a =13,即a =4,故所求双曲线的渐近线为y =±23x .三、解答题7.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.[解析] 因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),F 1(-c,0)、F 2(c,0).因为双曲线过点P (42,-3), 所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 所以c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1. 8.(2020·云南元谋一中期中)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,其斜率为-3,求双曲线的离心率.[解析] (1)由题意,ba =1,c =2,a 2+b 2=c 2,∴a 2=b 2=2,∴双曲线方程为x 22-y 22=1.(2)由题意,设A (m ,n ),则k OA =33,从而n =33m ,m 2+n 2=c 2,∴A (32c ,c 2), 将A (32c ,c 2)代入双曲线x 2a 2-y 2b 2=1得:3c 24a 2-c 24b 2=1,∴c 2(3b 2-a 2)=4a 2b 2,且c 2=a 2+b 2,∴(a 2+b 2)(3b 2-a 2)=4a 2b 2, ∴3b 4-2a 2b 2-a 4=0,∴3(b a )4-2(ba )2-1=0,∴b 2a 2=1从而e 2=1+b 2a 2=2,∴e = 2.。

双曲线基础题10道-含答案

双曲线基础题10道-含答案

近距离为 2,则双曲线 C 的方程为( )
A. y2 x2 1 34
C. y2 x2 1 49
B. y2 x2 1 9 16
D. y2 x2 1 9 34
3.若双曲线 1 :
x2 a2
y2 b2
1( a
0,b
0 )的离心率为
2,则双曲线
2

y2 b2
x2 a2
1
的离心率为( )
A. 2 3 3
F
,准线为 l
,且 l 与双曲线
C. 3
【分析】由双曲线的离心率公式求解即可.
D. 5
【详解】因为双曲线 1 的离心率 e1
a2 b2 a2
2 ,所以 b2
3a2 ,
所以双曲线 2 的离心率 e2
a2 b2 b2
4 2 3 . 33
故选:A
4.已知双曲线
x2 m
y2 8m
1(0
m
8 )的一条渐近线与直线
x
3 y 1平行,则此 3
F
,准线为 l
,且 l 与双曲线
:
x2 a2
y2 b2
1
( a 0,b 0 )的两条渐近线分别交于 A, B 两点,若△ABF 是正三角形,则双曲线 的
离心率为( )
A. 21
3
B. 7 2
C. 2 3 3
D. 7 3
试卷第 2页,共 3页
8.已知双曲线 C :
y2 a2
x2 b2
1a
6.若方程
2
x2 m
2
y2 m
1 表示双曲线,则
m
的取值范围是(

A. 2 m 2

(完整版)双曲线题型大全-

(完整版)双曲线题型大全-

双曲线题型一双曲线的定义和几何性质1.设双曲线的左、右焦点分别为. 若点P在双曲线上,且为锐角三角形,则|PF1|+|PF2|的取值范围是A.B.C.D.2.已知双曲线的一条渐近线截椭圆所得弦长为,则此双曲线的离心率为()A.B.C.D.3.已知直线与双曲线交于,两点,且线段的中点的横坐标为1,则该双曲线的离心率为()A.B.C.D.变式:4.已知点为双曲线的左右焦点,点P在双曲线C的右支上,且满足,则双曲线的离心率为()A.B.C.D.5.已知双曲线的虚轴长是实轴长的2倍,则双曲线的标准方程为()A.B.C.D.,则双曲线方程为()A.B.C.D.7.在下列双曲线方程中,表示焦点在y轴上且渐近线方程为的是A.B.C.D.题型二双曲线的离心率问题8.已知点为双曲线右支上一点,点分别为双曲线的左右焦点,点是的内心(三角形内切圆的圆心),若恒有成立,则双曲线的离心率取值范围是()A.B.C.D.9.设、是双曲线的左、右两个焦点,若双曲线右支上存在一点P,使(为坐标原点)且则的值为()A.B.2C.D.310.已知双曲线的离心率为,焦点到渐近线的距离为,则此双曲线的焦距等于()A.B.C.D.11.设F1,F2是双曲线(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使()·=0(O为坐标原点),且|PF1|=|PF2|,则双曲线的离心率为()A.B.+1C.D.+1变式:12.已知、分别为双曲线的左、右焦点,以原点为圆心,半焦距为半径的圆交双曲线右支于、两点,且为等边三角形,则双曲线的离心率为()A.B.C.D.13.若双曲线的离心率大于,则的取值范围为()A.B.C.D.今日作业14.若双曲线的渐近线与圆相切,则的渐近线方程为__________.15.设、分别是双曲线的左、右焦点,点在双曲线上,若,的面积为,且,则该双曲线的离心率为_____________.10.椭圆的离心率为,其右焦点到椭圆外一点的距离为,不过原点....的直线与椭圆相交于,两点,且线段的长度为.(1)求椭圆C的方程;(2)求面积的最大值.参考答案1.A【解析】【分析】由题意画出图形,不妨设P在第一象限,P点在P1与P2之间运动,求出∠PF2F1和∠F1PF2为直角时|PF1|+|PF2|的值,可得△F1PF2为锐角三角形时|PF1|+|PF2|的取值范围.【详解】△F1PF2为锐角三角形,不妨设P在第一象限,P点在P1与P2之间运动,如图,当P在P1处,∠F1P1F2为=90°,∴S=|F1F2|•|y|=|P1F1|•|P1F2|,由|P1F1|2+|P1F2|2=|F1F2|2,|P1F1|﹣|P1F2|=2,可得|P1F1|•|P1F2|=6,此时|P1F1|+|P1F2|=2,当P在P2处,∠P2F1F2为=90°,x=2,易知y=3,此时|P2F1|+|P2F2|=2|P2F2|+2=8,∴△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是(2,8),【点睛】本题考查双曲线的简单性质,考查双曲线定义的应用,考查等价转化思想方法,属于中档题.2.B【解析】【分析】求出双曲线的渐近线方程.与椭圆的方程联立,利用弦长转化求解即可.【详解】双曲线的一条渐近线不妨设为:,则:,可得:一条渐近线截椭圆所得弦长为,可得:,可得,解得.故选:B.【点睛】本题考查椭圆以及双曲线的简单性质的应用,考查转化思想以及计算能力.属中档题.3.B【解析】【分析】设,则有,利用点差法可得,从而可得结果.因为直线与双曲线交于,两点,且线段的中点的横坐标为,所以,,设,则有,,两式相减可化为,可得,,双曲线的离心率为,故选B.【点睛】本题主要考查待定系数法求双曲线的方程与离心率及“点差法”的应用,属于难题.对于有弦关中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.4.A【解析】【分析】由特殊角等腰三角形的三边关系以及双曲线的定义可表示出a、c的关系,对关系式化简,通过离心率公式,对关系式变型,解方程求出离心率.【详解】由题意知:,因为等腰三角形的顶角为,所以根据三角形的性质可求出,由双曲线定义可得:,由离心率公式可得:.故选A.【点睛】本题考查双曲线的离心率,求离心率有两种方式,一种是由题目中条件求出参数值,根据离心率公式得离心率,另一种是根据条件求得a、c的齐次式,等号两侧同时除以a或等,构造离心率.5.D【解析】【分析】利用双曲线方程求出实轴与虚轴长,列出方程求解即可.【详解】双曲线﹣=1(m>0)的虚轴长是实轴长的2倍,可得=,解得m=2,则双曲线的标准方程是:﹣=1.故选:D.【点睛】本题考查双曲线的简单性质的应用,考查计算能力,属于基础题.6.C【解析】【分析】直接利用双曲线的渐近线方程以及焦点坐标,得到关系式,求出、,即可得到双曲线方程.【详解】双曲线的一条渐近线方程是,可得,它的一个焦点坐标为,可得,即,解得,所求双曲线方程为:.故选:C.【点睛】本题考查双曲线的方程的求法,双曲线的简单性质的应用,考查计算能力.7.C【解析】由题意,该双曲线的焦点在轴上,排除A、B项;又方程的渐近线方程为,而方程的渐近线方程为,故选C.8.D【解析】分析:设的内切圆半径为,由,用的边长和表示出等式中的三角形面积,结合双曲线的定义得到与的不等式,可求出离心率取值范围.详解:设的内切圆半径为,由双曲线的定义得,,,由题意得,故,故,又,所以,双曲线的离心率取值范围是,故选D.点睛:本题主要考查利用双曲线的定义、简单性质求双曲线的离心率范围,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.9.B【解析】【分析】由已知中,可得,根据直角三角形斜边上的中线等于斜边的一半,可得是以直角的直角三角形,进而根据是双曲线右支上的点,及双曲线的性质结合勾股定理构造方程可得的值,进而求出的值.【详解】由双曲线方程,可得,,又,,,,故是以直角的直角三角形,又是双曲线右支上的点,,由勾股定理可得,解得,故,故选B.【点睛】本题主要平面向量的几何运算,考查双曲线的标准方程,双曲线的定义与简单性质,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.10.D【解析】分析:运用离心率公式和渐近线方程,结合点到直线的距离公式可得的值,再由的关系即可求得的值,然后求得焦距详解:双曲线的离心率为双曲线的渐近线方程为不妨设,即,则焦点到渐近线的距离为,,解得则焦距为故选点睛:本题考查了双曲线的几何性质,根据题意运用点到线的距离公式进行求解,本题较为基础。

双曲线习题(含答案)

双曲线习题(含答案)

课后训练1.已知双曲线C :x 2-y 2=1,F 是其右焦点,过F 的直线l 只与双曲线的右支有惟一的交点,则直线l 的斜率等于( ).A .1B .-1C .±1D .±2 2.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( ).A .B .C 2D 23.双曲线22163xy-=的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( ).A .B .2C .3D .64.设F 1、F 2分别是双曲线2219yx -=的左、右焦点.若P 在双曲线上,且120PF PF ⋅=,则12PF PF +等于( ).A .B .C . D5.双曲线x 2-y 2=1左支上一点P(a ,b )到直线y =x a +b =________.6.过点A(6,1)作直线l 与双曲线221164xy-=相交于两点B 、C ,且A 为线段BC 的中点.则直线l 的方程为________.7.如图,已知F 1、F 2为双曲线22221x y ab-= (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P 且∠PF 1F 2=30°,求双曲线的渐近线方程.8.已知双曲线2213xymm-=的一个焦点为(2,0).(1)求双曲线的实轴长和虚轴长;(2)若已知M(4,0),点N(x ,y )是双曲线上的任意一点,求|MN|的最小值.设直线l :y =ax +1与双曲线C :3x 2-y 2=1相交于A ,B 两点,O 为坐标原点. (1)a 为何值时,以AB 为直径的圆过原点?(2)是否存在实数a ,使O A O B =且OA OB + =λ(2,1)?若存在,求a 的值,若不存在,说明理由.参考答案1. 答案:C解析:由题意知l 与渐近线平行,∴k l =b a±=±1.2. 答案:D解析:∵双曲线一条渐近线过点(4,-2),∴12b a =⇒2214b a=⇒22214c a a-=⇒2254c a=⇒2e =.3. 答案:A解析:双曲线的渐近线方程为2y x =±,圆心坐标为(3,0),由点到直线的距离公式和渐近线与圆相切可得,圆心到渐近线的距离等于r ,即r.4. 答案:C解析:由题意,可知双曲线两焦点的坐标分别为F 1(0)、F 20).设点P(x ,y ),则1P F =(x ,-y ),2PF =x ,-y ),∵120PF PF ⋅=,∴x 2+y 2-10=0,即x 2+y 2=10.∴||21PF PF +.5. 答案:12-解析:由题意知:双曲线的渐近线方程为y =±x ,又P(a ,b )在左支上,∴a <b .又P(a ,b )到直线y =x,=⇒|a -b |=2即a -b =-2.又P(a ,b )在双曲线上,∴a 2-b 2=1. ∴(a +b )(a -b )=1,∴a +b =12-.6. 答案:3x -2y -16=0解析:设B(x 1,y 1),C(x 2,y 2),则有2211222211641164x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩⇒12121212()()()()164x x x x y y y y +--+-=0又A 为BC 的中点,∴x 1+x 2=12,y 1+y 2=2 ∴123()4x x -=122y y -⇒k BC =121232y y x x -=-∴直线l 的方程为:y -1=32(x -6),即3x -2y -16=0.7. 解:设F 2(c ,0)(c >0),P(c ,y 0),则220221y c ab-=,解得20by a=±.∴|PF 2|=2ba.在Rt △PF 2F 1中,∠PF 1F 2=30°,则|F 1F 2||PF 2|,即2c2ba,将c2=a 2+b 2代入,解得b 2=2a 2,故b a =∴双曲线的渐近线方程为y =. 8. 解:(1)由题意可知,m +3m =4,∴m =1. ∴双曲线方程为2213yx -=.∴双曲线实轴长为2,虚轴长为(2)由2213yx -=,得y 2=3x 2-3,∴|MN|=.又∵x ≤-1或x ≥1, ∴当x =1时,|MN|取得最小值3.解:(1)由22131y ax x y =+⎧⎨-=⎩, 消去y 整理得(3-a 2)x 2-2ax -2=0. 依题意得3-a 2≠0,Δ=4a 2+8(3-a 2)>0, ∴a 2<6且a 2≠3,设A(x 1,y 1),B(x 2,y 2),由根与系数的关系 得x 1+x 2=223a a-,x 1x 2=223a -,又以AB 为直径的圆过原点, 即x 1·x 2+y 1·y 2=0, (a 2+1)x 1·x 2+a (x 1+x 2)+1=0, ∴a =±1.(2)假设存在实数a 满足条件. ∵1212y y a x x -=-,OA OB +=λ(2,1),∴(x 1+x 2,y 1+y 2)=λ(2,1),121212y y x x +=+.又O A O B = ,故22221122x y x y +=+,即(x 1+x 2)(x 1-x 2)+(y 1+y 2)(y 1-y 2)=0, 所以12121212y y x x x x y y -+=--+,∴a =-2.故存在实数a =-2满足题意.。

