《结构动力学》复习题
《结构动力学》考试复习题
《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。
(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。
结构动力学例题复习题
第十六章结构动力学【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。
图16-6【解】各刚架的自由度确定如图中所示。
这里要注意以下两点:1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。
根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。
2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。
【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。
【解】本题特点是,动荷载不是作用在质量上的集中荷载。
对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。
设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。
把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则)(R I y P D I P +δ+∆=∆+∆+∆=式中,)t (q EI 38454P =∆,EI483=δ。
将它们代入上式,并注意到ym I -=,y c R -=,得)(48)(384534y c y m EIt q EI y --+=图16-7经整理后可得)(t P ky y c y m E =++式中,3EI 481k =δ=,)(85)(t q k t P P E =∆= )(t P E 称为等效动荷载或等效干扰力。
其含义为:)(t P E 直接作用于质量上所产生的位移和实际动荷载引起的位移相等。
图a 的相当体系如图f 所示。
【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和3m质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。
【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。
结构动力学复习题
结构力学下复习题一. 判断题1. 对于单自由度体系有如下关系k =δ-1对于多自由度体系也同样成立。
( )2. 仅在恢复力作用下的振动称为自由振动。
( )3. 如果使单自由度体系的阻尼增大,其结果是周期变短。
( )4、 体系在θϖ>时,)(t y 与)(t p 方向相同。
ϖ为自振频率,EI 为常数。
( )5. 在无限自由度体系的弹性稳定分析中,用静力法和能量法(瑞利-里兹法)得到的临界荷载是相同的。
( )6. 只要两个杆件的截面面积相同、所用材料相同,它们的极限弯矩就是相同的。
( )二. 单项选择题1.对图示结构,若要使其自振频率增大,可以( )。
A. 增大F P ; C. 增大m ;B. 增大 EI ; D. 增大l 。
2 . 单自由度简谐受迫振动中,若算得位移放大系数μ 为负值,则表示( )。
A. 体系不可能振动; C. 动位移小于静位移;B. 干扰力频率与自振频率不同步; D. 干扰力方向与位移方向相反。
3.单自由度体系在简谐荷载作用下如果频率比大于1,则要减小振动幅值需采取措施A 增加刚度,减少质量;B 增加刚度,增加质量;C 减少刚度,减少质量;D 减少刚度,增加质量;4.图示两组压杆的临界荷载分析为Pcr 1 F 和Pcr 2 F ,则两者的关系是A 21cr cr F F =B 212cr cr F F =C 212cr cr F F =D 215.1cr cr F F =题4三 . 填充题1.图示体系不计杆件质量和轴向变形,各杆抗弯刚度为常数,其动力自由度为 。
2.图示体系的自振频率为 。
3、对于矩形截面,极限弯矩为屈服弯矩的 倍。
4、已知质点m 的最大竖向位移st y y 5max = ,且初始时质点竖向位移为st y (st y 为静位移),则质点的初始速度为 。
四. 计算分析题1.)已知θ = 0.4ω ,试求图示体系的振幅和最大动弯矩。
2.试求图示体系质点的振幅和A 截面动弯矩幅值,已知ϖθ6.0=3.试求图示基础的振幅 A及地基所受的动压力N。
结构动力学试题及答案
结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。
3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。
2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。
3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。
4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。
5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。
试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。
3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。
2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。
常用的计算方法有有限元法、拉普拉斯变换法等。
3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。
4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。
5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。
试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。
3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。
工程力学结构动力学复习题
