小波分析课件

合集下载

第六章小波分析基础ppt课件

第六章小波分析基础ppt课件
1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,

《小波分析》课件

《小波分析》课件

小波变换与其他数学方法的结合
小波变换与傅里叶分析的结合
小波变换作为傅里叶分析的扩展,能够提供更灵活的时频分析能力,适用于非平稳信号 的处理。
小波变换与数值分析的结合
小波变换在数值分析中可用于函数逼近、数值积分、微分方程求解等领域,提高计算效 率和精度。
小波变换在大数据分析中的应用
特征提取
小波变换能够提取大数据中隐藏的时间或频 率特征,用于分类、聚类和预测等任务。
正则性
小波基的正则性是指其在时频域的连续性和光滑 性,影响信号重构的精度和稳定性。
01
小波变换在信号处 理中的应用
信号的降噪处理
总结词
通过小波变换,可以将信号中的噪声成 分与有用信号分离,从而实现降噪处理 。
VS
详细描述
小波变换具有多尺度分析的特点,能够将 信号在不同尺度上进行分解,从而将噪声 与有用信号分离。在降噪处理中,可以选 择合适的小波基和阈值处理方法,对噪声 进行抑制,保留有用信号。
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
图像的压缩编码
01
通用性强
02
小波变换的通用性强,可以广泛 应用于各种类型的图像压缩,包 括灰度图像、彩色图像、静态图 像和动态图像等。
图像的边缘检测
精确检测
小波变换具有多尺度分析的特性,能 够检测到图像在不同尺度下的边缘信 息,实现更精确的边缘检测。
图像的边缘检测
抗噪能力强
小波变换能够有效地抑制噪声对边缘 检测的影响,提高边缘检测的准确性 和稳定性。
信号的压缩编码
总结词
小波变换可以将信号进行压缩编码,减小存储和传输所需的带宽和空间。
详细描述

【课件】小波与小波分析初步4PPT

【课件】小波与小波分析初步4PPT

MEXIC帽小波及它的FOURIER 变换
Haar小波,高斯概率密度函数的一
2012-2-23
阶导数生成的小波,墨西哥帽小波
Wavelets analysis
小波族(WAVELETS)
引入小波函数ψ(t) 的平移与伸缩构成函数族

a,b
(t)
|
a
|
1 2

(
t
b a
),
a,b

R,
a
• % 装载实际信号 • load vonkoch • vonkoch=vonkoch(1:510); • lv=length(vonkoch); • subplot(312); • plot(vonkoch,'LineWidth',2); • legend('被分析信号');
• subplot(313); • % 执行连续小波 Mexican hat变换, • ccfs=cwt(vonkoch,1:32,'mexh','abslvl',[200 400]);

0,
|| a,b |||| ||
其中a 为尺度参数,b 为位移参数。
连续小波变换
• 小波变换是对Fourier变换、Gabor变换的进 一步伸延。
• 连续小波变换 设 f L2 (R) ,称
(W
f
)(a,
b)
:|
a
|
1 2

f
(t) (t
b )dt a
积分小波变换,也称为连续小波变换。
系数绝对值并考虑所有尺度的着色模式。
• Xlim=[x1 x2]并且1<=x1 <= x2 <=length(S)。

最新小波分析(讲稿)课件ppt

最新小波分析(讲稿)课件ppt

一.FFT、STFT到Wavelet
1.Fourier Analysis
FFT变换是将信号分解成不同频率的正弦波的叠加和,即把信号
投影到一组正交基 e j.t 上。
一.FFT、STFT到Wavelet
1.Fourier Analysis 存在的主要问题:
(1) 无时域局部化特性。为了求得傅里叶系数,理论上必须知道时域的全部
1.Fourier Analysis 存在的主要问题: (3)傅氏分析采用窗宽固定的窗函数。为了分析提取信号的低频成分,T0应
取较大值,且频率分辩率较高;为了分析提取信号的高频成分,T0应取较小 值,时域分辩率较高,而对频率分辨率要求不高。 但T0固定时,两者不能同 时满足。
2.短时傅里叶变换 STFT(Short-Time Fourier Transform)
主要缺陷:STFT的窗函数一旦确定,就不能再变换。对于频率成分较多 的信号,很难找到一个最合适的窗函数,从而很难获得一个最佳的分析 精度。
2.STFT(Short-Time Fourier Transform)
(SF wfT ) (,b) f(t).w (tb)ej.td t
3.Wavelet Analysis
(2) 不能实现时频分析。信号分解转换到频域后,丢失掉了时域的信息, 频域中某频率或频带内的信息和时域中某时刻或时宽内的信息没有直接的对 应关系,即不能给出某一指定频带内的时域图形。这种对应关系称为时频分 析,所以傅里叶分析不能进行时频分析,而时频分析在工程中却相当有用。
一.FFT、STFT到Wavelet
(SF wfT ) (,b) f(t).w (tb)ej.td t
STFT将信号在时域上加窗函数,然后进行傅立叶变换,再在时域上 移动窗函数,最后完成连续重叠变换,得到与时间有关的信号频谱的描 述。从而在时频域得到一个信号能量的三维分布。