高考数学专题《双曲线》习题含答案解析

高考数学专题《双曲线》习题含答案解析

专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( )ABC .2D【答案】D 【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒==故选:D.2.(2021·北京高考真题)若双曲线2222:1x y C a b-=离心率为2,过点,则该双曲线的程为()A .2221x y -=B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得b =,再将点代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a == ,则2c a =,b =,则双曲线的方程为222213x y a a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故b ,因此,双曲线的方程为2213y x -=.故选:B3.(2021·山东高考真题)已知1F 是双曲线22221x y a b-=(0a >,0b >)的左焦点,点P 在双曲线上,直线1PF 与x 轴垂直,且1PF a =,那么双曲线的离心率是()练基础A B C .2D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20by a=,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可.【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =,因为直线1PF 与x 轴垂直,且1PF a =,所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e =故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D |AB .则双曲线的离心率为( )A B C .2D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22bAB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0)a =( )AB .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c = ,=,解得12a = ,故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b -=>>的离心率为2,焦点到渐近线的,则C 的焦距等于( ).A.2B. C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为( )A. B. C. D.【答案】D 【解析】22221(0,0)x y a b a b -=>>F A OAF △O 221412x y -=221124x y -=2213x y -=2213y x -=由题意结合双曲线的渐近线方程可得:,解得:,双曲线方程为:.本题选择D选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)xC y mm-=>的一条渐近线为my+=,则C的焦距为_________.【答案】4【分析】将渐近线方程化成斜截式,得出,a b的关系,再结合双曲线中22,a b对应关系,联立求解m,再由关系式求得c,即可求解.【详解】my+=化简得y=,即ba,同时平方得2223ba m=,又双曲线中22,1a m b==,故231m m=,解得3,0m m==(舍去),2223142c a b c=+=+=⇒=,故焦距24c=.故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy中,若双曲线2221(0)yx bb-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y=.【解析】由已知得222431b-=,解得b=或b=,因为0b>,所以b=.因为1a=,所以双曲线的渐近线方程为y=.10.(2020·全国高考真题(文))设双曲线C:22221x ya b-= (a>0,b>0)的一条渐近线为y= 2222tan60cc a bba⎧⎪=⎪=+⎨⎪⎪==⎩221,3a b==2213yx-=x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若则的离心率为( )ABC .D【答案】B 【解析】由题可知在中,在中,故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心1F 2F 2222:1x y C a b-=O 2F C P 1PF =C222,PF b OF c==PO a∴=2Rt POF V 222cos P O PF b F OF c∠==12PF F △22221212212cos P O 2PF F F PF b F PF F F c+-∠==223bc a c=⇒=e ∴=练提升率为( )A B .C D 【答案】D 【解析】由已知得M 为APQ V 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==.故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2B .C D 【答案】A 【解析】因为OPQ △为等边三角形,所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴=所以2222223,4,4,2c a a c a e e -=∴=∴=∴=.故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213xy -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅= ,利用向量垂直的坐标表示,列方程求0x 即可.【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+ ,200(2,)F P x =- ,又220120403x F P F P x ⋅=-+= ,∴0x =故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1,所以圆心()0,5到0bx ay -=的距离d 的范围为24d <<即24<<,而222+=a b c 所以524a c <<,即5542e <<故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c=(c =0的一点,则当M 的纵坐标为2MAF V 外接圆的面积最小【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确;由正弦定理得到2MAF V 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确.【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确;对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,FF F P FP 分别切于点1,,A B C ,设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确;对于D 中,由正弦定理,可知2MAF V 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=,在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=,又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( )A .点P 的轨迹是椭圆B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN V 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN V 的面积6PMN S =V 【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项.【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =,当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩,所以132PMN S PM PN ==△,故C 对;选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩,所以162PMN S PM MN ==△,故D 对,故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b-=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案.【详解】因为双曲线()22122:10,0x y C a b a b-=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案.【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯= .当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=.故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案;【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=,1=c e a .1+1. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )ABCD【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos 60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y=|OP |=( )ABCD【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==.故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( )ABC .2D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c == ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=,故选A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,1122PFO P S OF y ∴=⋅==△,故选A .5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ===,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB = ,120F B F B ⋅=,则C 的离心率为____________.【答案】2.【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =g ,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==,所以该双曲线的离心率为2c e a ====.。

椭圆、双曲线解答题综合练习(含答案)

椭圆、双曲线解答题综合练习(含答案)