工程力学结构动力学复习题一、简答题1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段?2、何谓结构的振动自由度?它与机动分析中的自由度有何异同?3、何谓动力系数?简谐荷载下动力系数与哪些因素有关?4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么?5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们?6、简述振型分解法是如何将耦联的运动方程解耦的.7、时域法求解与频域法求解振动问题各有何特点?8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。
简谐荷载下的动力放大系数与频率比、阻尼比有关。
当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。
原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。
9、振型正交性的物理意义是什么?振型正交性有何应用?答:由振型关于质量、刚度正交性公式可知,i振型上的惯性力在,振型上作的虚功为0。
由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。
换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。
这说明各个主振型都能单独出现,彼此线性无关。
这就是振型正交的物理意义。
一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。
而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。
10、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
结构动力学试卷及答案
考生请注意:1.本试题共6 题,共2 页,考生请认真检查;2.答题时,直接将答题内容写在我校提供的答题纸上;答在试卷上一律无效;3.本试题不得拆开,拆开后遗失后果自负。
一、简述题(本题共20分,每小题5分)1.自由振动、强迫振动自由振动:系统受到初始激励作用后,仅靠其本身的弹性恢复力“自由地”振动,其振动特性仅取决于系统本身的物理特性(质量和刚度)。
强迫振动:系统受到外界持续的激励作用而“被动地”进行振动,其振动特性除取决于系统本身的特性外,还取决于激励的特性。
2.广义坐标、振型函数广义坐标:是一种坐标形式,它是有几组互相正交的模态组成,任何变量都可由这几组模态的唯一线性组合而成。
振型函数:是一种函数形式,描述振型在几维空间中的振幅值的表现。
3.稳态响应、瞬态响应稳态响应:当系统在外力作用下,经过一段时间后,系统振动趋于稳定时的响应。
瞬态响应:当系统在外力作用下,在系统振动趋于稳定之前的响应。
瞬态响应发生在稳态响应之前,他们组合构成完整的外力作用时的振动响应。
4.哈密顿原理具有完整约束的动力学系统,在满足协调性条件、约束条件或边界条件,同时满足起始t1时刻与结束t2时刻条件的可能的位移随时间变化的形式中,真实解对应的那种变化形式使Lagrange泛函L取最小值,即2 1(T V W)0t t dt式中:T为系统的动能,V为系统的势能,W为外力所作虚功。
二.质量均为m 的两个球,系于具有很大张力T 的弦上,如图所示,求系统的固有频率。
(本题10分)解:由于弦的张力T 很大,两个球只能在竖向发生微幅振动。
(1分)如下图所示,两个球在外力1()F t 和2()F t 作用下发生竖向微幅振动,位移分别为1x 和2x 。
对两个球,分别作受力分析:外荷载;惯性力; 张力分力。
(3分)运用达朗贝尔原理,分别列出 两个球的竖向运动方程:12111()x x x mx T T F t L L-+⋅-⋅=22122()x x xmx T T F t L L-+⋅+⋅= (5分)写成矩阵形式:1112222()002()TT x x F t m L L m x T T x F t L L ⎡⎤-⎢⎥⎧⎫⎧⎫⎧⎫⎡⎤+=⎢⎥⎨⎬⎨⎬⎨⎬⎢⎥⎣⎦⎩⎭⎩⎭⎩⎭⎢⎥-⎢⎥⎣⎦得频率方程:[][]222202T Tm LLK M T T m L Lωωω---==-- (7分) 解得: 1ω=2ω= (10分)ll l F 2(t)三.图示简支梁,梁长为4l ,在四等分处有3个质量m 1=m 2=m 3=m ,梁的抗弯刚度为EI ,忽略梁自身的质量,要求:(1)写出系统振动方程;(2)求系统的各阶固有频率; (3)画出相应的主振型。
(完整word版)结构动力学历年试题
(完整word版)结构动力学历年试题结构动力学历年试题(简答题)1.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载包括哪几种,请简述每一种荷载的特点。
P22.通过与静力问题的对比,试说明结构动力计算的特点。
P33.动力自由度数目计算类4.什么叫有势力?它有何种性质。
P145.广义力是标量还是矢量?它与广义坐标的乘积是哪个物理量的量纲?P166.什么是振型的正交性?它的成立条件是什么?P1057.在研究结构的动力反应时,重力的影响如何考虑?这样处理的前提条件是什么?P328.对于一种逐步积分计算方法,其优劣性应从哪些方面加以判断?P1329.在对结构动力反应进行计算的思路上,数值积分方法与精确积分方法的差异主要表现在哪里?第五章课件10.利用Rayleigh法求解得到的振型体系的基本振型和频率及高阶振型和频率与各自的精确解相比有何特点?造成这种现象的原因何在?P20911.根据荷载是否预先确定,动荷载可以分为哪两类?它们各自具有怎样的特点?P112.坐标耦联的产生与什么有关,与什么无关?P9613.动力反应的数值分析方法是一种近似的计算分析方法,这种近似性表现在哪些方面?P132及其课件14.请给出度哈姆积分的物理意义?P8115.结构地震反应分析的反应谱方法的基本原理是什么?P84总结16.某人用逐步积分计算方法计算的结构位移,得到如下的位移时程的计算结果:。
17.按照是否需要联立求解耦联方程组,逐步积分法可以分为哪两类?这两类的优劣性应该如何进行判断?P13218.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载又包括哪些类型,每种类型请给出一种实例。
P219.请分别给出自振频率与振型的物理意义?P10320.振型叠加法的基本思想是什么?该方法的理论基础是什么?P111参考25题21.在振型叠加法的求解过程中,只需要取有限项的低阶振型进行分析,即高阶振型的影响可以不考虑,这样处理的物理基础是什么?P11522.我们需要用数值积分方法求解一座大型的高坝结构的地震反应时程,动力自由度的总数为25000个,我们如何缩短计算所耗费的机时?P10323.什么是结构的动力自由度?动力自由度与静力自由度的区别何在?P11及卷子上答案24.一台转动机械从启动到工作转速正好要经过系统的固有频率(又称为转子的临界转速),为减小共振,便于转子顺利通过临界转速,通常采用什么措施比较直接有效?简要说明理由。
