2020届衡水金卷高考模拟数学(理)模拟试题(四)有答案(加精)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高等学校招生全国统一考试模拟试题
理数(四)
第Ⅰ卷
一、选择题:本大题共
12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知i 虚数单位,复数
533
i
i ++对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
2.已知集合{|}A x x a =≤,2
122
1{|log (4)log }5
B x x x =-≥,若A B =∅I ,则实数a 的取值范围为( )
A .(1,5)-
B .[0,4]
C .(,1]-∞-
D .(,1)-∞-
3.设a ,b ,c ,d ,x 为实数,且0b a >>,c d >,下列不等式正确的是( ) A .d a c d -<- B .
b b x
a a x
+≥
+ C .c d b a > D . ||||a a x b b x +≤+ 4.设随机变量2
(,)N ξμσ:,则使得(3)(3)1P m P ξξ≤+>=成立的一个必要不充分条件为( ) A .1m =或2m = B .1m = C.1m =- D .2
3
m =-
或2m = 5.执行如图所示的程序框图,若输出的结果3S =,则判断框内实数M 应填入的整数值为( )
A .998
B .999 C.1000 D .1001
6.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若22
97a a =,则下列选项中结果为0的是( )
A .9a
B .7a C.15S D .16S
7.设1A ,2A 分别为双曲线22
22:1x y C a b
-=(0a >,0b >)的左、右顶点,过左顶点1A 的直线l 交双曲线
右支于点P ,连接2A P ,设直线l 与直线2A P 的斜率分别为1k ,2k ,若1k ,2k 互为倒数,则双曲线C 的离心率为( ) A .
1
2
B 23 D .228.如图所示,网格纸上小正方形的边长为1,粗实线画出的是几何体的三视图,则该几何体的体积为( )
A .816π-
B .8π C.16 D .8162π+
9.已知曲线3
3y x x =-和直线y x =所围成图形的面积是m ,则5
()y x m ++的展开式中3x 项的系数为( )
A .480
B .160 C.1280 D .640
10.在平面直角坐标系中,O 为坐标原点,(0,4)A ,(2,0)AB =u u u r ,(2,0)AB =u u u r ,(1,1)BC BA -=-u u u r u u u r
,设
(,)P x y ,AP mAB nAC =+u u u r u u u r u u u r
,若0m ≥,0n ≥,且1m n +≤,则2x y +的最大值为( )
A .7
B .10 C.8 D .12
11.如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线C 的方程为2
2
44x y +=,其左、右焦点分别是1F ,
2F ,直线l 与椭圆C 切于点P ,且1||1PF =,过点P 且与直线l 垂直的直线'l 与椭圆长轴交于点M ,则12||:||F M F M =( )
A 23.1:21:3 D .312.将给定的一个数列{}n a :1a ,2a ,3a ,…按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列.如在上述数列中,我们将1a 作为第一组,将2a ,3a 作为第二组,将4a ,5a ,6a 作为第三组,…,依次类推,第n 组有n 个元素(*
n N ∈),即可得到以组为单位的序列:1()a ,23(,)a a ,456(,,)a a a ,…,我们通常称此数列为分群数列.其中第1个括号称为第1群,第2个括号称为第2群,第3个数列称为第3群,…,第n 个括号称为第n 群,从而数列{}n a 称为这个分群数列的原数列.如果某一个元素在分群数列的第m 个群众,且从第m 个括号的左端起是第k 个,则称这个元素为第m 群众的第k 个元素.已知数列1,1,3,1,3,9,1,3,9,27,…,将数列分群,其中,第1群为(1),第2群为(1,3),第3群为(1,3,23),…,以此类推.设该数列前n 项和12n N a a a =+++L ,若使得14900N >成立的最小n a 位于第m 个群,则
m =( )
A .11
B .10 C.9 D .8
第Ⅱ卷
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.若函数3()log (19)x
f x kx =++为偶函数,则k = .
14.已知993sin()cos cos()sin 1471475x x ππππ-
+-=,3(,)2
x π
π∈,则tan 2x = . 15.中华民族具有五千多年连绵不断的文明历史,创造了博大精深的中华文化,为人类文明进步作出了不可磨灭的贡献.为弘扬传统文化,某校组织了国学知识大赛,该校最终有四名选手A 、B 、C 、D 参加了总决赛,总决赛设置了一、二、三等奖各一个,无并列.比赛结束后,C 对B 说:“你没有获得一等奖”,B 对C 说:
“你获得了二等奖”;A 对大家说:“我未获得三等奖”,D 对A 、B 、C 说:“你妈三人中有一人未获奖”,四位选手中仅有一人撒谎,则选手获奖情形共计 种.(用数字作答)
16.已知G 为ABC ∆的重心,点P 、Q 分别在边AB ,AC 上,且存在实数t ,使得PG t PQ =u u u r u u u r
.若
AP AB λ=u u u r u u u r AQ AC μ=u u u r u u u r ,则11
λμ
+= .
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17. 在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos 2a B c b =-. (1)求角A 的大小;
(2)若ABC ∆的面积S =
,D 为BC 边的中点,AD =,求b c +. 18. 市场份额又称市场占有率,它在很大程度上反映了企业的竞争地位和盈利能力,是企业非常重视的一个指标.近年来,服务机器人与工业机器人以迅猛的增速占据了中国机器人领域庞大的市场份额,随着“一带一路”的积极推动,包括机器人产业在内的众多行业得到了更广阔的的发展空间,某市场研究人员为了了解某机器人制造企业的经营状况,对该机器人制造企业2017年1月至6月的市场份额进行了调查,得到如下资料:
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测该企业2017年7月份的市场份额;
(2)如图是该机器人制造企业记录的2017年6月1日至6月30日之间的产品销售频数(单位:天)统计图.设销售产品数量为s ,经统计,当0200s ≤≤时,企业每天亏损约为200万元,当200400s <≤时,企业平均每天收人约为400万元;当400s >时,企业平均每天收人约为700万元。 ①设该企业在六月份每天收人为X ,求X 的数学期望;
②如果将频率视为概率,求该企业在未来连续三天总收入不低于1200万元的概率。