椭圆、双曲线解答题综合练习1.中心在坐标系原点O,焦点F1,F2在坐标轴上,离心率e=√2的双曲线C过点P(4,−√10).(1)求C的方程;(2)若点M(3,m)在C上,求ΔMF1F2的面积.2.若椭圆C:x2a2+y2b2=1是以双曲线x23−y2=1的顶点为焦点,以其焦点为顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)若P是椭圆C上的一点,F1、F2是椭圆C的两焦点,且∠F1PF2=90°,求△PF1F2的面积.3.分别求出满合下列条件的圆锥曲线的标准方程:(1)离心率为√74,且短轴长为6的椭圆C1;(2)过点(3,−√2),且与椭圆5x2+9y2=45有相同焦点的双曲线C2;4. 如图,点F 1,F 2分别是椭圆C:x 2a 2+y2b2=1(a >b >0)的左、右焦点.点A 是椭圆C 上一点,且满足AF 1⊥x 轴,∠AF 2F 1=30∘,直线AF 2与椭圆C 相交于另一点B .(1)求椭圆C 的离心率e ;(2)若ΔABF 1的周长为4√3,求椭圆C 的标准方程.5. 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,离心率e =√22,已知以坐标原点为圆心,椭圆短半轴长为半径的圆与直线x -y +2=0相切. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过F 1的直线l 与椭圆相交于不同的两点A 、B ,若F 2A ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =6,求直线l 的方程.6. 已知椭圆x2a 2+y 2b 2=1(a >b >0)的离心率为√32,且经过点M (2,1),直线y =12x -1与椭圆交于A ,B 两点.(1)求椭圆方程;(2)求线段AB 中点的横坐标.7. 椭圆C:x 2a 2+y 2b 2=1 (a >b >0)长轴为8离心率e =√32. (1)求椭圆C 的标准方程;(2)过椭圆C 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程.8. 已知椭圆C :x 2a 2+y2b 2=1(a >b >0)上一点与两焦点构成的三角形的周长为4+2√3,离心率为√32. (1)求椭圆C 的方程;(2)设椭圆C 的右顶点和上顶点分别为A 、B ,斜率为12的直线l 与椭圆C 交于P 、Q 两点(点P 在第一象限).若四边形APBQ 面积为√7,求直线l 的方程.9. 若椭圆经过两点(−32,52),(√3,√5),求椭圆的标准方程.10. 在平面直角坐标系xOy 中,若双曲线D 的渐近线方程为y =±√3x,且经过点(2,3),直线l:y =x −2交双曲线于A,B 两点,连结OA,OB .(1)求双曲线方程; (2)求OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ 的值.11.已知双曲线C的中心在原点,对称轴为坐标轴,根据下列条件分别求双曲线C的标准方程.(1)渐近线方程为y=±53x,且过点(3,10);(2)与双曲线x2−y2=1的离心率相同,与x25+y2=1共焦点.12.(1)求焦点在x轴,焦距为4,并且经过点(52,−32)的椭圆的标准方程;(2)已知双曲线的渐近线方程为y=±12x,且与椭圆x210+y25=1有公共焦点,求此双曲线的方程.13.设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(a,b)满足|PF2|=|F1F2|.(1)求椭圆的离心率e;(2)设直线PF2与椭圆相交于A、B两点,若椭圆的长轴长为4√2,求△ABF1的面积.14.命题P:方程x2k−2+y2k−1=1表示双曲线,命题q:不等式x2-2x+k2-1>0对一切实数x恒成立.(1)求命题P中双曲线的焦点坐标;(2)若命题“p且q”为真命题,求实数k的取值范围.15. 已知椭圆C 的右焦点为F (1,0),且点P(1,32)在椭圆上.(1)求椭圆C 的标准方程;(2)已知定点M (-4,0),直线y =kx +1与椭圆C 相交与A ,B 两点,若∠AMO =∠BMO (O 为坐标原点),求k 的值.16. 设F 1,F 2分别是椭圆E :x 2a 2+yb22=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A,B 两点,|AF 1|=3|BF 1|(1)若|AB |=4,ΔABF 2的周长为16,求|AF 2|; (2)若cos∠AF 2B =35,求椭圆E 的离心率.17. 已知椭圆C 与双曲线y 24−x 23=1有共同的焦点,椭圆C 的离心率为√74,点P(2,−3)与椭圆C 上的两点A (x 1,y 1),B (x 2,y 2)构成的三角形△PAB 的面积为10,且OP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0.(1)求椭圆C 的标准方程; (2)求证:直线AB 过椭圆的顶点.18. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的焦距为4,且过点(−3,2√6).(1)求双曲线方程和其渐近线方程;(2)若直线l:y =kx +2与双曲线C 有且只有一个公共点,求实数k 的取值范围.19.已知直线y=kx−1和双曲线C:x2−y2=1交于A,B两点.(Ⅰ)求实数k的取值范围;(Ⅱ)若k=−√62,求ΔAOB的面积.20.已知直线l:y=kx+1与双曲线C:3x2-y2=1.(1)当k=√3时,直线l与双曲线C的一渐近线交于点P,求点P到另一渐近线的距离;(2)若直线l与双曲线C交于A,B两点,若|AB|=4√3,求k的值.21.曲线C上的点M(x,y)到定点F(2,0)的距离和它到直线x=12的距离的比是常数2.(Ⅰ)求曲线C的轨迹的方程;(Ⅱ)直线l与曲线C交于A,B两点,且点P(1,3)为线段AB的中点,求直线l的方程.22.双曲线的方程是x24-y2=1.(1)直线l的倾斜角为π4,被双曲线截得的弦长为83√11,求直线l的方程;(2)过点P(3,1)作直线l′,使其被双曲线截得的弦恰被P点平分,求直线l′的方程.答案和解析1.【答案】解:(1)由离心率e =ca =√2,解得a =b ,设方程为x 2-y 2=λ,又双曲线过点(4,−√10), ∴16-10=λ, 解得λ=6, ∴双曲线方程为x 26−y 26=1,(2)由点(3,m )在双曲线上,得96−m 26=1,解得m =±√3,又|F 1F 2|=2c =2√a 2+b 2=4√3,所以△MF 1F 2的面积为S =12×4√3×√3=6.【解析】本题考查双曲线的标准方程,以及双曲线的简单性质的应用.解答的关键是对双曲线标准方程的理解和向量运算的应用,难度适中.(1)由离心率e =ca =√2,解得a =b ,设双曲线方程为x 2-y 2=λ,点代入求出参数λ的值,从而求出双曲线方程,(2)把点M (3,m )代入双曲线,可解得m =±√3,即可得其面积.2.【答案】解:(Ⅰ)根据题意,双曲线的方程为x 23−y 2=1,其顶点为(±√3,0),焦点为(±2,0), 则椭圆Cx 2a 2+y 2b 2=1的焦点为(±√3,0),顶点为(±2,0), 则a =2,c =√3,则b =√a 2−b 2=1, 故椭圆的方程为x 24+y 2=1;(Ⅱ)根据题意,∠F 1PF 2=90°,即△F 1PF 2为直角三角形,则有{|PF 1|+|PF 2|=2a =4|PF 1|2+|PF 2|2=|F 1F 2|2=12⇒|PF 1|⋅|PF 2|=2; 故△PF 1F 2的面积S =12|PF 1|⋅|PF 2|=1.【解析】本题考查椭圆的几何性质,涉及椭圆、双曲线的标准方程,属于中档题.(Ⅰ)根据题意,由双曲线的方程分析焦点、顶点坐标,即可得椭圆C 的焦点、顶点坐标,据此分析可得答案;(Ⅱ)根据题意,分析可得{|PF 1|+|PF 2|=2a =4|PF 1|2+|PF 2|2=|F 1F 2|2=12,变形可得|PF 1|•|PF 2|的值,由三角形面积公式计算可得答案.3.【答案】解:(1)∵短轴长为6,∴b=3,∵离心率为√74,∴ca =√74,又∵a2=b2+c2,∴a=4,∴椭圆C1的标准方程为x216+y29=1或y216+x29=1;(2)∵双曲线与椭圆5x2+9y2=45有相同焦点,∴焦点坐标为(±2,0),又∵双曲线过点,∴2a=3√3−√3=2√3,即a=√3,∴b=1,∴双曲线C2的标准方程为x23−y2=1;【解析】本题考查圆锥曲线的标准方程,属于基础题.(1)由椭圆的性质得到b,由离心率得到a和c的关系,再由a2=b2+c2解得a,b,就求得椭圆方程;(2)求出椭圆的焦点得到c,再把点的坐标代入双曲线方程,结合a2+b2=c2,解得a和b,就求得双曲线方程;4.【答案】解:(1)设AF1=m,∵AF1⊥x轴,∠AF2F1=30°,∴AF2=2m,,由椭圆的定义及几何性质知2a=AF1+AF2=3m,2c=F1F2=√3m,e=2c2a =√3m3m=√33;(2)由△ABF1的周长为4√3得4a=4√3,∴a=√3,由(1)得c=1,b2=a2-c2=3-1=2,∴椭圆的标准方程为x23+y22=1.【解析】本题考查椭圆的方程的求法,椭圆的性质及三角形的周长,注意运用椭圆的定义,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.(1)由已知条件及2a=PF1+PF2,2c=F1F2,直接求解即可;(2)由椭圆的定义及性质知:ΔABF1的周长等于4a=4√3,算出a,再由(1)得到c、b,从而求出椭圆标准方程.5.【答案】解:(Ⅰ)由椭圆的离心率e=ca =√1−b2a2=√22,则a=√2b,由b=√12+12=√2,则a=2,∴椭圆的标准方程为:x24+y22=1;(Ⅱ)由(Ⅰ)可知:椭圆的焦点F1(-√2,0),F2(√2,0),当直线l 斜率不存在时,则x =-√2,则A (-√2,1),B (-√2,-1),则F 2A ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =(-2√2,-1)(-2√2,1)=7≠6,不符合题意,舍去,当直线l 的斜率存在,且不为0,设直线l 的方程为:y =k (x +√2),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x +√2)x 24+y 22=1,消去y 得,(2k 2+1)x 2+4√2k 2x +4k 2-4=0, x 1+x 2=-4√2k22k 2+1,x 1x 2=4k 2−42k 2+1,y 1y 2=k 2(x 1+√2)(x 2+√2)=k 2(x 1x 2+√2(x 1+x 2)+2)=-2k 22k 2+1,则F 2A ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =(x 1-√2,y 1)(x 2-√2,y 2)=x 1x 2-√2(x 1+x 2)+2+y 1y 2=4k2−4+8k 2−2k 22k 2+1+2=6,则k 2=4,解得:k =±2, ∴直线l 的方程为y =±2(x +√2).【解析】(Ⅰ)根据椭圆的离心率公式及点到直线的距离公式即可求得a 和b 的值,求得椭圆的方程;(Ⅱ)分类讨论,设直线方程,代入椭圆方程,利用韦达定理及向量的坐标运算,即可求得k 的值,即可求得直线l 的方程.本题考查椭圆的标准方程及性质,直线与椭圆的位置关系,考查韦达定理及向量的坐标运算,考查转化思想,属于中档题.6.【答案】解:(1)∵椭圆x 2a 2+y2b 2=1(a >b >0)的离心率为√32, 且经过点M (2,1),∴{ a 2−b 2a 2=344a 2+1b 2=1,∴a 2=8,b 2=2, ∴椭圆方程方程为x 28+y 22=1;(2)设A (x 1,y 1),B (x 2,y 2),线段AB 中点坐标为(a ,b ),则x 12+4y 12=8,x 22+4y 22=8,两式相减得 (x 1−x 2)(x 1+x 2)+4(y 1−y 2)(y 1+y 2)=0, 结合直线y =12x -1可得{4×(−12)=ab b =a2−1∴a =1,即线段AB 中点的横坐标为1.【解析】本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,考查点差法的运用,属于中档题. (1)由题意,椭圆经过点M (2,1),离心率为√32,建立方程组,求出a ,b ,由此可得椭圆的方程;(2)利用点差法,结合直线的斜率,即可求线段AB 中点的横坐标.7.【答案】解:(1)∵椭圆C:x 2a 2+y 2b 2=1 (a >b >0)长轴为8,离心率e =√32, ∴{2a =8c a=√32,∴a =4,c =2√3,b =√16−12=2, ∴椭圆C 的标准方程为x 216+y 24=1 ;(2)设所求直线方程为y -1=k (x -2),代入椭圆方程并整理得:(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0, 又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程的两个根, ∴x 1+x 2=8(2k 2−k )4k 2+1,又M 为AB 的中点, ∴x 1+x 22=4(2k 2−k )4k 2+1=2,解得k =−12,故所求直线方程为x +2y -4=0.【解析】本题考查直线与圆锥曲线的关系,椭圆的标准方程,椭圆的简单性质. (1)由椭圆C:x 2a 2+y 2b 2=1 (a >b >0)长轴为8,离心率e =√32,得出{2a =8ca=√32,由此能求出椭圆C 的标准方程;(2)设所求直线方程为y -1=k (x -2),代入椭圆方程并整理得:(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0,设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8(2k 2−k )4k 2+1,由M 为AB 的中点,知x 1+x 22=4(2k 2−k )4k 2+1=2,由此能求出直线方程.8.【答案】解:(1)由题设得2a +2c =4+2√3,又e =√32=ca, 解得a =2,c =√3,∴b =1, 故椭圆ℎ(x)的方程为x 24+y 2=1.(2)设直线l 方程为:y =12x +m , 代入椭圆C:x 24+y 2=1并整理得:x 2+2mx +2m 2−2=0,设P(x 1,y 1),Q(x 2,y 2),则{x 1+x 2=−2mx 1x 2=2m 2−2.∵|PQ|=√(x 1−x 2)2+(y 1−y 2)2=√1+k 2|x 2−x 1|=√1+14⋅√(x 2+x 1)2−4x 1x 2=√52⋅√8−4m 2,B 到直线PQ 的距离为d 1=√5,A 到直线PQ 的距离为d 2=√5,又因为P 在第一象限, 所以−1<m <1,所以d 1+d 2=√5√5=√5,所以S APBQ =12(d 1+d 2)⋅PQ =√8−4m 2=√7, 解得m =±12,所以直线方程为y =12x ±12.【解析】本题考查椭圆的标准方程,弦长问题,涉及离心率,点到直线的距离公式,属中档题(1)根据焦点三角形的周长,利用椭圆的定义得到a +c 的值,结合离心率,求出a ,c 的值,进而得b ; (2)设直线l 方程为:y =12x +m ,联立方程组消去y 并整理得:x 2+2mx +2m 2−2=0,借助于韦达定理,利用弦长公式得到|PQ |,利用点到直线的距离公式得到A ,B 到直线PQ 的距离,进一步根据P 在第一象限,得出m 的取值范围,从而得出四边形APBQ 面积关于m 的函数表达式,并根据已知面积求得m 的值,即得所求直线的方程,由于包含了弦长问题,对应方程的判别式自然大于0,可免除检验.9.【答案】解:设椭圆方程为mx 2+ny 2=1(m,n >0,m ≠n ),由{m(−32)2+n(52)2=13m +5n =1, 得m =16,n =110, 所以,椭圆的方程为y 210+x 26=1.【解析】本题主要考查椭圆的标准方程,属于基础题.设椭圆的一般方程mx 2+ny 2=1(m,n >0,m ≠n ),把点代入解答即得.10.【答案】解: (1)设双曲线方程为mx 2−ny 2=1,由双曲线渐近线方程为y =±√3x,且经过点(2,3),可得{mn=34m −9n =1,解得m =1,n =13, 故双曲线方程为x 2−y 23=1(2)联立{y =x −2x 2−y 23=1得2x 2+4x −7=0 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=−2,x 1x 2=−72 y 1y 2=(x 1−2)(x 2−2)=x 1x 2−2(x 1+x 2)+4=−72+4+4=92∴OA ⃗⃗⃗⃗⃗ •OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=−72+92=1.【解析】本题考查了双曲线方程,直线与双曲线方程的位置关系.(1)设双曲线方程为mx 2−ny 2=1,由题意可得{mn =34m −9n =1,解得m ,n 即可得双曲线方程.(2)联立{y =x −2x 2−y 23=1得2x 2+4x −7=0,设A(x 1,y 1),B(x 2,y 2),结合韦达定理和数量积的运算可得答案.11.【答案】解:(1)设双曲线的方程为x 29−y 225=λ(λ≠0),将点(3,10)代入可得99−10025=−3=λ,故双曲线的方程为x29−y225=−3,即双曲线C的标准方程为y275−x227=1.(2)由题意知双曲线C的离心率为√2,焦点坐标为(-2,0),(2,0),所以可设双曲线C的标准方程为x2a2−y2b2=1(a>0,b>0),则a2+b2=4,√a2+b2a=√2,解得a2=b2=2,所以双曲线C的标准方程为x22−y22=1.【解析】本题考查双曲线的标准方程.几何意义.12.【答案】解:(1)设椭圆方程为x2a2+y2b2=1(a>b>0),两焦点坐标分别为(2,0),(-2,0),由椭圆定义知2a=√(52+2)2+(−32)2+√(52−2)2+(−32)2=2√10,得a=√10,又因为c=2,所以b2=a2−c2=10−4=6,故所求椭圆标准方程为x210+y26=1.(2)设双曲线方程为x2a2−y2b2=1(a>0,b>0),因为椭圆的焦点为(√5,0),(−√5,0),所以双曲线的半焦距c=√5,由题意知ba =12,所以a2=4b2,又c2=a2+b2,故5b2=5,所以b2=1,a2=4,所以双曲线的方程x24−y2=1.【解析】本题考查椭圆的概念及标准方程、双曲线的性质及及几何意义的知识点,属于基础题.(1)设椭圆方程为x2a2+y2b2=1(a>b>0),两焦点坐标分别为(2,0),(-2,0),由椭圆定义得到a的值,从而得到椭圆的标准方程;(2)设双曲线方程为x2a2−y2b2=1(a>0,b>0),根据椭圆的焦点得到双曲线的半焦距,再根据已知条件得到答案.13.【答案】解:(1)∵椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(a,b),|PF2|=|F1F2|,∴√(a−c)2+b2=2c,可得a2-2ac+c2+a2-c2=4c2,e=ca,∴2e2+e-1=0,又∵e∈(0,1)∴e=12.(2)∵2a=4√2∴a=2√2又∵e=12∴c=√2,∵b2=a2-c2=6∴椭圆的方程为x28+y26=1,∴AB方程为:y=√3x−√6设A(x1,y1),B(x2,y2),联立{y=√3x−√63x2+4y2=24得:5y2+2√6y+8=0,∴y1+y2=−2√65,y1y2=−185,∴S△ABF1=12F1F2⋅|y1−y2|=√2√(y1+y2)2−4y1y2=16√35.△ABF1的面积为:16√35.【解析】(1)利用已知条件,结合椭圆的性质,求解椭圆的离心率即可.(2)利用椭圆的长轴长求出a,得到c,然后求解b,求出椭圆方程,求出AB的方程,联立直线与椭圆的方程,通过韦达定理,转化求解三角形的面积.本题考查直线与椭圆的位置关系的综合应用,椭圆的标准方程的求法,椭圆的简单性质的应用,考查转化思想以及计算能力,是中档题.14.【答案】解:(1)因为k-1>k-2,所以a2=k-1,b2=k-2…(2分)所以c2=1,且焦点在y轴上,…(4分)所以双曲线的焦点坐标为(0,±1).…(6分)(2)命题p:(k-2)(k-1)<0,1<k<2;…(8分)命题q:△=4-4(k2-1)<0,k<-√2或k>√2.…(10分)因为命题“p且q”为真命题,所以{1<k<2k<−√2或k>√2即√2<k<2.…(14分)(注:若第(1)问分类讨论答案对也算对)【解析】(1)直接利用双曲线方程为x2k−2+y2k−1=1,可得a2=k-1,b2=k-2以及焦点在y轴上;再利用a,b,c之间的关系求出c即可求出结论.(2)命题p为真命题,得方程x2k−2+y2k−1=1表示双曲线,说明x2的分母与y2的分母的积为负数.联列不等式组,解之即得实数k的取值范围;再利用根的判别式找出命题q真时,实数k的取值范围,再由p∧q 为真命题,说明“p真q真”成立,可得实数k的取值范围.本题以命题真假的判断为载体,着重考查了双曲线的标准方程和一元二次不等式的解集等知识点,属于基础题.15.【答案】(1)由题意得椭圆两焦点分别为(-1,0),(1,0),又因为M(1,32)在椭圆上,所以2a=|MF1|+|MF2|=√(1+1)2+94+32=4,即a=2,又因为c=1,所以b2=a2-c2=3,所以椭圆的方程是x24+y23=1;(2)若∠AMO=∠BMO,则k MA+k MB=0.设A(x1,kx1+1),B(x2,kx2+1),∴kx1+1 x1+4+kx2+1x2+4=0即2kx1x2+(4k+1)(x1+x2)+8=0.联立{y=kx+1x24+y23=1,消去y得到(3+4k2)x2+8kx-8=0,∴x1+x2=−8k3+4k2,x1x2=−83+4k2,∴−16k 3+4k2+(4k+1)−8k3+4k2+8=0,即-16k-32k2-8k+24+32k2=0,∴k=1.【解析】(1)由题可知焦点坐标分别为(1,0),(-1,0),根据椭圆定义得MF1+MF2=2a,求出a,b;(2)∠AMO=∠BMO,得k MA+k MB=0.设A(x1,kx1+1),B(x2,kx2+1),则kx1+1x1+4+kx2+1x2+4=0,联立{y=kx+1x24+y23=1,消去y得到(3+4k2)x2+8kx-8=0,再利用韦达定理代入求出k即可.本题考查椭圆标准方程,涉及直线与椭圆的位置关系等知识点,属于中档题.16.【答案】解:(1)∵|AB|=4,|AF1|=3|F1B|,∴|AF1|=3,|F1B|=1,∵△ABF2的周长为16,∴4a=16,∴|AF1|+|AF2|=2a=8,∴|AF2|=5;(2)设|F1B|=k(k>0),则|AF1|=3k,|AB|=4k,∴|AF2|=2a−3k,|BF2|=2a−k,∵cos∠AF2B=35,在△ABF2中,由余弦定理得,|AB|2=|AF2|2+|BF2|2−2|AF2|•|BF2|cos∠AF2B,∴(4k)2=(2a−3k)2+(2a−k)2−65(2a−3k)(2a−k),化简可得(a+k)(a−3k)=0,而a+k>0,故a=3k,∴|AF2|=|AF1|=3k,|BF2|=5k,∴|BF2|2=|AF2|2+|AB|2,∴AF1⊥AF2,∴△AF1F2是等腰直角三角形,∴c=√22a,∴e=ca =√22.【解析】本题考查了椭圆的概念及标准方程、几何性质和余弦定理,考查计算能力,属中档题.(1)利用|AB|=4,△ABF 2的周长为16,|AF 1|=3|F 1B|,结合椭圆的定义,即可求|AF 2|;(2)设|F 1B|=k (k >0),则|AF 1|=3k ,|AB|=4k ,由cos∠AF 2B =35,利用余弦定理,可得a =3k ,从而△AF 1F 2是等腰直角三角形,即可求椭圆E 的离心率.17.【答案】解:(1)∵双曲线y 24−x23=1的焦点坐标为(0,±√7),∴c =√7, 设椭圆C 的方程为y 2a2+x 2b2=1,(a >b >0),由e =ca =√7a=√74,解得a =4,则b =3,∴椭圆C 的标准方程为x 29+y 216=1.证明:(2)∵OP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,∴OP ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ , 又k OP =-32,∴k AB =23, 设AB 的方程为y =23x +m ,由{y =23x +m x 29+y 216=1,得16x 2+9(23x +m )2-144=0,即20x 2+12mx +9m 2-144=0, ∵A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−35m ,x 1x 2=9m 2−14420,|AB |=√(1+49)[(x 1+x 2)2−4x 1x 2]=√139×(925m 2−4×9m2−14420)=25√13(20−m 2),点P 到AB 的距离d =√13=√13,∴△PAB 的面积S △PAB =12×√13×25√13(20−m 2)=10, ∴|13+3m |√20−m 2=50,解得m =4, ∴直线AB 的方程为y =23x +4, ∴直线AB 过椭圆的顶点(0,4).【解析】(1)由椭圆C 与双曲线y 24−x 23=1有共同的焦点,椭圆C 的离心率为√74,列方程求出a =4,b =3,由此能求出椭圆C 的标准方程.(2)由OP ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,得OP ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,从而k AB =23,设AB 的方程为y =23x +m ,由{y =23x +m x 29+y 216=1,得20x 2+12mx +9m 2-144=0,由此利用韦达定理、弦长公式、点到直线的距离公式、三角形面积公式,推导出直线AB 的方程为y =23x +4,由此能证明直线AB 过椭圆的顶点(0,4).本题考查椭圆的标准方程的求法,考查直线过椭圆的顶点坐标的证明,考查椭圆、直线方程、韦达定理、弦长公式、点到直线的距离公式、三角形面积公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.【答案】解:(1)由题意得{a 2+b 2=49a 2−24b 2=1 ,解得{a 2=1b 2=3, ∴双曲线方程为x 2−y 23=1,其渐近线方程为y =±√3x ;(2)由{y =kx +2x 2−y 23=1 ,得(3-k 2)x 2-4kx -7=0,由题意得{3−k 2≠0Δ=16k 2+28(3−k 2)=0, ∴k 2=7,∴k =±√7 ,当3-k 2=0时,直线l 与双曲线C 的渐近线y =±√3x 平行, 即k =±√3时,直线l 与双曲线C 只有一个公共点, 综上,k =±√7或k =±√3.【解析】本题考查直线与双曲线的位置关系,考查计算能力.(1)由双曲线的焦距及双曲线一点,联立方程组,求出a 和b ,可得双曲线C 的方程与渐近线方程. (2)联立直线与双曲线的方程组,通过消元,利用方程解的个数,求出k 的值即可. 19.【答案】解:(Ⅰ)因为双曲线C 与直线有两个不同的交点, 则方程组{x 2−y 2=1y =kx +1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,∴ {1−k 2≠0Δ=4k 2+8(1−k 2)>0, 解得−√2<k <√2且k ≠±1,故双曲线C 与直线有两个不同的交点时, k 的取值范围是(-√2,-1)∪(-1,1)∪(1,√2); (Ⅱ)当k =−√62,直线方程为y =−√62x −1,联立{x 2−y 2=1y =−√62x −1,消去y ,可得x²+2√6x +4=0,△>0 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=−2√6,x 1x 2=4,所以|AB |=√1+k²×√(x 1+x 2)2−4x 1x 2=2√5,圆心O 到直线y =−√62x −1距离为d =√1+32=√25, 所以ΔAOB 的面积12×√25×2√5=√2.【解析】本题考查直线与双曲线的位置关系,考查点到直线的距离,涉及弦长公式,属于中档题.(Ⅰ)直线方程和双曲线方程联立,消去y ,利用△>0求解即可;(Ⅱ)利用弦长公式求出|AB |,再利用点到直线的距离公式求出AB 边上的高,代入面积公式求解.20.【答案】(1)解:双曲线C :3x 2-y 2=1渐近线方程为y =±√3x .由{y =√3x +1y =−√3x得P (-√36,12)则P 到y =√3x 的距离为d =12−√3×(−√36)√1+3=12;(2)解:联立方程组{y =kx +13x 2−y 2=1,消去y 得(3-k 2)x 2-2kx -2=0, ∵直线与双曲线有两个交点,∴{3−k 2≠0△=4k 2+8(3−k 2)>0,解得k 2<6且k 2≠3, .x 1x 2=−23−k 2,x 1+x 2=2k3−k 2|AB |=√1+k 2|x 1-x 2|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2 =2√−k 4+5k 2+6√(k 2−3)2=4√3 (k 2<6且k 2≠3).k 4-77k 2+102=0, 解得k 2=2,或k 2=5113,∴k =±√2,k =±√66313.【解析】(1)写出双曲线C :3x 2-y 2=1渐近线方程,求得P (-√36,12),即可求P 到y =√3x 的距离.(2)直接联立直线与双曲线方程,化为关于x 的一元二次方程,利用根与系数关系求得两交点A ,B 的横坐标的和与积,由弦长公式求得弦长;本题主要考查了直线与双曲线的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,是中档题.21.【答案】解:(Ⅰ)由题意有,√(x−2)2+(y−0)2|12−x|=2,将上式两边平方,并化简得,3x 2−y 2=3,即x 2−y 23=1,所以曲线C 的轨迹的方程为x 2−y 23=1;(Ⅱ)设A(x 1,y 1),B(x 2,y 2),则有x 12−y 123=1, x 22−y 223=1,两式相减得x 12− x 22=y 12−y 223,即有(x 1+x 2)(x 1−x 2)=(y 1+y 2)(y 1−y 2)3,所以,k =y 1−y2x 1−x 2=3(x 1+x 2)y 1+y 2,又因为点P(1,3)为线段AB 的中点, 所以x 1+x 2=2,y 1+y 2=6故k =1,所以直线l 得方程为y −3=x −1,即x −y +2=0【解析】本题考查轨迹方程,考查直线与双曲线的位置关系,考查弦长的计算,正确求出双曲线的方程是关键,考查推理能力和计算能力,属于中档题.(Ⅰ)利用点M(x,y)到定点F(2,0)的距离和它到直线x =12的距离的比是常数2,建立方程,化简可得结论; (Ⅱ)利用点差法即可求解.22.【答案】解 (1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0,△=(8m )2-4×3×4(m 2+1)=16(m 2-3)>0, ∴m 2>3.设直线l 与双曲线交于A (x 1,y 1)、B (x 2,y 2)两点, 则x 1+x 2=-83m ,x 1x 2=4(m 2+1)3.由弦长公式|AB |=√1+k 2|x 1-x 2|,得√2⋅√(−83m)2−16(m2+1)3=83√11,∴4√2⋅√m2−33=83√11,即m =±5,满足m 2>3,∴直线l 的方程为y =x ±5. (2)设直线l ′与双曲线交于A ′(x 3,y 3)、B ′(x 4,y 4)两点, 点P (3,1)为A ′B ′的中点,则x 3+x 4=6,y 3+y 4=2.由x 32−4y 32=4,x 42−4y 42=4, 两式相减得(x 3+x 4)(x 3-x 4)-4(y 3+y 4)(y 3-y 4)=0, ∴y 3−y 4x 3−x 4=34,∴l ′的方程为y -1=34(x -3),即3x -4y -5=0. 把此方程代入双曲线方程,整理得5y 2-10y +114=0, 满足△>0,即所求直线l ′的方程为3x -4y -5=0.【解析】(1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0,利用判别式的符号,设直线l 与双曲线交于A (x 1,y 1)、B (x 2,y 2)两点,利用韦达定理,弦长公式,转化求解即可. (2)设直线l ′与双曲线交于A ′(x 3,y 3)、B ′(x 4,y 4)两点,通过平方差法转化求解即可. 本题考查直线与双曲线的位置关系的应用,考查转化思想以及计算能力.。