结构动力学与应用考试试题
结构动力学与应用考试试题一、选择题1. 结构动力学是研究结构在______时的力学响应和形态相互关系的学科。
A. 静力学B. 动力学C. 热力学D. 光力学2. 结构的固有频率是指结构在______下产生共振的频率。
A. 外加荷载B. 自激振动C. 静力平衡D. 温度变化3. 结构动力学分析中常用的求解方法包括有限元法、模态超级法和______法等。
A. 静力平衡法B. 频率响应法C. 换能法D. 变位法4. 结构动力学分析常用的传递函数表示为______。
A. H(ω) = X(ω) / F(ω)B. H(ω) = F(ω) / X(ω)C. X(ω) = F(ω) / H(ω)D. F(ω) = X(ω) / H(ω)5. 结构的阻尼比对于结构动力学响应的影响是______。
A. 提高结构的刚度和强度B. 减小结构的固有频率C. 显著改变结构的失稳现象D. 不影响结构的动力响应6. 结构在动力荷载作用下的振动响应可以通过______分析得到。
A. 弹性力学理论B. 弹塑性力学理论C. 塑性力学理论D. 极限平衡理论7. 结构地震反应的计算方法一般可以分为几种类型?A. 1种B. 2种C. 3种D. 4种8. 结构地震反应计算中常用的几种简化方法包括等效静力法、反应谱法和______法。
A. 位移反应法B. 达比法C. 传递函数法D. 干涉法9. 结构动力学与应用在哪些领域具有广泛的应用?A. 建筑结构设计B. 地震工程C. 桥梁工程D. 所有选项都正确10. 结构动力学的研究对于提高建筑物和桥梁的______具有重要意义。
A. 施工速度B. 建筑安全性C. 建筑造价D. 建筑使用寿命二、填空题1. 结构动力学研究的核心是研究______和______之间的相互关系。
2. 结构固有频率是由结构的______和______决定的。
3. 结构在动力荷载作用下的振动分析可以采用______方法。
4. 结构地震反应计算中的等效静力法是通过将______引入到结构动力方程中进行计算的。
结构动力学试题
结构动力学试题一、选择题1. 结构动力学中的“动力响应”是指:A. 结构在静态载荷下的变形B. 结构在动态载荷下的变形C. 结构的自然频率D. 结构的阻尼比2. 单自由度系统的周期公式为:A. T = 2π√(m/k)B. T = 2π√(k/m)C. T = 2π/mD. T = π√(m/k)3. 多自由度系统的振型分解法是基于以下哪个原理?A. 结构的对称性B. 结构的不确定性C. 结构的线性叠加原理D. 结构的能量守恒原理4. 在地震分析中,反应谱方法的主要优点是:A. 考虑了地震动作用的非线性B. 可以处理任意形状的地震波形C. 能够直接给出结构的响应结果D. 适用于快速评估结构的地震安全性5. 结构阻尼比的增大通常会导致:A. 自然频率的提高B. 振幅的减小C. 周期的延长D. 响应的不稳定二、填空题1. 在结构动力学中,________是用来描述结构在动态载荷作用下的运动状态。
2. 动态载荷下,结构的响应可以通过________方法进行求解,该方法基于结构振动的线性叠加原理。
3. 地震波的________特性对结构的响应有显著影响,因此在进行地震分析时需要特别考虑。
4. 结构的阻尼比可以通过________方法进行实验测定,以评估结构的能量耗散能力。
5. 在进行结构动力分析时,通常需要将结构简化为________自由度系统,以便于计算和分析。
三、简答题1. 请简述单自由度系统与多自由度系统的区别及其各自的适用场景。
2. 描述地震波的基本特性,并解释为什么需要对其进行频谱分析。
3. 说明结构阻尼对动力响应的影响,并讨论如何通过设计来提高结构的阻尼性能。
四、计算题1. 一个单自由度系统的质量为500 kg,刚度为2000 N/m。
请计算该系统的自然频率和阻尼比为0.05时的周期。
2. 假设一个结构在地震作用下的最大加速度为0.3g,其中g为重力加速度(9.81 m/s²),请使用反应谱方法计算该结构在自然频率为2Hz时的响应加速度。
最新结构动力学(硕)答案
《结构动力学》试题(硕)一、名词解释:(每题3分,共15分)约束 动力系数 广义力 虚功原理 达朗贝原理 二、简答:(每题5分,共20分)1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关?2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么?3. 简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是什么?答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有:T m n m φφ=,Tm n k φφ=(式中m φ、n φ为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。
利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦)。
分别求解每一个正规坐标的反应,然后根据叠加V=ΦY 即得出用原始坐标表示的反应。
由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。
若体系为非线性,可采用逐步积分法进行反应分析。
4. 什么是结构的动力自由度?动力自由度与静力自由度的区别何在?答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。
静力自由度是指确定体系在空间中的位置所需的独立参数的数目。
前者是由于系统的弹性变形而引起各质点的位移分量;而后者则是指结构中的刚体由于约束不够而产生的刚体运动。
三、计算(每题13分,共65分)1. 图1所示两质点动力体系,用D ’Alembert 原理求运动方程。
图12.图2所示,一长为l,弯曲刚度为EI的悬臂梁自由端有一质量为m的小球,小球又被支承在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。
图23.图3所示,一重mg的圆柱体,其半径为r,在一半径为R的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。
图34.图4所示三层钢架结构,假定结构无阻尼,计算下述给定初始条件产生的自由振动。
季学期结构动力学试卷_答案
一、简答题(18分)1、列出建立体系运动方程的主意并简要说明每种主意的要点。