高中试卷-专题12 双曲线(含答案)

高中试卷-专题12 双曲线(含答案)

专题12 双曲线一、单选题1.(2019·浙江省高三期中)双曲线的焦点坐标为( )A .B .C .D .【答案】B 【解析】由可得,焦点在轴上,所以,因此所以焦点坐标为;故选B2.(2020·安徽省高三三模(文))已知双曲线的离心率为2,则实数的值为( )A .4B .8C .12D .16【答案】C 【解析】因为双曲线的离心率为2,解得.故选:C.3.(2019·重庆巴蜀中学高二期中(理))下列双曲线中,渐近线方程为的是( )A .B .C .D .【答案】D 【解析】C. ,渐近线为:;D. ,渐近线为:;故选:.222=2x y -(1,0)±((0,1)±(0,2222x y -=22a 2,1b ==x 222a 3c b =+=c =()2214x y m-=m 2214x y m -=2=12m =32y x =±22132x y -=22132y x -=22194x y -=22194y x -=22194x y -=23y x =±22194y x -=32y x =±D4.(2020·安徽省高三三模(理))已知双曲线离心率为3,则双曲线C 的渐近线方程为( )A .B .C .D .【答案】C 【解析】因为,所以,由双曲线的几何性质可得渐近线方程为:,故选:C5.(2019·安徽省高二期末(理))已知双曲线的焦距为线方程为,则焦点到渐近线的距离为( )A .1BC .2D.【答案】A 【解析】由题知:,.到直线的距离.故选:A6.(2020·四川省成都外国语学校高二开学考试(理))已知双曲线的左,右焦点分别为,,过的直线分别与两条渐近线交于、两点,若,,则()A.B .C .1D .【答案】C()2222:10,0x y C a b a b-=>>y x =±y =y =±y x =3c e a ===b a =y =±2222:1(0,0)x y C a b a b-=>>12y x =±2c =c =F 2F 20x y -=1d 22:13y C x -=1F 2F 1F l A B 120F B F B ×=uuu r uuur 1F A AB l =uuu r uuu rl =321234【解析】由,可知,则,因为双曲线的渐近线为,所以,,故为正三角形,且,所以为的中位线,为线段的中点,即,故.故选:C.7.(2020·天津高三一模)已知双曲线,则双曲线的离心率为( )A .BCD【答案】A 【解析】将双曲线的标准方程表示为,,因此,该双曲线的离心率为.故选:A.120F B F B ×=uuu r uuur 12F B F B ^2BO OF c ==22:13y C x -=y =2120AOF °Ð=260BOF °Ð=2BOF V 2//AO BF AO 12BF F △A 1F B 1F A AB =uuu r uuu r1l =()22104x y m m-=>0y ±=2()222210,0x y a b a b-=>>0y ±=2e ==8.(2020·江西省靖安中学高二月考(理))已知双曲线中心为原点,焦点在轴上,过点,且渐近线方程为,则该双曲线的方程为( )A .B .C .D .【答案】C 【解析】渐近线方程为,设双曲线方程为,将的坐标代入方程得,,求得则该双曲线的方程为.故选:C.9.(2019·天津高三三模(文))双曲线的离心率为2,焦点到渐近线的距离为的焦距等于( ).A .2B .C .4D .=【答案】C【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .10.(2020·安徽省高三月考(文))已知双曲线,则它的一条渐近线被圆截得的线段长为( )A .B .CD .【答案】Dx 2)2y x ±=2212y x -=2242x y -=2214y x -=2221x y -=Q 20x y ±=224x y l -=0l ¹2)P 222l -=4l =2214y x -=2222:1(0,0)x y C a b a b-=>>C 22221(0,0)x y a b a b -=>>2260x y x +-=323【解析】由题意可得e ,即c a ,即有b a ,设双曲线的一条渐近线方程为yx ,即为y =x ,圆的圆心为(3,0),半径r =3,即有圆心到渐近线的距离为d ,可得截得的弦长为.故选:D.二、多选题11.(2020·山东省胶州市第一中学高三一模)已知双曲线C :的左、右焦点分别为,,则能使双曲线C 的方程为的是( )A .离心率为B .双曲线过点C .渐近线方程为D .实轴长为4【答案】ABC 【解析】由题意,可得:焦点在轴上,且;A 选项,若离心率为,则,所以,此时双曲线的方程为:,故A 正确;B 选项,若双曲线过点,则,解得:;此时双曲线的方程为:,故B 正确;C 选项,若双曲线的渐近线方程为,可设双曲线的方程为:,ca=====ba=2260x y x +-=====22221(0,0)x y a b a b -=>>1(5,0)F -2(5,0)F 221169x y -=5495,4æöç÷èø340±=x y x 5c =544a =2229b c a =-=221169x y -=95,4æöç÷èø22222812516125a b a b c ìïï-=íï+==ïî22169a b ì=í=î221169x y -=340±=x y 22(0)169x y m m -=>所以,解得:,所以此时双曲线的方程为:,故C 正确;D 选项,若实轴长为4,则,所以,此时双曲线的方程为:,故D 错误;故选:ABC.12.(2020·湖南省衡阳市一中高二期末)已知双曲线,右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若 ,则有( )A .渐近线方程为B .C .D .渐近线方程为【答案】AC 【解析】双曲线C:1(a >0,b >0)的右顶点为A (a ,0),以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M、N 两点.若∠MAN=60°,可得A 到渐近线bx +ay =0的距离为:b cos30°,,即e.且,故渐近线方程为渐近线方程为故选:AC .13.(2020·高密市第一中学高三月考)已知点是双曲线:的右支上一点,,为双曲线的左、右焦点,的面积为20,则下列说法正确的是( )A .点的横坐标为B .的周长为216925c m m =+=1m =221169x y -=2a =22221b c a =-=224121x y -=2222:1(0,0)x y C a b a b -=>>A A b A A C M N 60MAN Ð=°y x =e =e =y =2222x y a b-===a c ==b a ==y x =P E 221169x y -=1F 2F E 12PF F D P 20312PF F D 803C .小于D .的内切圆半径为【答案】ABC 【解析】设的内心为,连接,双曲线:中的,,,不妨设,,,由的面积为20,可得,即,由,可得,故A 符合题意;由,且,,可得,,则,则,故C 符合题意;由,则的周长为,故B 符合题意;12F PF Ð3p12PF F D 3412F PF D I 22IP IF IF 、、E 221169x y -=4a =3b =5c =()P m n ,0m >0n >12PF F D 1215202F F n cn n ===4n =2161169m -=203m =2043P æöç÷èø,()150F -,()250F ,11235PF k =2125PF k =(121212360535tan 012123191535F PF -==δ+´123F PF p<Ð12371350333PF PF +=+=+=12PF F D 50801033+=设的内切圆半径为,可得,可得,解得,故D 不符合题意.故选:ABC .三、填空题14.(2018·民勤县第一中学高二期末(文))双曲线的渐近线方程为 【答案】【解析】由双曲线方程可知渐近线方程为15.(2020·天水市第一中学高二月考(文))以双曲线的焦点为顶点,顶点为焦点的椭圆方程为_____.【答案】【解析】由双曲线的相关性质可知,双曲线的焦点为,顶点为,所以椭圆的顶点为,焦点为,因为,所以椭圆的方程为,故答案为。

(完整word版)打印双曲线基础训练题(含答案),推荐文档

(完整word版)打印双曲线基础训练题(含答案),推荐文档

双曲线基础训练题(一)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( C ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的 曲线可能是 ( C )5.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( B )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有 ( D )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A )A .28B .22C .14D .128.双曲线方程为152||22=-+-ky k x ,那么k 的取值范围是 ( D )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >59.双曲线的渐近线方程是y=±2x ,那么双曲线方程是( D )A .x 2-4y 2=1 B .x 2-4y 2=1 C .4x 2-y 2=-1 D .4x 2-y 2=110.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF(C )A .1或5B . 6C . 7D . 911.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B )A .43B .53C .2D .7312.设c 、e 分别是双曲线的半焦距和离心率,则双曲线12222=-by a x (a>0, b>0)的一个顶点到它的一条渐近线的距离是 ( D )A .caB .c bC .ea D .eb 13.双曲线)1(122>=-n y nx 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )A .21 B .1 C .2 D .414.二次曲线1422=+my x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是( C )A .]23,22[B .]25,23[C .]26,25[D .]26,23[15.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =_____6416.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F17.双曲线122=-by ax 的离心率为5,则a :b= 4或4118.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .19.(本题12分)已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; [解析]∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x双曲线基础练习题(二)一. 选择题1.已知双曲线的离心率为2,焦点是(4,0),(4,0)-,则双曲线的方程是A. 221412x y -=B. 221124x y -= C. 221106x y -= D. 221610x y -=2.设椭圆1C 的离心率为513,焦点在x 上,长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点距离差的绝对值等于8,则曲线2C 的标准方程是A. 2222143x y -=B. 22221135x y -=C. 2222134x y -= D. 222211312x y -=3. 已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率等于A .53B .43C .54D .324. 已知双曲线22112x y n n+=-,则n = A.2- B .4 C.6 D.8-5.设1F 、2F 是双曲线22221x y a b-=的两个焦点,若1F 、2F 、(0,2)P b 是正三角形的三个顶点,那么其离心率是A.32 B. 52C. 2D. 3 6.已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线距离之比等于A C. 2 D.4 7.如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 的距离是A.B. C. D. 8.设12F F ,是双曲线22221x y a b-=的左、右焦点,若其右支上存在一点P 使得1290F PF ∠=o,且12PF =,则e =A.B. 1C.D . 19. 若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5C D10. 设ABC △是等腰三角形,120ABC ∠=o ,则以A B ,为焦点且过点C 的双曲线的离心率为A .221+ B .231+ C .21+D .31+11. 双曲线22221x y a b-=的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为 ABCD .312. 设1,a >则双曲线22221(1)x y a a -=+的离心率e 的取值范围是A .B .C .(25),D .(213.已知双曲线()222102x y b b-=>的左、右焦点分别为1F 、2F ,它的一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF =u u u r u u u u rgA .12-B .2-C .0D .414.双曲线22221x y a b-=的两个焦点为1F 、2F ,若P 为其上一点,且122PF PF =,则离心率e 的取值范围是A .(1),3B .(1,3]C .(3)∞,+D .)+[3,∞15.设P 为双曲线22112y x -=上一点,1F 、2F 是双曲线的两个焦点,若1PF :2PF =3:2,则12PF F ∆的面积为A .B .12C .D .2416.设1F 、2F 是双曲线2219y x -=的左、右焦点,P 为该双曲线上一点,且120PF PF =u u u r u u u u r g ,则12PF PF +=u u u r u u u u rA .B .CD .二.填空题17.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程是y x =,若顶点到渐近线的距离为1,则双曲线方程为18.以1(60)F -,,2(60)F ,为焦点,离心率2e =的双曲线的方程是19.中心在原点,一个焦点是1(30)F -,20y ±=的双曲线的方程为20.过点(20)N ,且与圆2240x y x ++=外切的动圆圆心的轨迹方程是21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 22. 已知双曲线22291(0)ym x m -=>的一个顶点到它的一条渐近线的距离为15,则m =23.已知双曲线2221(2x y a a -=>的两条渐近的夹角为3π,则双曲线的离心率为24.已知双曲线22221x y a b -=的右焦点为F ,右准线与一条渐近线交于点A ,OAF ∆的面积为22a ,(O 为坐标原点),则该双曲线的两条渐近线的夹角为25.过双曲线22143x y -=左焦点1F 的直线交双曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN+-=26. 若双曲线22221x y a b-=的右支上存在一点,它到右焦点及左准线的距离相等,则e 取值范围是27..P是曲线22221x y a b-=的右支上一点,F为其右焦点,M 是右准线:x l 与x 轴的交点,若60,PMF ∠=o 45PFM ∠=o ,则双曲线方程是28.过双曲线221916x y -=的右焦点F 且平行双曲线的一条渐近线的直线与双曲线交于点B, A 为右顶点,则FAB ∆的面积等于 三.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是x=,离心率e =(2)中心在原点,离心率e =30.已知双曲线22221(00)x y C a b a b-=>>:,的两个焦点为1(20)F -,,2(20)F ,,点(3P 在双曲线C 上.⑴求双曲线C 的方程; ⑵记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若OEF =△S l 方程.双曲线练习题答案(二)一.选择题1.A 2. A3.A4. B 5. C6.C7.A8D9. D10. B11. B12. B13.C14.B15.B16B 二.填空题17.223144x y-=18.221927x y-=19.22145x y-=20.()22113yx x-=≥21.322.423.324.2π25.826.(11⎤⎦27.2211260x y-=28.3215二.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x=,离心率e=2214yx-=(2)中心在原点,离心率2e=顶点到渐近线的距离为5;2214xy-=30. 已知双曲线22221(00)x yC a ba b-=>>:,的两个焦点为1(20)F-,,2(20)F,,点(3P在双曲线C上.⑴求双曲线C的方程;⑵记O为坐标原点,过点(02)Q,的直线l与双曲线C相交于不同的两点E F,,若OEF=△S l方程.⑴解略:双曲线方程为22122x y-=.⑵解:直线:l2y kx=+,代入双曲线C的方程并整理,得22(1)460k x kx---=. ①Q直线l与双曲线C相交于不同的两点E F,,222110(4)46(1)0kkkk k≠±⎧⎧-≠⎪⎪∴⇔⎨⎨<<∆=-+⨯->⎪⎪⎩⎩,,,,(1)(11)(1k∴∈--U U,.②设1122()()E x yF x y,,,,则由①式得12241kx xk+=-,12261x xk=--,EF ∴21k -而原点O 到直线l 的距离d =1122OEFS d EF ∴=⋅==△.若OEFS =△,即422201k k k=⇔--=-,解得k =此满足②故满足条件的直线l 有两条,其方程分别为2y =+和2y =+双曲线基础练习题(三)一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C.191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y x B .122=+-y x C .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x 12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________. 14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题17.(本小题(10分)已知双曲线C :191622=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,准线方程,渐近线方程。