(8分)答:(1)直接平衡法,又称动静法、惯性力法,将动力知识题转化为任一时刻的静力知识题:按照达朗贝尔原理(d’Alembert’s principle),把惯性力作为附加的虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载,使体系处于动力平衡条件,按照静力学中建立平衡方程的思路,直接写出运动方程。
(2)虚功法: 按照虚功原理,即作用在体系上的所有力在虚位移上所做的虚功总和为零的条件,导出以广义坐标表示的运动方程。
(3)变分法: 通过对表示能量关系的泛函的变分建立方程。
按照理论力学中的哈密顿原理或其等价形式的拉格朗日方程导出以广义坐标表示的运动方程。
2、按照逐步法举行结构动力分析时,所采用的数值主意有显式和隐式之分,请按照自己的理解说明何为显式主意、何为隐式主意?(5分)答:显式主意定义为:在每一时光步内计算新的反应值仅仅依赖于前面步已获得的量,所以分析直接从一步到下一步举行;隐式主意中,对给定步给出新值的表达式包含与本步有关的一个或多个值,因此必须假定所需量的试探值,然后通过延续迭代来改善。
3、写出多自由度体系形成刚度矩阵与质量矩阵时刚度影响系数k、质量影响ij系数m的含义。
(5分)ij答:刚度影响系数k=由j坐标单位位移所引起的对应于i坐标的力;ij质量影响系数m=由j坐标单位加速度所引起的对应于i坐标的力。
ij二、名词解释(每题4分,计12分)1、动力自由度:描述体系在运动过程中随意时刻所有质量的位置所需要的自立几何参数的数目。
2、振型:振动体系与振动频率相对应的特定的振动形状,是多自由度结构动力特性的重要表征之一。
3、静力凝结:从动力分析中消除结构中具有零质量自由度的主意。
4、一致质量矩阵:以建立刚度矩阵所用的位移插值函数建立质量矩阵,即建立质量矩阵和刚度矩阵所用的位移插值函数是一致的,故称之为一致质量矩阵。
三、按照刚度的基本定义,决定图1所示体系的等效刚度,并写出其运动方程。
第十五章结构动力学复习题
第十五章结构动力学复习题15-1. 用柔度法写出图示结构的振动方程并求自振频率和周期(1) (2)
(3)
15-2. 用刚度法写出图示结构的振动方程并求自振频率和周期
15-3. 用柔度法写出图示结构的振动方程并求图示质点的位移幅值和最大弯矩,ωθ6.0=
15-4.图示梁跨中有重量为
20KN 的电柢,荷载幅值F=2KN ,机器转速为400r/min,EI=261006.1m KN ∙⨯,梁长L=6m. 试求梁中处的最大动位移和最大弯矩
(1) 不计阻尼
(2) 阻尼比05.0=ξ
15-5. 题15-4结构的质量受到突加荷载F (t )=30KN 作用. 如开始体系静止,试求梁中处的最大动位移。
15-6. 某结构在自振10周期后,振幅降为原来初始位移的10%(初速为零)。
求阻尼比
15-7. 题15-4结构的质量受到图示荷栽的作用,T t =1,T 为体系自振周期。
如开始体系静止,试求梁中处的最大动位移。
15-8. 用柔度法写出图示结构的振动方程并求自振频率和振形
(1) (2)
15-9. 用刚度法写出图示结构的振动方程并求自振频率和振形
(1) ,1201t m = ,1002t m = ,201m MN i ∙= ,142m MN i ∙= 横梁刚度无限大
(2) ,2701t m = ,2702t m = ,1803t m = ,/2451m MN K = ,/1962m MN K = ,/983m MN K = 横梁刚度无限大
题15-9-1 题15-9-2。
结构动力学试题及答案
结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。
2. 描述阻尼对结构动力响应的影响。
三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。
若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。
答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。
2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。
二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。
它的重要性在于:- 预测结构在动态载荷下的响应。
- 为控制结构的振动提供基础数据。
- 优化设计,提高结构的抗震性能。
2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。
- 改变系统的自然频率和模态形状。
- 影响系统的动态响应时间。
三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。
- 应用逆变换得到位移响应的解析解或数值解。
位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。
具体的数值需要根据系统参数和初始条件进行计算。
克拉夫《结构动力学》习题答案汇总
第二章 自由振动分析2-1(a ) 由例22T π=22()W K T gπ= 因此 max ()()D t kT νν= 其中 k=0、1、2……T D =0.64sec 如果ξ 很小,T D =T∴ 222200()49.9/0.64sec 386/sec kipsk kips in in π==⇒ 50/k kips in = (b )211lnln n n v v v v δ+≡=δξ=→=1.2ln 0.3330.86δ==0.0529ξ==0.33320.05302δπξξπ=→==⇒ 5.3%ξ= (a ’)D ω=2T πω=T T =249.950/1k kips in ξ==- (c)2c m ξω=W m g=2T πω=4c T gπωξ=T T =241W c Tg πξξ=- 2240.05292000.64sec386/sec 10.0529kipsc in π=-0.539sec/c kips in =⋅ T=T D0.538sec/c kips in =⋅ ⇒0.54sec/c kips in =⋅2-22k mω=→4.47ω== (1/sec ) (0)(0)()sin (0)cos tD D Dv v t et v t ξωξωνωωω-⎡⎤⎛⎫+⎢⎥ ⎪=+⎢⎥ ⎪⎝⎭⎣⎦∴ (0)(0)()sin (0)(0)(0))cos t D D D v v t e t v v v t ξωξωνξωωξωξωωω-⎛⎫⎡⎤+⎧⎫⎡⎤ ⎪⎢⎥=-++-⎨⎬⎢⎥ ⎪⎢⎥⎣⎦⎩⎭⎣⎦⎝⎭()22(0)(0)()(0)cos sin D t D D Dv v t e v t