(完整版)圆锥曲线-双曲线小题(含详解)

(完整版)圆锥曲线-双曲线小题(含详解)

试卷第1页,总4页 双曲线小题 1.已知12,FF分别为双曲线)0,0(12222babyax的左、右焦点,P为双曲线右支上的任意一点,若212PFPF的最小值为8a,则双曲线的离心率e的取值范围是( ) A.1,3 B.1,3 C.3,3 D.3,

2.已知F2,F1是双曲线22221(0,0)yxabab的上,下两个焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( ) A.2 B.3 C.3 D.2

3.已知双曲线222210,0xyabab 的一条渐近线过点2,3 ,且双曲线的一个焦点在抛物线247yx 的准线上,则双曲线的方程为( ) (A)2212128xy (B)2212821xy(C)22134xy(D)22143xy 4.若双曲线22221xyab (0,0)ab上存在一点P满足以||OP为边长的正方形的面积等于2ab(其中O为坐标原点),则双曲线的离心率的取值范围是( ) A.5(1,]2 B.7(1,]2 C.5[,)2 D.7[,)2

5.如图,双曲线的中心在坐标原点O,, AC分别是双曲线虚轴的上、下顶点,B是双曲线的左顶点,F为双曲线的左焦点,直线AB与FC相交于点D.若双曲线的离心率为2,则BDF的余弦值是 ( ) 试卷第2页,总4页

(A)77 (B)577 (C)714 (D)5714 6.设12,FF分别是双曲线2222:1(0,0)xyCabab的左、右焦点,P是C的右支上的点,射线PT平分12FPF,过原点O作PT的平行线交1PF于点M,若121||||3MPFF,则C的离心率为( )

A.32 B.3 C.2 D.3

7.设1F、2F分别为双曲线22221(0,0)xyabab>>的左、右焦点.若在双曲线右支上存在点P,满足212PFFF,且2F到直线1PF的距离等于双曲线的实轴长,则双曲线的离心率为( ) A.43 B.53 C.54 D.2

打印双曲线基础训练题(含答案)

打印双曲线基础训练题(含答案)

双曲线基础训练题(一)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( C ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的 曲线可能是 ( C )5.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( B )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有 ( D )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A )A .28B .22C .14D .128.双曲线方程为152||22=-+-ky k x ,那么k 的取值范围是 ( D )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >59.双曲线的渐近线方程是y=±2x ,那么双曲线方程是( D )A .x 2-4y 2=1 B .x 2-4y 2=1 C .4x 2-y 2=-1 D .4x 2-y 2=110.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF(C )A .1或5B . 6C . 7D . 911.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B )A .43B .53C .2D .7312.设c 、e 分别是双曲线的半焦距和离心率,则双曲线12222=-by a x (a>0, b>0)的一个顶点到它的一条渐近线的距离是 ( D )A .caB .c bC .ea D .eb 13.双曲线)1(122>=-n y nx 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )A .21 B .1 C .2 D .414.二次曲线1422=+my x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是( C )A .]23,22[B .]25,23[C .]26,25[D .]26,23[15.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =_____6416.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F17.双曲线122=-by ax 的离心率为5,则a :b= 4或4118.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .19.(本题12分)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; [解析]∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x双曲线基础练习题(二)一. 选择题1.已知双曲线的离心率为2,焦点是(4,0),(4,0)-,则双曲线的方程是A. 221412x y -=B. 221124x y -= C. 221106x y -= D. 221610x y -=2.设椭圆1C 的离心率为513,焦点在x 上,长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点距离差的绝对值等于8,则曲线2C 的标准方程是A. 2222143x y -=B. 22221135x y -=C. 2222134x y -= D. 222211312x y -=3. 已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率等于A .53B .43C .54D .324. 已知双曲线22112x y n n+=-n = A.2- B .4 C.6 D. 8-5.设1F 、2F 是双曲线22221x y a b-=的两个焦点,若1F 、2F 、(0,2)P b 是正三角形的三个顶点,那么其离心率是A.32 B. 52C. 2D. 3 6.已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线距离之比等于A C. 2 D.4 7.如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 的距离是C. 8.设12F F ,是双曲线22221x y a b-=的左、右焦点,若其右支上存在一点P 使得1290F PF ∠=,且12PF =,则e =1 D 1 9. 若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5C D 10. 设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为A .221+ B .231+C . 21+D .31+11. 双曲线22221x y a b-=的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为 ABC .D .312. 设1,a >则双曲线22221(1)x y a a -=+的离心率e 的取值范围是A .2)B .C .(25),D .(213.已知双曲线()222102x y b b-=>的左、右焦点分别为1F 、2F ,它的一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF =A .12-B .2-C .0D .414.双曲线22221x y a b-=的两个焦点为1F 、2F ,若P 为其上一点,且122PF PF =,则离心率e 的取值范围是A .(1),3B .(1,3]C .(3)∞,+D .)+[3,∞15.设P 为双曲线22112y x -=上一点,1F 、2F 是双曲线的两个焦点,若1PF :2PF =3:2,则12PF F ∆的面积为A .B .12C .D .2416.设1F 、2F 是双曲线2219y x -=的左、右焦点,P 为该双曲线上一点,且120PF PF =,则12PF PF +=AB .CD .二.填空题17.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程是y x =,若顶点到渐近线的距离为1,则双曲线方程为18.以1(60)F -,,2(60)F ,为焦点,离心率2e =的双曲线的方程是19.中心在原点,一个焦点是1(30)F -,20y ±=的双曲线的方程为20.过点(20)N ,且与圆2240x y x ++=外切的动圆圆心的轨迹方程是21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 22. 已知双曲线22291(0)ym x m -=>的一个顶点到它的一条渐近线的距离为15,则m =23.已知双曲线2221(2x y a a -=>的两条渐近的夹角为3π,则双曲线的离心率为24.已知双曲线22221x y a b -=的右焦点为F ,右准线与一条渐近线交于点A ,OAF ∆的面积为22a ,(O 为坐标原点),则该双曲线的两条渐近线的夹角为25.过双曲线22143x y -=左焦点1F 的直线交双曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN+-=26. 若双曲线22221x y a b-=的右支上存在一点,它到右焦点及左准线的距离相等,则e 取值范围是27..P是曲线22221x y a b-=的右支上一点,F为其右焦点,M 是右准线:2x =与x 轴的交点,若60,PMF ∠=45PFM ∠=,则双曲线方程是28.过双曲线221916x y -=的右焦点F 且平行双曲线的一条渐近线的直线与双曲线交于点B, A 为右顶点,则FAB ∆的面积等于 三.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x=,离心率e =(2)中心在原点,离心率2e =30. 已知双曲线22221(00)x y C a b a b -=>>:,的两个焦点为1(20)F -,,2(20)F ,,点()P 在双曲线C 上.⑴求双曲线C 的方程; ⑵记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若O E F =△S l 方程.双曲线练习题答案(二)一.选择题1.A 2. A3.A4. B 5. C6. C7. A8D9. D10. B11. B12. B13.C14.B15.B16B 二.填空题17.223144x y-=18.221927x y-=19.22145x y-=20.()22113yx x-=≥21. 322.423.324.2π25. 826.(11⎤⎦27.2211260x y-=28.3215二.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x=,离心率e=2214yx-=(2)中心在原点,离心率e=2214xy-=30. 已知双曲线22221(00)x yC a ba b-=>>:,的两个焦点为1(20)F-,,2(20)F,,点()P在双曲线C上.⑴求双曲线C的方程;⑵记O为坐标原点,过点(02)Q,的直线l与双曲线C相交于不同的两点E F,,若OEF=△S l方程.⑴解略:双曲线方程为22122x y-=.⑵解:直线:l2y kx=+,代入双曲线C的方程并整理,得22(1)460k x kx---=. ①直线l与双曲线C相交于不同的两点E F,,222110(4)46(1)0kkkk k≠±⎧⎧-≠⎪⎪∴⇔⎨⎨<<∆=-+⨯->⎪⎪⎩⎩,,,,(1)(11)(13)k∴∈--,,. ②设1122()()E x yF x y,,,,则由①式得12241kx xk+=-,12261x xk=--,EF ∴21k -而原点O 到直线l 的距离d =1122OEFS d EF ∴=⋅==△.若OEFS =△,即422201k k k=⇔--=-,解得k =此满足②故满足条件的直线l 有两条,其方程分别为2y =+和2y =+双曲线基础练习题(三)一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C.191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y x B .122=+-y x C .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________. 14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题17.(本小题(10分)已知双曲线C :191622=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,准线方程,渐近线方程。

(完整版)双曲线练习题(含标准答案)

(完整版)双曲线练习题(含标准答案)

双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1D .x 2-y 24=1 7.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=1 11.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案)1.选择题1.以椭圆x^2/169 + y^2/64 = 1的顶点为顶点,离心率为2的双曲线方程为C,当顶点为(±4,0)时,a=4,c=8,b=√(a^2+c^2)=4√5,双曲线方程为x^2/16 - y^2/20 = 1;当顶点为(0,±3)时,a=3,c=6,b=√(a^2+c^2)=3√5,双曲线方程为y^2/9 - x^2/5 = 1,所以答案为C。

2.双曲线2x^2 - y^2 = 8化为标准形式为x^2/4 - y^2/8 = 1,所以实轴长为2a = 4,答案为C。

3.若a>1,则双曲线2x^2/a^2 - y^2 = 1的离心率的取值范围是C。

由双曲线方程得离心率e = √(a^2+1)/a,所以c^2 =a^2+b^2 = a^2(a^2+1)/(a^2-1),代入离心率公式得√(a^2+1)/a = 2,解得a = 2,所以答案为C。

4.已知双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为D。

由双曲线方程得离心率e = √(a^2+b^2)/a = 2,所以b^2 = 3a^2,又因为点(4,0)到渐近线的距离为c/a,所以c^2 = a^2+b^2 = 4a^2,代入双曲线方程得4x^2/a^2 - 2y^2/3a^2 = 1,化简得y^2 = 6x^2/5,所以渐近线方程为y = ±√(6/5)x,代入点(4,0)得距离为2√5,所以答案为D。

5.双曲线C:x^2/4 - y^2/16 = 1的右焦点坐标为F(6,0),一条渐近线的方程为y = x,设点P在第一象限,由于|PO| = |PF|,则点P的横坐标为4,纵坐标为3,所以△PFO的底边长为6,高为3,面积为9,所以答案为A。

6.若双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的一条渐近线被圆(x-2)^2 + y^2 = 4所截得的弦长为2,则b^2 = a^2-4,圆心为(2,0),半径为2,设截弦的两个交点为P和Q,则PQ = 2,所以PQ的中点M在圆上,即M为(5/2,±√(3)/2),所以PM = √(a^2-25/4)±√(3)/2,由于PM = PQ/2 = 1,所以(a^2-25/4)+(3/4) = 1,解得a = √(29)/2,所以答案为B。

圆锥曲线之----双曲线专题(附答案)

圆锥曲线之----双曲线专题(附答案)