t ξωξωξωωνωωω-⎛⎫⎡⎤++ ⎪⎣⎦=- ⎪ ⎪⎝⎭D ω=→()(0)cos (0)(0)sin t D D D t e v t v v t ξωωνωξωωω-⎛⎫⎡⎤=-+ ⎪⎢⎥⎣⎦⎝⎭()(0)cos tD D t ev t t ξωνωω-⎛⎫⎪= ⎪⎝⎭0.055922(2)(4.47)c cc m ξω=== (a) c=0→0ξ=→D ωω=∴ 5.6(1)sin 4.470.7cos 4.47 1.384.47v t in ==+=- (1) 5.6cos 4.47 4.47(0.7)sin 4.47 1.69/sec v t in ==-=⇒(1) 1.4v in =-,(1) 1.7/sec v in = (b)c=2.8→0.0559(2.8)0.157ξ==4.41D ω== (1/sec ) (0.157)(4.41)5.60.7(0.157)(4.47)(1)sin 4.410.7cos 4.414.41t e ν-⎡+⎤⎛⎫==+⎪⎢⎥⎝⎭⎣⎦(1)0.764t in ν==-(0.157)(4.41)(1) 5.6cos 4.41 4.41t e ν-⎛⎫== ⎪⎝⎭(1) 1.10/sec t in ν==⇒(1)0.76v in =-,(1) 1.1/sec v in =第三章 谐振荷载反应3-1根据公式有 ()()21sin sin 1R t w t wt ββ⎡⎤=-⎢⎥-⎣⎦0.8wwβ== ()()2.778sin 0.8sin1.25R t wt wt=-将t ω以80°为增量计算)(t R 并绘制曲线如下:80° 160° 240° 320° 400° 480° 560° 640° 720° 800° 00.547 1.71 -0.481 -3.214 0.357 4.33 -0.19 -4.9244.9241.25w w =tω)(t R3-2解:由题意得:22m kips s in =⋅ , 20k kips in = , (0)(0)0v v == ,w w =3.162w rad ===8wt π=(a )0c =()()1sin cos 2R t wt wt wt =-将8wt π=代入上式得:()412.566R t π=-=- (b )0.5c k s =⋅0.50.0395222 3.162c c c c mw ξ====⨯⨯()()(){}1exp 1cos exp sin 2R t wt wt wt wt ξξξξ=--+-⎡⎤⎡⎤⎣⎦⎣⎦将8wt π=代入上式得:()7.967R t =- (c ) 2.0c k s =⋅2.00.1582223.162c c c c mw ξ====⨯⨯()()(){}1exp 1cos exp sin 2R t wt wt wt wt ξξξξ=--+-⎡⎤⎡⎤⎣⎦⎣⎦将8wt π=代入上式得:() 3.105R t =-3-3解:(a ):依据共振条件可知:10.983sec w w rad =====由2L T V w π==得:10.9833662.96022wL V ft s ππ⨯===(b ):()()()122max2221212tgo v v ξββξβ⎡⎤+⎢⎥=⎢⎥-+⎣⎦1w w β==0.4ξ= 1.2go v in =代入公式可得:max 1.921tv in =(c ):2L T V w π=='45min 66V h ft s ==226611.51336V w rad s ec L ππ⨯'===11.5131.04810.983w w β'===0.4ξ=代入数据得 :()()()122max22212=1.85512tgov v in ξββξβ⎡⎤+⎢⎥=⎢⎥-+⎣⎦3-4解:按照实际情况,当设计一个隔振系统时,将使其在高于临界频率比β=在这种情况下,隔振体系可能有小的阻尼。
结构动力学复习题
结构动力学复习题1、对单自由度体系的自由振动,加速度始终与位移方向相反。
2、下图所示为对称的四自由度体系,则正对称振型和反对称振型个数分布为2,23.结构体系的动力特性主要指频率、振型及阻尼4.图示体系(EI= 常数)的自振频率 为:(5={1 0.5}TΦ2={0.5 −1}TΦ6、如图所示振动体系不计杆件的轴向变形,则动力自由度数目是2。
7、单自由度体系只有当阻尼比1时才会产生振动现象。
8、已知结构的自振周期T=0.3s,阻尼比ζ=0.04,质量m在的初始条件下开始振动,则至少经过14个周期后振幅可以衰减到0.1mm以下。
9、多自由度框架结构顶部刚度和质量突然变小时,自由振动中顶部位移很大的现象称为鞭梢效应。
10.结构体系简化的自由度数目与计算结果的精度有关。
11.单自由度体系发生无阻尼自由振动时,若初始速度为零时,体系的振幅和初始位移大小相等。
12、如图2层框架结构,梁与楼板平面内的质量各为120吨,梁的刚度为无穷大,各柱的抗弯刚度EI 均为4×104 kNm 2,在2层楼面处有动荷载F P sin θt ,F P =5 Kn ,θ=2.5 rad/s ,不计阻尼,求最大动力位移和最大动力弯矩图。
⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅⎥⎦⎤⎢⎣⎡-⨯⨯-⨯--⨯50105.1105.1105.110321244424A A m m θθ13、地震反应谱是在阻尼比为0.05条件下地震影响系数与体系自振周期T 的关系曲线。
假设在上题2层楼体系条件下第1振型和第2振型振动的阻尼比均为0.05,在特定激励下测得体系按第1振型振动时的1,2层楼的层间相对侧移为0.06m 。
试按反应谱理论计算该体系第1振型振动时的顶层相对地面的位移。
解:1)求自振频率⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅⎥⎦⎤⎢⎣⎡-⨯⨯-⨯--⨯00105.1105.1105.110321244424A A m m ωω s rad /91.61=ω ,s rad /09.182=ω2)求振型:()⎪⎪⎭⎫ ⎝⎛=618.111A ,()⎪⎪⎭⎫ ⎝⎛-=618.012A 3)顶层的侧移刚度为m kN /105.14⨯,故顶层受到的激励作用力大小为 kN 90006.0105.14=⨯⨯根据反应谱理论:1,2层的作用力为900618.1120111211221=⋅⨯=⋅⋅⋅=γααγA w FkN A w F 24.556618.19001120111111112==⋅⨯⨯=⋅⋅⋅=γααγ9004)顶层相对地面的位移为:m d 157.006.0105.124.5569004=+⎪⎭⎫ ⎝⎛⨯+=14、图3为三种不同支承情况的单跨梁,EI=常数,在梁中点有一集中质量m,不计梁的质量,试比较三者的自振频率。
结构动力学复习题1 (优选.)
A
取横梁为研究对象,ΣX=0,得:K= 24EI L3
4)振动方程
- 2 m &y&(t) - K y(t) + Psinθt = 0 即,
2 m &y&(t)
+
24EI L3
y(t)
= Psinθt
一、 无阻尼的自由振动
振动方程 m&y&(t) +K y(t) = 0 , 写作:
&y&(t) + K y(t) = 0 m
---------------------------------------(10)
考虑 P(t)在(0,t)时间内作用于系统,
P(t)
认为是由无数个瞬时冲击荷载的叠加,如图。
考虑由时刻τ开始,在 dτ时间内的位移反应,
由(10)式可得:
0
ττ+dτ t
d y(t) = p(τ )dτ sinω(t-τ) mω
S&&(t) + (ω2 – n2 )S (t) = 0 --------------------------------------------(5)
1.当 n >ω时(强阻尼) 方程(5)的解为:
S (t) = A1sh n2 − ω 2 t +A2ch n 2 − ω 2 t
从而,方程(4)的解为:
2.振动频率和振型的计算
3.振型分解法求解多自由度体系
4.最大动位移及最大动应力
二、基础知识
1.高等数学
2.线性代数
3.结构力学
三、动力荷载的特征
1.大小和方向是时间 t 的函数
例如:地震作用,波浪对船体的作用,风荷载,机械振动等
结构动力学试题及答案
结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,以下哪项不是动力分析的类型?A. 静态分析B. 动态分析C. 频域分析D. 时域分析答案:A2. 单自由度系统的振动方程中,以下哪个参数与系统的振动周期无关?A. 质量B. 刚度C. 阻尼D. 初始条件答案:D3. 在结构动力学中,阻尼比是用来描述什么?A. 系统的能量损失B. 系统的振动周期C. 系统的振动频率D. 系统的振动幅度答案:A4. 多自由度系统的振动分析中,以下哪项不是模态分析的组成部分?A. 模态形状B. 模态频率C. 模态阻尼D. 模态质量答案:D5. 以下哪种方法不适用于求解非线性振动问题?A. 线性化方法B. 能量平衡法C. 直接积分法D. 谐波平衡法答案:A二、填空题(每题2分,共10分)1. 在结构动力学中,_________是描述系统在受力后响应变化的学科。
答案:动力分析2. 单自由度系统的振动方程可以表示为:m*x'' + c*x' + k*x =F(t),其中m代表质量,c代表_________,k代表刚度。
答案:阻尼系数3. 阻尼比ζ定义为临界阻尼系数与实际阻尼系数的比值,即ζ =________。
答案:实际阻尼系数 / 临界阻尼系数4. 多自由度系统的模态分析中,每个模态对应一个_________,它描述了该模态下系统的振动形状。
答案:模态形状5. 在结构动力学中,_________分析是一种通过求解系统在各个频率下的响应来分析系统动态行为的方法。
答案:频域三、简答题(每题10分,共20分)1. 简述结构动力学中时域分析与频域分析的主要区别。
答案:时域分析是指在时间域内分析结构的动力响应,它直接考虑随时间变化的激励和响应。
频域分析则是将时域信号转换到频率域进行分析,它主要关注结构在不同频率下的动态特性,如模态频率和阻尼比等。
2. 解释为什么在结构动力学分析中需要考虑阻尼。
结构动力学试题(一)
结构动力学第1章单自由度系统1.1 总结求单自由度系统固有频率的方法和步骤。
1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。
1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。
1.4 求图1-33中标出参数的系统的固有频率。
1.5 求图1-34所示系统的固有频率。
图中匀质轮A 半径R,重物B 的重量为P/2,弹簧刚度为k.1.6求图1-35所示系统的固有频率。
图中磙子半径为R,质量为M,作纯滚动。
弹簧刚度为K 。
1.7求图1-36所示齿轮系统的固有频率。
已知齿轮A 的质量为A m ,半径为A r ,齿轮B 的质量为B m ,半径为B r ,杆AC 的扭转刚度为A k , ,杆BD 的扭转刚度为B k 。
1.8已知图1-37所示振动系统中,匀质杆长为l ,质量为m,两弹簧刚度皆为K,阻尼系数为C,求当初始条件000==θθ 时 〔1〕t F t f ωsin )(=的稳态解; 〔2〕t t t f )()(δ=的解;1.9图1-38所示盒内有一弹簧振子,其质量为m,阻尼为C,刚度为K,处于静止状态,方盒距地面高度为H,求方盒自由落下与地面粘住后弹簧振子的振动历程与振动频率。
1.10汽车以速度V 在水平路面行使。
其单自由度模型如图1-39。
设m 、k 、c 已知。
路面波动情况可以用正弦函数sin()y h at =表示。
求:〔1〕建立汽车上下振动的数学模型;〔2〕汽车振动的稳态解。
1.11.若电磁激振力可写为t H t F 02sin )(ω=,求将其作用在参数为m 、 k 、 c 的弹簧振子上的稳态响应。
1.12.若流体的阻尼力可写为3xb F d -=,求其等效粘性阻尼。
第1章1.4 a> ()3314848EIl EI k l mω=+31348k l EImlω+= c>3133k l EIml ω+= d>mk 21=ω1.5ω=1.6ω=1.7ω==1.8 运动微分方程: 366()c k f t m m mlθθθ++= 〔1〕)t θωα=-236c arctgk m ωαω=- 〔2〕()sin nt d d h e t m θωω-=22632d k cm m ω⎛⎫=- ⎪⎝⎭1.9()sin nt d dx t ω-=d ω=1.10 〔1〕)sin()cos(at kh at ach ky y cym +=++ 〔2〕sin()y t ωϕ=- 3222tan()()mc acr k k m c ωϕωω=-+1.110()sin(2/2)2Hx t A t k ωϕπ=--+20220216)4(2ωωωn mHA n +-=2202arctan4n n ωϕωω=-mk m c n n ==2,2ω 1.122243A b c n eq ω=第2章 两个自由度系统2.1 求如图2-11所示系统的固有频率和固有振型,并画出振型。