圆锥曲线之----双曲线专题1. 设F 1,F 2分别是双曲线x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得∠F 1PF 2=60°,|OP|=3b(O 为坐标原点),则该双曲线的离心率为( )A. 43B. 2√33C. 76D. √426【答案】D【解析】【分析】本题考查双曲线的定义与余弦定理的应用,得到a 2与c 2的关系是关键,也是难点,考查分析问题,解决问题的能力,属于中档题.利用双曲线的定义与余弦定理可得到a 2与c 2的关系,从而可求得该双曲线的离心率. 【解答】解:设该双曲线的离心率为e ,依题意,||PF 1|−|PF 2||=2a , ∴|PF 1|2+|PF 2|2−2|PF 1|⋅|PF 2|=4a 2,不妨设|PF 1|2+|PF 2|2=x ,|PF 1|⋅|PF 2|=y , 上式为:x −2y =4a 2,① ∵∠F 1PF 2=60°, ∴在△F 1PF 2中,由余弦定理得,|F 1F 2|2=|PF 1|2+|PF 2|2−2|PF 1|⋅|PF 2|⋅cos60°=4c 2,② 即x −y =4c 2,②又|OP|=3b ,PF 1⃗⃗⃗⃗⃗⃗⃗ +PF 2⃗⃗⃗⃗⃗⃗⃗ =2PO ⃗⃗⃗⃗⃗ ,∴PF 1⃗⃗⃗⃗⃗⃗⃗ 2+PF 2⃗⃗⃗⃗⃗⃗⃗ 2+2|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |⋅cos60°=4|PO ⃗⃗⃗⃗⃗ |2=36b2, 即|PF 1|2+|PF 2|2+|PF 1|⋅|PF 2|=36b 2,即x +y =36b 2,③由②+③得:2x =4c 2+36b 2, ①+③×2得:3x =4a 2+72b 2, 于是有12c 2+108b 2=8a 2+144b 2, ∴c 2a =76, ∴e =ca =√426. 故选D .2. 过双曲线x 2a2−y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交双曲线于点P ,O 为坐标原点,若OE ⃗⃗⃗⃗⃗=12(OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ),则双曲线的离心率为( )A. 1+√52B. √52C. √5D. 1+√32【答案】C【解析】【分析】本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查双曲线的定义,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.设F′为双曲线的右焦点,由题设知|EF|=b ,|PF|=2b ,|PF′|=2a ,再由|PF|−|PF′|=2a ,知b =2a ,由此能求出双曲线的离心率. 【解答】解:∵|OF|=c ,|OE|=a ,OE ⊥EF ,∴|EF|=b , 设F′为双曲线的右焦点,∵OE ⃗⃗⃗⃗⃗ =12(OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ),则E 为PF 的中点,OE 为△FPF′的中位线,∴|PF|=2b ,|PF′|=2a ,∵|PF|−|PF′|=2a ,∴b =2a , ∴e =√1+(ba )2=√5, 故选:C3. 已知F 1,F 2分别是双曲线y 2a 2−x 2b 2=1(a,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线离心率的取值范围是( ) A. (1,2) B. (2,+∞) C. (1,√2) D. (√2,+∞) 【答案】A【解析】解:如图1,不妨设F 1(0,c),F 2(0,−c),则过F 1与渐近线y =ab x 平行的直线为y =ab x +c , 联立{y =a b x +cy =−a b x 解得{x =−bc2a y =c 2即M(−bc 2a ,c2) 因M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内, 故(−bc 2a )2+(c2)2<c 2,化简得b 2<3a 2,即c 2−a 2<3a 2,解得c a <2,又双曲线离心率e =ca >1,所以双曲线离心率的取值范围是(1,2).故选:A .不妨设F 1(0,c),F 2(0,−c),则过F 1与渐近线y =a b x 平行的直线为y =ab x +c ,联立直线组成方程组,求出M 坐标,利用点与圆的位置关系,列出不等式然后求解离心率即可. 本题考查直线与双曲线的位置关系的应用,双曲线的简单性质的应用,考查数形结合以及计算能力.4. 若双曲线E :x 2a2−y 2b 2=1(a >0,b >0)的一个焦点为F(3,0),过F 点的直线l 与双曲线E 交于A ,B 两点,且AB 的中点为P(−3,−6),则E 的方程为( )A. x 25−y 24=1B. x 24−y 25=1C. x 26−y 23=1D. x 23−y 26=1【答案】D【解析】解:由题意可得直线l 的斜率为k =k PF =0+63+3=1, 可得直线l 的方程为y =x −3, 代入双曲线E :x 2a 2−y 2b 2=1可得(b 2−a 2)x 2+6a 2x −9a 2−a 2b 2=0,设A(x1,y1),B(x2,y2),则x1+x2=6a2a2−b2,由AB的中点为P,可得6a2a2−b2=−6,即有b2=2a2,又a2+b2=c2=9,解得a=√3,b=√6,则双曲线的方程为x23−y26=1.故选:D.求出直线l的斜率和方程,代入双曲线的方程,化简可得x的二次方程,运用韦达定理和中点坐标公式,结合焦点坐标,可得a,b的方程组,解得a,b,进而得到双曲线的方程.本题考查双曲线的方程的求法,注意运用双曲线的焦点和联立方程组,运用韦达定理、中点坐标公式,考查运算能力,属于中档题.5.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线,交双曲线右支于点M,若∠F1MF2=45°,则双曲线的离心率为()A. √3B. 2C. √2D. √5【答案】A【解析】【分析】本题考查双曲线的离心率,考查双曲线的定义和三角形的中位线定理,考查运算能力,属于中档题.设切点为N,连接ON,作F2作F2A⊥MN,垂足为A,运用中位线定理和勾股定理,结合双曲线的定义,即可得到a,b的关系,则c=√a2+b2=√3a,进而得到离心率.【解答】解:设切点为N,连接ON,作F2作F2A⊥MN,垂足为A,由|ON|=a,且ON为△F1F2A的中位线,可得|F2A|=2a,|F1N|=√c2−a2=b,即有|F1A|=2b,在直角三角形MF2A中,可得|MF2|=2√2a,即有|MF1|=2b+2a,由双曲线的定义可得|MF1|−|MF2|=2b+2a−2√2a=2a,可得b=√2a,∴c=√a2+b2=√3a,∴e=ca=√3.故选:A .6. 已知F 1,F 2分别是双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 2与双曲线的一条渐近线平行的直线交另一条渐近线于点M ,若∠F 1MF 2为锐角,则双曲线离心率的取值范围是( ) A. (1,√2) B. (√2,+∞) C. (1,2) D. (2,+∞) 【答案】D【解析】【分析】可得M ,F 1,F 2的坐标,进而可得MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ,MF 2⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标,由MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ >0,结合abc 的关系可得关于ac 的不等式,结合离心率的定义可得范围.本题考查双曲线的离心率,考查学生解方程组的能力,属中档题. 【解答】解:联立{x 2a 2−y 2b2=1y =b a(x −c),解得{x =c 2y =−bc 2a,∴M(c 2,−bc2a ),F 1(−c,0),F 2(c,0), ∴MF 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−3c 2,bc 2a),MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =(c 2,bc2a ), 由题意可得MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ >0,即b 2c 24a 2−3c24>0,化简可得b 2>3a 2,即c 2−a 2>3a 2, 故可得c 2>4a 2,c >2a ,可得e =ca >2 故选D .7. 设双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线分别交双曲线左右两支于点M ,N ,连结MF 2,NF 2,若MF 2⃗⃗⃗⃗⃗⃗⃗⃗ ⋅NF 2⃗⃗⃗⃗⃗⃗⃗ =0,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=|NF 2⃗⃗⃗⃗⃗⃗⃗ |,则双曲线C 的离心率为( )A. √2B. √3C. √5D. √6【答案】B【解析】解:若MF 2⃗⃗⃗⃗⃗⃗⃗⃗ ⋅NF 2⃗⃗⃗⃗⃗⃗⃗ =0,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=|NF 2⃗⃗⃗⃗⃗⃗⃗ |,可得△MNF 2为等腰直角三角形,设|MF 2|=|NF 2|=m ,则|MN|=√2m , 由|MF 2|−|MF 1|=2a ,|NF 1|−|NF 2|=2a ,两式相加可得|NF 1|−|MF 1|=|MN|=4a ,即有m =2√2a ,在直角三角形HF 1F 2中可得4c 2=4a 2+(2a +2√2a −2a)2, 化为c 2=3a 2,即e=ca=√3.故选:B.由题意可得△MNF2为等腰直角三角形,设|MF2|=|NF2|=m,则|MN|=√2m,运用双曲线的定义,求得|MN|=4a,可得m,再由勾股定理可得a,c的关系,即可得到所求离心率.本题考查双曲线的定义、方程和性质,主要是离心率的求法,注意运用等腰直角三角形的性质和勾股定理,考查运算能力,属于中档题.8.已知双曲线x2a2−y2b2=1(a>0,b>0)的左,右焦点分别为F1,F2,点A在双曲线上,且AF2⊥x轴,若△AF1F2的内切圆半径为(√3−1)a,则其离心率为()A. √3B. 2C. √3+1D. 2√3【答案】A【解析】【分析】本题考查双曲线的离心率的求法,注意运用双曲线的定义和三角形的等积法,考查化简整理的运算能力,属于中档题.由题意可得A在双曲线的右支上,由双曲线的定义可得|AF1|−|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用等积法和勾股定理,可得r=c−a,结合条件和离心率公式,计算即可得到所求值.【解答】解:如图:由点A在双曲线上,且AF2⊥x轴,可得A在双曲线的右支上,由双曲线的定义可得|AF1|−|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用面积相等可得S△AF1F2=12|AF2|⋅|F1F2|=12r(|AF1|+|AF2|+|F1F2|),由勾股定理可得|AF2|2+|F1F2|2=|AF1|2,解得r=|AF2|+|F1F2|−|AF1|2=2c−2a2=c−a=(√3−1)a,从而可以得出c=√3a,则离心率e=ca=√3,故选A.9.已知O为坐标原点,双曲线x2−y2b2=1(b>0)上有一点P,过点P作两条渐近线的平行线,与两条渐近线的交点分别为A,B,若平行四边形PAOB的面积为1,则双曲线的离心率为()A. √17B. √15C. √5D. √3【答案】C【解析】解:由双曲线方程可得渐近线方程bx±y=0,设P(m,n)是双曲线上任一点,设过P平行于bx+y=0的直线为l,则l的方程为:bx+y−bm−n=0,l与渐近线bx−y=0交点为A,则A(bm+n2b ,bm+n2),|OA|=|bm+n2b|√1+b2,P点到OA的距离是:d=√b2+1,∵|OA|⋅d=1,∴|bm+n2b |√1+b2⋅bm−n√b2+1=1,∴b=2,∴c=√5,∴e=√5故选:C.求得双曲线的渐近线方程,设P(m,n)是双曲线上任一点,设过P平行于bx+y=0的直线为l,求得l的方程,联立另一条渐近线可得交点A,|OA|,求得P到OA的距离,由平行四边形的面积公式,化简整理,解方程可得b,求得c,进而得到所求双曲线的离心率.本题考查双曲线的离心率的求法,注意运用渐近线方程和两直线平行的条件:斜率相等,联立方程求交点,考查化简整理的运算能力,属于中档题.10.倾斜角为30°的直线l经过双曲线x2a2−y2b2=1(a>0,b>0)的左焦点F1,交双曲线于A、B两点,线段AB的垂直平分线过右焦点F2,则此双曲线的渐近线方程为()A. y=±xB. y=±12x C. y=±√32x D. y=±√52x【答案】A【解析】解:如图MF2为△ABF2的垂直平分线,可得AF2=BF2,且∠MF1F2=30°,可得MF2=2c⋅sin30°=c,MF1=2c⋅cos30°=√3c,由双曲线的定义可得BF1−BF2═2a,AF2−AF1=2a,即有AB=BF1−AF1=BF2+2a−(AF2−2a)=4a,即有MA=2a,AF2=√MA2+MF22=√4a2+c2,AF1=MF1−MA=√3c−2a,由AF2−AF1=2a,可得√4a2+c2−(√3c−2a)=2a,可得4a2+c2=3c2,即c=√2a,b=√c2−a2=a,则渐近线方程为y=±x.故选:A.由垂直平分线性质定理可得AF2=BF2,运用解直角三角形和双曲线的定义,求得AB= 4a,结合勾股定理,可得a,c的关系,进而得到a,b的关系,即可得到所求双曲线的渐近线方程.本题考查双曲线的方程和性质,主要是渐近线方程的求法,考查垂直平分线的性质和解直角三角形,注意运用双曲线的定义,考查运算能力,属于中档题.11. 已知双曲线x 2a 2−y2b 2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则该双曲线的离心率为( )A. √62B. √52C. 2√33D. √3【答案】B【解析】解:如图,不妨设直线l 的斜率为−ab ,∴直线l 的方程为y =−ab (x −c),联立{y =−a b (x −c)x 2a2−y 2b 2=1,得(b 2−a 2)c 2y 2−2ab 3cy +a 2b 4=0. ∴y =ab 3±a 2b 2(b 2−a 2)c.由题意,方程得(b 2−a 2)c 2y 2−2ab 3cy +a 2b 4=0的两根异号, 则a >b ,此时y A =ab 3+a 2b 2(b 2−a 2)c<0,y B =ab 3−a 2b 2(b 2−a 2)c>0.则ab 3+a 2b 2(a 2−b 2)c =3ab 3−a 2b 2(b 2−a 2)c,即a =2b .∴a 2=4b 2=4(c 2−a 2),∴4c 2=5a 2,即e =ca=√52. 故选:B .不妨设直线l 的斜率为−a b ,∴直线l 的方程为y =−ab (x −c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解. 本题考查双曲线的简单性质,考查计算能力,是中档题.12. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=45°,则双曲线的渐近线方程为( )A. y =±√2xB. y =±√3xC. y =±xD. y =±2x 【答案】A【解析】【分析】本题考查双曲线的渐近线方程,考查双曲线的定义和三角形的中位线定理,考查运算能力,属于中档题.设切点为N ,连接ON ,作F 2作F 2A ⊥MN ,垂足为A ,运用中位线定理和勾股定理,结合双曲线的定义,即可得到a ,b 的关系,进而得到所求渐近线方程. 【解答】解:设切点为N ,连接ON ,作F 2作F 2A ⊥MN ,垂足为A , 由|ON|=a ,且ON 为△F 1F 2A 的中位线,可得 |F 2A|=2a ,|F 1N|=√c 2−a 2=b , 即有|F 1A|=2b , 因为∠F 1MF 2=45°,所以在等腰直角三角形MF 2A 中,可得|MF 2|=2√2a , 即有|MF 1|=2b +2a ,由双曲线的定义可得|MF 1|−|MF 2|=2b +2a −2√2a =2a , 可得b =√2a ,则双曲线的渐近线方程为y =±√2x. 故选A .13. 已知点F 为双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的右焦点,直线x =a 与双曲线的渐近线在第一象限的交点为A ,若AF 的中点在双曲线上,则双曲线的离心率为( )A. √5B. 1+√2C. 1+√5D. −1+√5【答案】D【解析】解:设双曲线C :x 2a2−y 2b 2=1的右焦点F(c,0),双曲线的渐近线方程为y =ba x , 由x =a 代入渐近线方程可得y =b , 则A(a,b),可得AF 的中点为(a+c 2,12b),代入双曲线的方程可得(a+c)24a 2−14=1,可得4a 2−2ac −c 2=0, 由e =ca ,可得e 2+2e −4=0,解得e =√5−1(−1−√5舍去), 故选:D .设出双曲线的右焦点和渐近线方程,可得将交点A 的坐标,运用中点坐标公式,可得中点坐标,代入双曲线的方程,结合离心率公式,计算即可得到所求值.本题考查双曲线的离心率的求法,考查渐近线方程的运用,以及中点坐标公式,考查方程思想和运算能力,属于中档题.14. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0),过左焦点F 的直线切圆x 2+y 2=a 2于点P ,交双曲线C 右支于点Q ,若FP⃗⃗⃗⃗⃗ =PQ ⃗⃗⃗⃗⃗ ,则双曲线C 的渐近线方程为( ) A. y =±x B. y =±2xC. y =±12xD. y =±√32x 【答案】B【解析】【分析】本题考查直线与双曲线的位置关系,考查双曲线的定义和渐近线方程,属于中档题. 由已知可得|OP |=a ,设双曲线的右焦点为F′,由P 为线段FQ 的中点,知|QF′|=2a ,|QF|=2b ,由双曲线的定义知:2b −2a =2a ,由此能求出双曲线C :x 2a −y 2b =1(a >0,b >0)的渐近线方程.【解答】解:∵过双曲线C :x 2a 2−y 2b 2=1(a >0,b >0),左焦点F 引圆x 2+y 2=a 2的切线,切点为P ,∴|OP |=a ,设双曲线的右焦点为F′, 由FP ⃗⃗⃗⃗⃗ =PQ ⃗⃗⃗⃗⃗ 可得,P 为线段FQ 的中点, ∴|QF′|=2|OP |=2a,|QF |=2|PF |=2b,,由双曲线的定义知:|QF |−|QF′|=2b −2a =2a , ∴b =2a . ∴双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x =±2x , 故选B .15. 已知F 为双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的右焦点.过点F 向C 的一条渐近线引垂线.垂足为A.交另一条渐近线于点B.若|OF|=|FB|,则C 的离心率是( )A. √62B. 2√33C. √2D. 2【答案】B【解析】【分析】 本题考查双曲线的简单几何性质,考查求双曲线性质的常用方程,考查数形结合思想,属于中档题.方法一:由双曲线的渐近线方程,利用点到直线的距离公式即可求得|AF|,分别求得|OB|,|根据勾股定理|OB|2=|OA|2+|AB|2,求得a 和b的关系,即可求得双曲线的离心率; 方法二:利用余弦定理求得:|OB|2=|OF|2+|FB|2−2|OF||FB|cos∠OFB =2c 2+2bc ,即可求得求得a 和b 的关系,即可求得双曲线的离心率;方法三:根据三角形的面积相等及渐近线方程求得A 点坐标,利用直角三角形的性质,即可求得a和b的关系,即可求得双曲线的离心率;方法四:求得双曲线的渐近线及AB的方程,联立即可求得A和B点坐标,根据等腰三角形的性质,即可求得a和b的值,即可求得双曲线的离心率.【解答】解:方法一:过F向另一条渐近线引垂线.垂足为D,双曲线的渐近线方程为y=±bax,则F(c,0)到渐近线的距离d=√a2+b2=b,即|FA|=|FD|=b,则|OA|=|OD|=a,|AB|=b+c,由△OFB为等腰三角形,则D为OB的中点,∴|OB|=2a,|OB|2=OA|2+|AB|2=a2+ (b+c)2.∴4a2=a2+(b+c)2,整理得:c2−bc−2b2=0,解得:c=2b,由a2=c2−b2,则2a=√3c,e=ca =2√33,故选B.方法二:过F向另一条渐近线引垂线.垂足为D,双曲线的渐近线方程为y=±bax,则F(c,0)到渐近线的距离d=√a2+b2=b,即|FA|=|FD|=b,则|OA|=|OD|=a,由△OFB为等腰三角形,则D为OB的中点,∴|OB|=2a由∠OFB=π−∠OFA,cos∠OFB=cos(π−∠OFA)=−cos∠OFA=−bc,由余弦定理可知:|OB|2=|OF|2+|FB|2−2|OF||FB|cos∠OFB=2c2+2bc,∴2c2+2bc=4a2,整理得:c2−bc−2b2=0,解得:c=2b,由a2=c2−b2,则2a=√3c,e=ca =2√33故选B.方法三:过F向另一条渐近线引垂线.垂足为D,双曲线的渐近线方程为y=±bax,则F(c,0)到渐近线的距离d=√a2+b2=b,即|FA|=|FD|=b,则|OA|=|OD|=a,由△OFB为等腰三角形,则D为OB的中点,∴|OB|=2a,根据三角形的面积相等,则A(a2c ,abc),∴在Rt△OAB中,2a=2×2×abc ,即c=2b,由a2=c2−b2,则2a=√3c,e=ca=2√33故选B.方法四:双曲线的一条渐近线方程为y=ba x,直线AB的方程为:y=−ab(x−2),{y=baxy=−ab(x−c),解得:{x=a2cy=abc,则A(a2c,abc),{y=−baxy=−ab(x−c),解得:{x=a2ca2−b2y=−abca2−b2,则B(a2ca2−b2,abca2−b2),由△OFB为等腰三角形,则D为OB的中点,则2×abc =abca2−b2,整理得:a2=3b2,∴e=c a=√1+b 2a =2√33, 故选:B .16. 已知双曲线x 2(m+1)2−y 2m 2=1(m >0)的离心率为√52,P 是该双曲线上的点,P 在该双曲线两渐近线上的射影分别是A ,B ,则|PA|⋅|PB|的值为( )A. 45B. 35C. 43D. 34【答案】A【解析】解:双曲线x 2(m+1)2−y 2m 2=1(m >0)的离心率为√52,可得e 2=c 2a 2=(m+1)2+m 2(m+1)2=54, 解得m =1,即双曲线的方程为x 24−y 2=1,渐近线方程为x ±2y =0, 设P(s,t),可得s 2−4t 2=4, 由题意可得|PA|⋅|PB|=√1+4⋅√1+4=|s 2−4t 2|5=45.故选:A .运用离心率公式,解方程可得m =1,求得渐近线方程,设P(s,t),可得s 2−4t 2=4,运用点到直线的距离公式,化简整理,即可得到所求值. 本题考查双曲线的方程和性质,主要是离心率和渐近线方程,考查点到直线的距离公式,化简整理的运算能力,属于中档题.17. 过双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 29的切线,切点为E ,延长FE 交双曲线右支于点P ,若FP⃗⃗⃗⃗⃗ =2FE ⃗⃗⃗⃗⃗ ,则双曲线的离心率为( ) A. √173B. √176C. √105D. √102【答案】A【解析】【分析】本题考查双曲线的离心率的求法,注意运用直线和圆相切的性质,以及双曲线的定义和中位线定理,勾股定理,考查化简整理的运算能力,属于中档题.由FP ⃗⃗⃗⃗⃗ =2FE ⃗⃗⃗⃗⃗ ,知E 为PF 的中点,令右焦点为F′,则O 为FF′的中点,则|PF′|=2|OE|=23a ,运用双曲线的定义可得|PF|=|PF′|+2a =83a ,在Rt △PFF′中,|PF|2+|PF′|2=|FF′|2,由此能求出离心率. 【解答】解:由若FP ⃗⃗⃗⃗⃗ =2FE⃗⃗⃗⃗⃗ ,可得E 为PF 的中点, 令右焦点为F′,O 为FF′的中点, 则|PF′|=2|OE|=23a ,由E 为切点,可得OE ⊥PF , 即有PF′⊥PF ,由双曲线的定义可得|PF|−|PF′|=2a , 即|PF|=|PF′|+2a =83a ,在Rt △PFF′中,|PF|2+|PF′|2=|FF′|2,即649a 2+49a 2=4c 2,即c =√173a ,则离心率e =c a =√173.故选A .18. 已知双曲线M :x 2a 2−y2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,|F 1F 2|=2c.若双曲线M 的右支上存在点P ,使a sin∠PF 1F 2=3csin∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A. (1,2+√73) B. (1,2+√73] C. (1,2) D. (1,2]【答案】A【解析】解:由a sin∠PF 1F 2=3csin∠PF 2F 1,在△PF 1F 2中,由正弦定理可得PF 2sin∠PF 1F 2=PF1sin∠PF 2F1, 可得3c ⋅PF 2=a ⋅PF 1,且PF 1−PF 2=2a联立可得PF 2=2a 23c−a >0,即得3c −a >0,即e =ca >13,…①又PF 2>c −a(由P 在双曲线右支上运动且异于顶点), ∴PF 2=2a 23c−a >c −a ,化简可得3c 2−4ac −a 2<0, 即3e 2−4e −1<0,得2−√73<e <2+√73…②又e >1,③由①②③可得,e 的范围是(1,2+√73).故选:A .利用正弦定理及双曲线的定义,可得a ,c 的不等式,结合PF 2>c −a ,即可求出双曲线的离心率的取值范围.本题考查双曲线的离心率的取值范围,考查正弦定理及双曲线的定义,考查化简整理的圆能力,属于中档题.19. 设F 1,F 2是双曲线x 24−y 2=1的两个焦点,点P 在双曲线上,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =0,则|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |的值等于( )A. 2B. 2√2C. 4D. 8【答案】A【解析】解:由已知F 1(−√5,0),F 2(√5,0),则|F 1F 2|=2√5.即{|PF 1|2+|PF 2|2=|F 1F 2|2=20||PF 1|−|PF 2|=4, 得|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2. 故选A .先由已知F 1(−√5,0),F 2(√5,0),得出|F 1F 2|=2√5.再由向量的数量积为0得出直角三角形PF 1F 2,最后在此直角三角形中利用勾股定理及双曲线的定义列出关于的方程,即可解得|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |的值.本题主要考查了双曲线的应用及向量垂直的条件.考查了学生对双曲线定义和基本知识的掌握.20. 已知双曲线y 2a 2−x2b 2=1(a >0,b >0)的上、下焦点分别为F 2,F 1,过F 1且倾斜角为锐角的直线1与圆x 2+y 2=a 2相切,与双曲线的上支交于点M.若线段MF 1的垂直平分线过点F 2,则该双曲线的渐近线的方程为( )A. y =±43xB. y =±34xC. y =±53xD. y =±35x【答案】B【解析】解:设MF 1与圆相切于点E ,因为|MF 2|=|F 1F 2|=2c ,所以△MF 1F 2为等腰三角形, N 为MF 1的中点, 所以|F 1E|=14|MF 1|,又因为在直角△F 1EO 中,|F 1E|2=|F 1O|2−a 2=c 2−a 2, 所以|F 1E|=b =14|MF 1|①又|MF 1|=|MF 2|+2a =2c +2a ②, c 2=a 2+b 2 ③ 由①②③可得c 2−a 2=(c+a 2)2, 即为4(c −a)=c +a ,即3c =5a , b =√c 2−a 2=√259a 2−a 2=43a , 则双曲线的渐近线方程为y =±ab x , 即为y =±34x.故选:B .先设MF 1与圆相切于点E ,利用|MF 2|=|F 1F 2|,及直线MF 1与圆x 2+y 2=a 2相切,可得几何量之间的关系,从而可求双曲线的渐近线方程.本题考查直线与圆相切,考查双曲线的定义,考查双曲线的几何性质,注意运用平面几何的性质,考查运算能力,属于中档题.21. 已知双曲线x 2a 2−y2b 2=1(a >0,b >0)的右焦点为F ,过F 作双曲线渐近线的垂线,垂足为A ,直线AF 交双曲线右支于点B ,且B 为线段AF 的中点,则该双曲线的离心率是( )A. 2B. √62C. 2√105D. √2【答案】D【解析】【分析】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出FA 的中点B 的坐标是解题的关键.设渐近线方程为y =b a x ,则FA 的方程为y −0=−ab (x −c),代入渐近线方程求得A 的坐标,由中点公式求得中点B 的坐标,再把点B 的坐标代入双曲线求得离心率. 【解答】解:由题意设渐近线方程为y =ba x , 则FA 的方程为y −0=−ab (x −c), 代入渐近线方程y =b a x 可得A 的坐标为(a 2c ,abc),B 是线段AF 2的中点(c+a 2c2,ab2c ),根据中点B 在双曲线C 上, ∴(a 2c +c)24a 2−a 2b 24b 2c 2=1,∴c 2a 2=2, 故e =ca =√2, 故选:D .22. 已知F 是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,过点F 作垂直于x 轴的直线交该双曲线的一条渐近线于点M ,若|FM|=2a ,记该双曲线的离心率为e ,则e 2=( )A. 1+√172B. 1+√174C. 2+√52D. 2+√54【答案】A【解析】解:由题意可设F(c,0),一条渐近线方程为y =ba x , 可得M(c,bca ), 即有2a =bc a ,即bc =2a 2,即b 2c 2=4a 4,即(c 2−a 2)c 2−4a 4=0,由e=c可得e4−e2−4=0,a(负的舍去),解得e2=1+√172故选:A.设出F的坐标和一条渐近线方程,求得M的坐标和|FM|,由a,b,c的关系和离心率公式,解方程可得所求值.本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,考查方程思想和运算能力,属于中档题.。