结构动力学试题及答案
结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,动力响应分析通常不包括以下哪一项?A. 自振频率分析B. 模态分析C. 静力分析D. 动力放大系数分析答案:C2. 在结构动力学中,下列哪一项不是确定结构动力特性的基本参数?A. 质量B. 刚度C. 阻尼D. 材料强度答案:D3. 单自由度振动系统的动力平衡方程中,下列哪一项是正确的?A. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t)B. m\(\ddot{x}\) + c\(\dot{x}\) + kx = 0C. m\(\ddot{x}\) + c\(\dot{x}\) + kx = FD. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t) - F答案:A4. 对于多自由度振动系统,下列哪一项不是求解动力响应的方法?A. 模态叠加法B. 直接积分法C. 能量守恒法D. 振型分解法答案:C5. 在结构动力学中,阻尼比通常用来描述阻尼的相对大小,其定义为:A. 临界阻尼比B. 阻尼比C. 阻尼比的倒数D. 阻尼比的平方答案:B二、填空题(每题2分,共10分)1. 结构动力学中,当外力作用频率与结构的_________相等时,结构会发生共振。
答案:自振频率2. 多自由度振动系统的振型是指系统在自由振动时的_________。
答案:位移分布模式3. 动力响应分析中,_________是指在给定的外力作用下,结构的响应随时间变化的过程。
答案:动力响应4. 在结构动力学中,_________是指结构在动力作用下,其响应与外力作用的关系。
答案:动力特性5. 阻尼比越大,结构的_________越小,振动衰减越快。
答案:振幅三、简答题(每题5分,共20分)1. 简述结构动力学中模态分析的目的和意义。
答案:模态分析的目的是确定结构的自振频率和振型,意义在于了解结构的动力特性,为结构设计提供依据,以及评估结构在动力作用下的安全性和稳定性。
结构动力学结构动力学试卷(练习题库)(2023版)
结构动力学结构动力学试卷(练习题库)1、结构动力计算与静力计算的主要区别是什么?2、什么是动力自由度,确定体系动力自由度的目的是什么?3、结构动力自由度与体系几何分析中的自由度有何区别?4、结构的动力特性一般指什么?5、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?6、采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手7、建立运动微分方程有哪几种基本方法?各种方法的适用条件是什么?8、直接动力平衡法中常用的有哪些具体方法?它们所建立的方程各代表什么条件?9、刚度法与柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便?10、计重力与不计重力所得到的运动方程是一样的吗?11、自由振动的振幅与哪些量有关?12、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?13、若要避开共振应采取何种措施?14、增加体系的刚度一定能减小受迫振动的振幅吗?15、突加荷载与矩形脉冲荷载有何差别。
16、平断面假定17、弯曲要素18、梁的边界条件19、叠加原理20、三弯矩方程21、平断面假定22、梁的边界条件23、叠加原理24、三弯矩方程25、虚位移原理26、虚力原理27、位能驻值原理28、板条梁29、开口和闭口薄壁杆件。
30、应力的重新分布。
31、几何不变体32、自由度33、多余约束34、超静定结构35、形常数和载常数36、试简述影响线与内力图的区别?37、力法和位移法的解题思路?38、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
39、有多余约束的体系一定是几何不变体系。
40、计算自由度W小于等于零是体系几何不变的充要条件。
41、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。
42、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年《结构动力学》复习题
一、(概念题)
(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比
0.2ξ=,
则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,衰减系数n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)
(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx
cx f x F t ++=&&&,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=
0.2ξ=时相频曲线的形状。
(9) (问答题)的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,
其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关 二、(计算题)
(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2) 两个系统的等效刚度
a k 和
b k ;(3) 两个系统
的固有频率a ω和b ω。
(2) 水平刚杆
AB 可绕
铰链A 作微幅旋转振动,在杆的中点固定一个质量为m 的物块,设弹簧刚度为k ,杆长为l ,杆的质量不计。
(1) 以杆AB 的转角θ为自由度求系统的动能和势能;(2) 建立系统的运动方程;(3) 求固
有频率。
(3) 图示悬臂梁的抗弯刚度为EI ,原先在自由端放置两块砝码,每块砝码的质量为m ,不计梁的质量和阻尼。