双曲线练习题(含标准答案)

双曲线练习题(含标准答案)

双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 []14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=1 11.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1.5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0.6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1.7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。

双曲线练习题带答案,知识点总结(基础版)

双曲线练习题带答案,知识点总结(基础版)

双曲线重难点复习一.知识点总结双曲线:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (其中122a F F <)1 a 半实轴长;b 半虚轴长;c 半焦距;a 、b 、c 之间满足c a b =+. e 叫做椭圆的离心率,ce a=且1e >.e 越大,双曲线的张口就越大.2.实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e =渐近线方程为y x =±3.y y=0b ax x y x a b±=±焦点在轴上和在轴上的渐近线方程分别为和,容所以常把双曲线标准方程右边的常数写成,分解因式即得渐近易记错,线方程。

4.双曲线的焦点到渐近线的距离为b.122ta 5n2.PF F S b θ= 焦点三角形的面积22222222222222226.1010x y x y a b a b x y x y b a b aλλλλ-=-=≠-=-=≠与双曲线有共同渐近线的双曲线方程可以表示为();与双曲线有共同渐近线的双曲线方程可以表示为().1.已知F 为双曲线C :116922=-y x 的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________. 442.已知双曲线22221(0)x y a b a b-=>>的焦距为20x y +=垂直,则双曲线的方程为A. 2214x y -=B. 2214y x -= C. 22331205x y -= D. 22331520x y -= 【答案】A【解析】由题可知2c =,则c =.渐近线方程为12y x =,则12b a =.又222c a b =+可得,224,1a b ==.所以双曲线的方程为2214x y -=;故本题答案选A .视频3.已知O 为坐标原点,设F 1,F 2分别是双曲线x 2−y 2=1的左、右焦点,点P 为双曲线左支上任一点,自点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH |=( ) A. 1 B. 2 C. 4 D. 12【答案】A【解析】延长F 1H 交PF 2于点Q ,由角分线性质可知|PF 1|=|PQ |,根据双曲线的定义,||PF 1|−|PF 2||=2,从而|QF 2|=2,在ΔF 1QF 2中,OH 为其中位线,故|OH |=1.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.4.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,||43AB =,则C 的实轴长为( ) A ..4 D .85.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F A 、,是双曲线渐近线上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF ,则渐近线的斜率为(A (B (C )1或1-(D )2或2- D6.已知双曲线x 2-23y =1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ·2PF的最小值为________.-27.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为M (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 答案 B解析 由已知易得l 的斜率为k =k FM =1.设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1,两式相减并结合x 1+x 2=-24,y 1+y 2=-30,得y 1-y 2x 1-x 2=4b 25a 2,从而4b 25a2=1,即4b 2=5a 2.又a 2+b 2=9,解得a 2=4,b 2=5,故选B. 8与双曲线622=-y x的左支交于不同的两点,()A .()11-, C【答案】C试题分析:联立方程2226y kx x y =+⎧⎨-=⎩得()2214100k x kx ---=…① 若直线y=kx+2与双曲线622=-y x 的左支交于不同的两点,则方程①有两个不等的负根k 9.经过双曲线4−y 2=1右焦点的直线与双曲线交于A ,B 两点,若 AB =4,则这样的直线的条数为( )A. 4条B. 3条C. 2条D. 1条 【答案】B【解析】由双曲线x 24−y 2=1,可得a =2,b =1,若AB 只与双曲线右支相交时,AB 的最小值距离是通径长度为2b 2a=1,∵AB =4>1,∴此时有两条直线符合条件;若AB 只与双曲线两支相交时,此时AB 的最小距离是实轴两顶点的即距离长度为2a =4,距离无最大值;∵AB =4,∴此时有1条直线符合条件;综上可得,共有3条直线符合条件,故选B.10.P 是双曲线C :x 2−y 2=2左支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 2是双曲线C 的右焦点,则 PF 2 + PQ 的最小值为( ) A.22B. 2C. 3 2D. 2+22【答案】C【解析】由题知|PF 2|−|PF 1|=2a =2 2,则|PF 2|+|PQ |=|PF 1|+|PQ |+2 2,由对称性,当F 1,P ,Q 在同一直线上时|PF 1|+|PQ |最小,由渐近线方程y =x ,|F 1O |=2知|F 1Q |= 2 则|PF 2|+|PQ |的最小值为3 2.故本题答案选C .11.点P 是双曲线22221(0,0)x y a b a b -=>>上的点,12,F F 是其焦点,双曲线的离心率是54,且12•0PF PF = ,若12F PF ∆的面积是9,则a b +的值等于() A. 4 B. 7 C. 6 D. 5 【答案】B【解析】双曲线的离心率是5344c b a a ==⇒=,120PF PF ⋅=1212,PF PF PFF ∴⊥∴ 的面积121219182S PF PF PF PF =⋅=∴⋅=,. 在12PF F 中,由勾股定理可得222222*********||2?4369c PF PF PF PF PF PF a a b a =+=-+=+∴+=+(),,34b a ∴=∴=,,7a b ∴+=,故选 C .12.若双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的一条渐近线被圆 x −2 2+y 2=4所截得的弦长为2,则C 的离心率为( ) A. 2 B. C. D. 2 33【答案】A【解析】由几何关系可得,双曲线x 2a 2−y 2b 2=1 a >0,b >0 的渐近线方程为bx ±ay =0,圆心 2,0 到渐近线距离为d = 2−12= 3,则点 2,0 到直线bx +ay =0的距离为d =22=2b c= 3,即4(c 2−a 2)c =3,整理可得c 2=4a 2,双曲线的离心率e = c 2a = 4=2.故选A .13.右焦点分别为12,F F ,过1F 作倾斜角为030的直线与y 轴和双曲线右支分别交于两点,若点A 平分1F B ,则该双曲线的离心率是()C. 2D.【答案】A14.右焦点分别为12,F F ,焦距为2(0)c c >,且120AOB ∠= ,其中O 为原点,则双曲线的离心率为()A. 2B. 【答案】C 【解析】如下图:,(0a >,0b >),过其左焦点F 作x 轴的垂线,交双曲两点,若双曲线的右顶点在以AB 为直径的圆内,则双曲线离心率的取值范围是()B. ()1,2C.D. ()2,+∞ 【答案】D【解析】AB 是双曲线通径,即2222a a cbc a +<=-,2220c ac a -->,即,故选D .16.设1F ,2F 分别为椭圆1C :221122111(0)x y a b a b +=>>与双曲线2C :222222221(0,0)x y a b a b -=>>的公共焦点,它们在第一象限内交于点M ,1290F MF ∠=︒,若椭圆的离心率134e =,则双曲线2C 的离心率2e 的值为()A. 92B. 2C. 32D. 54【答案】B【解析】设12,m MF n MF ==,所以1122122{{ 2m n a m a am n a n a a+==+∴-==-,由1290F MF ∠= 得()()()()222222212121222c m n a a a a a a =+=++-=+,222222212121222222121122a a a a c a a c c c e e +∴=+∴==+=+,1234e e =∴= 17.已知双曲线C :x 2a −y 2b =1(a >0,b >0),F 1,F 2分别为其左、右焦点,过F 1的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,若|AB |:|BF 2|:|AF 2|=3:4:5,则双曲线C 的离心率为( )A. 2B. 4C. 13D. 15 【答案】A 【解析】∵|AB|:|BF 2|:|AF 2|=3:4:5,不妨令 AB =3, BF 2 =4,|AF 2|=5, ∵|AB |2+|BF 2|2=|AF 2|2 ,∴∠ABF 2=90∘又由双曲线的定义得:|BF 1|−|BF 2|=2a ,|AF 2|−|AF 1|=2a ∴|AF 1|+3−4=5−|AF 1|,∴|AF 1|=3 ,|BF 1|−|BF 2|=3+3−4=2a ,∴a =1在RtΔBF 1F 2 中,|F 1F 2|2=|BF 1|2+|BF 2|2=62+42=52, 又|F 1F 2|2=4c 2,∴4c 2=52,∴c = 13 所以双曲线的离心率e =c = 13 ,故选C.18.已知12,F F 是双曲线的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且则该双曲线的离心率为B. D. 2【答案】A则A. 19.已知F 为双曲线的左焦点,定点A 为双曲线虚轴的一个端点,过,F A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若3A B F A = ,则此双曲线的离心率为__________.【解析】F 为双曲线的左焦点,定点A 为双曲线虚轴的一个端点,。

《双曲线》练习题经典(含答案)

《双曲线》练习题经典(含答案)

《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(A)A.17B.15C.174 D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为(B)A.B.C.或D.4.1(a>b>01有相同的焦点,则椭圆的离心率为( A )A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A.2 B.C.D.7.已知双曲线22219y xa-=的两条渐近线与以椭圆221259yx+=的左焦点为圆心、半径为165的圆相切,则双曲线的离心率为( A )A.54B.53C.43D.658.双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为(B)A.3B.62 C.63 D.339.已知双曲线221(0,0)x ym nm n-=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的,则m等于( D )A.9 B.4 C.2 D.,310.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( A )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=1 11.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( C )A .4 2B .83C .24D .4812.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( C ) A .28 B .14-82 C .14+8 2D .8 213.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( D ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=114.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B |=|F 2A |,则该双曲线的离心率是( C ) A . B .C .D .215.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( C )条。

7类二级结论双曲线小题应用全答案

7类二级结论双曲线小题应用全答案

7类二级结论双曲线应用全参考答案:1.1260F PF ∠=︒【详解】不妨设点()00,P x y 在双曲线的右支上.由题设易得12F F =121001122PF F S F F y ==⨯=解得02y =.又由22001x y -=,解得2200651142x y =+=+=.由双曲线的第二定义得21001a PF e x a ex c ⎡⎤⎛⎫=--=+=+⎢⎥ ⎪⎝⎭⎣⎦,及220001a PF e x ex a c ⎛⎫=-=-- ⎪⎝⎭.再由余弦定理得()()2222001220112218cos 221x F PF x +--+-∠==-2(51)812(51)2⨯+-==⨯-.故1260F PF ∠=︒.2.C【分析】根据题目条件求出双曲线方程,得到渐近线方程,可得两条渐近线的夹角.【详解】设1PF m =,2PF n =,由双曲线的定义可知2m n a -=,又1290F PF ∠=,2c =,123F PF S = ,可得2224m n c +=,6mn =,即()2222412416m n mn a c -+=+==,解得1a=,b==可得双曲线的渐近线方程为y=,两条渐近线的夹角为60 .故选:C 3【分析】利用余弦定理可得1PF =,然后利用双曲线的定义结合条件即得.【详解】因为2122PF F F c ==,21π6F F P ∠=,所以2112222211212cos PF PF F F PF F F F F P +⋅∠=-,即222112244c PF c PF c =-+⋅,所以1PF =,又122PF PF a -=,所以22c a -=,即e ==故答案为:.4.65因为1112+-+=λλk e所以6=5e =;5.6因为1112-++=λλk e所以e =6.D因为1112+-+=λλk e=;0k k >∴= 7.C【分析】由焦点到渐近线的距离得到b ,联立直线与双曲线的方程,用点差法可以得到两条直线的斜率,由116PA PB k k ⋅=,求a 的值,A ,B ,D 三个选项即可判断,C 选项考查双曲线的定义,用()2221212122PF PF PF PF PF PF +=-+得到12PF PF 的值,就可以计算三角形的面积.【详解】因为双曲线C :()222210,0x y a b a b-=>>的焦点到渐近线的距离为1,则1b =,所以双曲线方程为C :()22210x y a a -=>,由2221y kx x y a=⎧⎪⎨-=⎪⎩可得222110k x a ⎛⎫--= ⎪⎝⎭,设()11,A x y ,()22,B x y ,则120x x +=,即21x x =-,∴()11,B x y --,设()00,P x y 则221121x y a -=,220021x y a -=,所以222210102x x y y a -=-,即2210222101y y x x a -=-,又1010PA y y k x x -=-,1010PB y y k x x --=--,116PA PB k k ⋅=,所以221010012221010011116PA PBy y y y y y k k x x x x x x a ----⋅=⋅===----,∴216a =,即4a =,故A 错误;所以双曲线C :22116x y -=,1b =,c =双曲线C 的渐近线方程为14y x =±,离心率为4,故B 错误,D 错误;若12PF PF ⊥,则()(22221212122PF PF PF PF PF PF +=-+=,所以122PF PF =,12PF F △的面积为1,故C 正确.故选:C.8.B【分析】由题知()()4,0,4,0A B -,进而结合题意设()()0000,,,C x y D x y -,再结合()202091616x y -=,计算12k k 即可得答案.【详解】解:由题知()()4,0,4,0A B -,因为圆221:1169x y C -=与双曲线交于,C D 两点,所以,根据对称性可设()()0000,,,C x y D x y -,所以,001200,44y y k k x x -==+-,所以20001220004416y y y k k x x x --=⋅=+--,因为22001169x y -=,即()202091616x y -=,所以()2020001222000091691644161616x y y y k k x x x x ----=⋅===-+---故选:B 9.A【分析】设()00,P x y ,应用斜率两点式得到202202y x a =-,根据P 为双曲线C 上一点即可得双曲线参数关系,进而求其离心率.【详解】依题意12(,0),(,0)A a A a -,设()00,P x y ,则0012002y yk k x a x a⋅=⋅=+-,∴202202y x a =-,又()2222220220000222211b x a x y x y b a b a a -⎛⎫-=⇒=-= ⎪⎝⎭,∴222b a=,故22213b e a =+=,即e =故选:A 10.B【分析】首先根据题意得到a =1b =,c =x 轴,再根据点到直线的距离求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、典型例题选讲 (一)考查双曲线的概念

例1 设P是双曲线19222yax上一点,双曲线的一条渐近线方程为023yx,1F、2F

分别是双曲线的左、右焦点.若3||1PF,则||2PF( ) A.1或5 B.6 C.7 D.9 分析:根据标准方程写出渐近线方程,两个方程对比求出a的值,利用双曲线的定义求出

2||PF的值.

解:双曲线19222yax渐近线方程为y=xa3,由已知渐近线为023yx, 122,||||||4aPFPF,||4||12PFPF.

12||3,||0PFPFQ,7||2PF.

故选C. 归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法. (二)基本量求解

例2(2009山东理)设双曲线12222byax的一条渐近线与抛物线21yx只有一个公共点,则双曲线的离心率为( ) A.45 B.5 C.25 D.5

解析:双曲线12222byax的一条渐近线为xaby,由方程组21byxayx,消去y,得210bxxa有唯一解,所以△=2()40ba,

所以2ba,2221()5cabbeaaa,故选D. 归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能. 例3(2009全国Ⅰ理)设双曲线22221xyab(a>0,b>0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( ) A.3 B.2 C.5 D.6

解析:设切点00(,)Pxy,则切线的斜率为0'0|2xxyx.由题意有0002yxx.又有

2001yx

,联立两式解得:2201,2,1()5bbxeaa.

因此选C. 例4(2009江西)设1F和2F为双曲线22221xyab(0,0ab)的两个焦点,若12FF,,(0,2)Pb是正三角形的三个顶点,则双曲线的离心率为( )

A.32 B.2 C.52 D.3

解析:由3tan623cb有2222344()cbca,则2cea,故选B. 归纳小结:注意等边三角形及双曲线的几何特征,从而得出3tan623cb,体现数形结合思想的应用. (三)求曲线的方程

例5(2009,北京)已知双曲线2222:1(0,0)xyCabab的离心率为3,右准线方程

为33x. (1)求双曲线C的方程; (2)已知直线0xym与双曲线C交于不同的两点A,B,且线段AB的中点在圆

225xy

上,求m的值.

分析:(1)由已知条件列出,,abc的关系,求出双曲线C的方程;(2)将直线与双曲线方程联立,再由中点坐标公式及点在圆上求出m的值.

解:(1)由题意,得2333acca,解得1,3ac.

∴2222bca,∴所求双曲线C的方程为2212yx. (2)设A、B两点的坐标分别为1122,,,xyxy,线段AB的中点为00,Mxy,

由22120yxxym得22220xmxm(判别式0), ∴12000,22xxxmyxmm, ∵点00,Mxy在圆225xy上, ∴2225mm,∴1m. 另解:设A、B两点的坐标分别为1122,,,xyxy,线段AB的中点为00,Mxy,

由221122221212yxyx,两式相减得121212121()()()()02xxxxyyyy. 由直线的斜率为1,121200,22xxyyxy代入上式,得002yx. 又00(,)Myx在圆上,得22005yx,又00(,)Myx在直线上,可求得m的值. 归纳小结:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力. 例6 过(1,1)M的直线交双曲线22142xy于,AB两点,若M为弦AB的中点,求直线AB的方程.

分析:求过定点M的直线方程,只需要求出它的斜率.为此可设其斜率是k,利用M为弦AB的中点,即可求得k的值,由此写出直线AB的方程.也可设出弦的两端点坐标用“点差法”

求解.

解法一:显然直线AB不垂直于x轴,设其斜率是k,则方程为1(1)ykx.

由221421(1)xyykx消去y得222(12)4(1)2460①kxkkxkk 设),(),(221,1yxByxA,由于M为弦AB的中点, 所以1222(1)1212xxkkk,所以12k. 显然,当12k时方程①的判别式大于零. 所以直线AB的方程为11(1)2yx,即210xy. 解法二:设),(),(221,1yxByxA,则 2211

2222

1②421③42xyxy





①-②得12121212()()2()()0xxxxyyyy. 又因为12122,2xxyy,所以12122()xxyy. 若12,xx则12yy,由12122,2xxyy得121xx,121yy. 则点AB、都不在双曲线上,与题设矛盾,所以12xx.

所以121212yykxx. 所以直线AB的方程为11(1)2yx,即210xy. 经检验直线210xy符合题意,故所求直线为210xy. 解法三:设A(xy,),由于AB、关于点M(1,1)对称,所以B的坐标为(22xy,),

则2221,42(2)1.2xyy2(2-x)4消去平方项,得210xy. ④ 即点A的坐标满足方程④,同理点B的坐标也满足方程④. 故直线AB的方程为210xy. 归纳总结:由于双曲线(抛物线)不是“封闭”的曲线,以定点为中点的弦不一定存在,所以在求双曲线(抛物线)中点弦方程时,必须判断满足条件的直线是否存在. (四)轨迹问题

例7 已知点100(,)Pxy为双曲线222218xybb(b为正常数)上任一点,2F为双曲线的右焦点,过1P作右准线的垂线,垂足为A,连接2FA并延长交y轴于2P.求线段1P2P的中点P的轨迹E的方程. 分析:求轨迹问题有多种方法,如相关点法等,本题注意到点P是线段1P2P的中点,可利用相关点法. 解:由已知得208(3,0),(,)3FbAby,则直线2FA的方程为:03(3)yyxbb.

令0x得09yy,即20(0,9)Py.

设Pxy(,),则0000 2952xxyyyy,

即0025xxyy代入22002218xybb得:222241825xybb, 即P的轨迹E的方程为22221225xybb.()xR 归纳小结:将几何特征转化为代数关系是解析几何常用方法. (五)突出几何性质的考查 例8(2006江西)P是双曲线221916xy的右支上一点,M,N分别是圆22(5)4xy

和22(5)1xy上的点,则||||PMPN的最大值为( ) A.6 B.7 C.8 D.9 解析:双曲线的两个焦点1(5,0)F与2(5,0)F恰好是两圆的圆心,欲使||||PMPN的值

最大,当且仅当||PM最大且||PN最小,由平面几何性质知,点M在线段1PF的延长线上,点N是线段2PF与圆的交点时所求的值最大.

此时12||||(2)(1)PMPNPFPF9321PFPF.因此选D. 例9(2009重庆)已知以原点O为中心的双曲线的一条准线方程为55x,离心率5e. (1)求该双曲线的方程; (2)如图,点A的坐标为(5,0),B是圆22(5)1xy上的点,点M在双曲线右

支上,求MAMB的最小值,并求此时M点的坐标. 分析:(1)比较基础,利用所给条件可求得双曲线的方程;(2)利用双曲线的定义将MAMB、转化为其它线段,再利用不等式的性质求解. 解:(1)由题意可知,双曲线的焦点在x轴上,故可设双曲线的方程为

22221(0,0)xyabab,设22cab,由准线方程为55x得255ac,

由5e得5ca. 解得1,5ac.从而2b,该双曲线的方程为2214yx. (2)设点D的坐标为(5,0),则点A、D为双曲线的焦点,

则||||22MAMDa. 所以||||2||||2||MAMBMBMDBD≥. 因为B是圆22(5)1xy上的点, 其圆心为(0,5)C,半径为1, 故||||1101BDCD≥, 从而||||2||101MAMBBD≥≥. 当,MB在线段CD上时取等号,此时||||MAMB的最小值为101. Q直线CD的方程为5yx,因点M在双曲线右支上,故0x.

由方程组22445xyyx解得5424542,33xy.

相关文档
最新文档