现在梁的平衡状态下突然卸去一块砝码,
试确定:(1) 卸去砝码后系统振动的固有频率;(2) 系统相
对于新平衡位置的自由振动响应。
(4) 图示系统,两悬臂梁端点的竖向刚度分别为1k 和3k ,两
梁之间用弹簧2k 相连,再用弹簧4k 悬挂质量块m ,试求系统对于质量块m 在垂直方向的当量刚度。
提示:当量刚度为:1k 与2k 串联后与3k 并联,最后再与4k 串联。
(5) 如图所示,已知悬臂梁的总质量m ,长l ,抗弯刚度EI 。
在自由端固定质量为M 的物体,以M 的竖向位移()Y t 为广义坐标,假设系统振动时悬臂梁的挠曲线方程可近似用2
3
()(3)/(2)x x l x l ϕ=-表示,试求图示等效单自由度系统的等效质量和等效刚度,并求系统的固有频率。
(6) 简支梁的抗弯刚度为324.010()EI N m =⨯⋅,在跨中固定质量为30M kg =的重物,不计梁的质量。
(1) 试确定其自由振动的固有频率;(2) 若在初始
时刻给重物一个初位移初位移00y =,初速度
00.5/y m s =&,求其自由振动的响应。
(7) 图示两个系统,已知悬臂梁的抗弯刚度为EI ,质量块的质量为m ,弹簧刚度3
3EI k l =,不计梁的质量,试确定:(1) 悬臂梁的等效刚度L k ;(2) 两个系统的等效刚度
a k 和
b k ;(3) 两个系统的固有
频率a ω和b ω。
(8) 一根横梁两端由刚度系数为k 的弹簧支承,∞=EI 。
在梁的不正中位置有一质量为M 的重物,略去横梁的质量,试计算重物作自由振动的周期。
(9) 简支梁上面有两个对称布置的质量块,梁的抗弯刚度为EI ,尺寸如图所示,不计梁的质量,试利
用对称性确定对称模态所对应的固有频率及其
振型矢量。
(10) 图示三跨连续梁的跨中各有一个集中质量,梁的抗弯刚度为EI ,不计梁的质量,试分别求出系统的对称模态的固有频率和振型。
(11) 已知两个自由度系统的阻尼比为
120.1ξξ==,质量矩阵和刚度矩阵为:
2
1
2
1
2
t
M
eq
2001m ⎡⎤=⎢⎥⎣⎦M , 2113k -⎡⎤=⎢⎥-⎣⎦
K
试用瑞雷阻尼模型求系统的阻尼矩阵C 。
(10分) (12) 某三自由度系统,已求得其质量矩阵和柔度矩阵分别为:
100010002⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦M , 941441111⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦δ ,(0) 1.00.50.4⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭
φ
取初始迭代向量(0)φ,试用逆迭代法求系统的固有频率1 ω及相应振型1 φ(列出前两步的迭代过程及结果)。
(13) 某四自由度系统,运动方程中的质量、刚度矩阵及初始迭代向量分别为
1
000010000200
00
2m M ⎡⎤⎢⎥⎢
⎥=⎢⎥⎢⎥⎣⎦,
11001220 02420026k K -⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥-⎣⎦ , 0 1.01.01.01.0⎧⎫
⎪⎪-⎪⎪=⎨⎬⎪⎪⎪⎪-⎩⎭
R 试用矩阵迭代法估算系统的最高阶固有频率和固有振型(列出前两次迭代结果)。
(15) 一根长为l ,两端固定并张紧的弦,在a x =处用力提起,使弦成为图示的三角形初始状态,求当力突然撤去时弦的自由振动。
(16) 两端简支的等截面梁,因下列荷载作用而产生挠曲:(1) 在跨中作用的集中力p F ;(2) 承受强度为q 的均布荷载。
试求荷载突然移去后梁的自由振动。
三. (叙述题)
(1) 杜哈美积分可以用来计算单自由度系统在任意荷载作用下的动力响应。
设多自由度系统
受迫振动的运动方程为:)( t F x K x C x M =++&&&,试简述用模态分析法计算多自由度系统在任意荷载作用下动力响应的求解过程。
(2) 设多自由度系统无阻尼自由振动的运动方程为:+=M x
K x && 0,试简述用模态分析法计算多自由度系统在初始条件0()x 和0()x & 下动力响应的求解过程。
(3) 试简述用模态分析法计算直杆纵向自由振动响应的求解过程。
(4) 试简述用模态分析法计算欧拉梁横向受迫振动响应的求解过程。
四. (演绎题)
(1) 如图所示的等截面梁,一端简支,另端固定,抗弯刚度为EI ,单位长度的质量为m ,已知振型函数的一般解为:
x a C x a C x a C x a C x sinh cosh sin cos )(4321+++=ϕ,其
中频率参数
a 与固有频率ω的关系为:
m EI a /2=ω。
试建立该梁作横向自由振动的频率方程。
(2) 两端自由梁,抗弯刚度为EI ,单位长度质量为m ,试建立梁横向自由振动频率方程。
已知
x a C x a C x a C x a C x sinh cosh sin cos )(4321+++=ϕ,频率参数 a 与固有频率ω的关系为:m EI a /2=ω。
) (3) 如图所示,梁的左端固支,右端弹性支承,弹簧的刚度系数为k 。
梁的抗弯刚度EI ,单位长度质量m 均为常数,试建立梁横向振动的频率方程。
(4) 如图所示的等截面悬臂梁,抗弯刚度为EI ,单位长度
的质量为m ,自由端固结的集中质量l m M 2=,试建立梁横向自由振动的频率方程。
(设梁无阻尼自由振动的一
般解为
)sin()(),(αωϕ+=t x t x y ,其中x a C x a C x a C x a C x sinh cosh sin cos )(4321+++=ϕ,频率参数 a 与固有频率ω的关系为:m EI a /2=ω。
)
(5) 软土地基上的桩基础可简化为一端自由、一端弹性支承的等截面直杆。
设桩长为l ,截面积为A ,单位体积的质量为ρ,弹簧的刚度系数为k ,如图所示。
已知杆作纵向自由振动的解为)( )() ,(x t U t x u ϕ=,其中
()()c x A c x A x / sin / cos )(21ωωϕ+=,ω为由边界条件确定的固有频率,
c 为纵波在杆中传播的速度,试建立系统作纵向自由振动的频率方程。
x。