《小波分析概述》PPT课件

《小波分析概述》PPT课件

Heisenberg不等式表明窗口Fourier变换的时 窗半径和频窗半径, 一个减小必然引起另一个的 增大, 不能同时减小.
窗口Fourier变换的窗函数选定以后, 其时-频 窗就固定不变了, 这样就限制了窗口Fourier变换 的实际应用. 为了提取高频分量的信息, 时窗应该 尽量地窄, 而允许频窗适当地宽; 对于低频分量, 时窗则应适当加宽, 以保证至少能包含一个周期的 过程, 频窗应当尽量缩小, 保证有较高的频率分辨率.
§4.2 窗口Fourier变换简介
窗口Fourier变换是在 Fourier 变换的框架内, 将非平稳过程看成是一系列短时平稳信号的叠加, 通过在时域上加上窗口来实现短时性. 通常选择在 有限区间外恒等于零或迅速趋于零的钟形函数g(t) 作为窗函数, 用平移滑动的窗函数g(t-t)与信号f (t) 相乘, 有效地抑制了t=t 邻域以外的信号, 在t 附近 开窗, 通过平移来覆盖整个时间域. 再进行Fourier 变换, 所得的结果反映了t=t 时刻附近的频谱信息, 从而产生了时域局部化的作用.
设 f , g Lk12, k(2R是)任,意常数, 则
W (k1 f k2g) (a,b) k1 W f (a,b) k2 W g (a,b).
(2) 平移性质
设 f L2则(R),
W f (t t0 ) (a,b) W f (t) (a,b t0).
(3) 尺度法则
第四章 小波变换基础
§4.1 小波变换的背景 §4.2 窗口Fourier变换简介 §4.3 连续小波变换 §4.4 二进小波变换和离散小波变换 §4.5 多分辨分析 §4.6 Mallat分解与重构算法
主要内容
小波分析是当前数学中一个迅速发展的 新领域,它也是一种积分变换,是一个时间和 频率的局域变换,因而能有效地从信号中提 取信息,通过伸缩和平移等运算功能对函数 或信号进行多尺度细化分析,解决了Fourier 变换不能解决的许多困难问题.本章简单介绍 小波变换的基本理论和应用.

最新小波分析及其应用PPT课件

最新小波分析及其应用PPT课件
无忧PPT整理发
4、离散小波变换的应用
❖ 例子:某电信号如图所示,数据长度1024。利用 sym5小波对信号进行小波变换。分解到第二层并进 行压缩。
❖ 采用阈值:0.05*细节小波系数的绝对值最大值
无忧PPT整理发
4、离散小波变换的应用
❖ 进行小 波变换 后,对 信号进 行重构 恢复信 号。
无忧PPT整理发
❖ 降低采样频率的一种方法。在信号样本中隔 一个点选取一个点。
❖ 做一次隔点采样,信号的采样频率就减少一 半。信号中的数据量也减半。
无忧PPT整理发
❖ 重构算法
A jf( t) 2 h ( t 2 k )A j 1 f( t) g ( t 2 k )D j 1 f( t)
k
k
无忧PPT整理发
❖ 以后说明的离散小波变换一般为二进离散小波变 换。
无忧PPT整理发
2、离散小波变换定义
❖ 定义:
W f( m , n ) f ( t ) ,m ( , n t ) = a 0 m / 2 f ( t )( a 0 m t n b 0 ) d t
❖ 小波变换的思想是:将任意函数和信号表示为小波 函数的线性组合。 W f (m , n ) 为小波系数。
压缩)
滤波)
❖ 1、将原始信号进行小 ❖ 1、将原始信号进行小波 波变换,得到小波系数。 变换,得到小波系数。
❖ 2、将系数中足够小的 ❖ 2、将系数中代表高频率
系数去除得到滤噪后数 信号的系数去除,得到的
据。
数据。
❖ 3、用数据对原始信号 ❖ 3、用数据对原始信号进
进行重构。
行重构。
无忧PPT整理发
k
D
j
f
(t

小波分析简述(第五章)PPT课件

小波分析简述(第五章)PPT课件

六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点

《小波分析概述》课件

《小波分析概述》课件
小波变换在信号处理中发挥了重要作用,能够有效地分析信号的局部特征,如突变和奇异点,为信号 处理提供了新的工具。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。

《小波分析》PPT课件

《小波分析》PPT课件
(Orthonormal Wavelet and Multiresolution Analysis)
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x

《小波分析方法》课件

《小波分析方法》课件

论文和研究报告
介绍一些发表在期刊和会议上 的相关论文和研究报告
小波分析工具和库
提供一些开放源代码的小波分 析工具和库的信息
Matlab工具箱
介绍基于Matlab的小波分析工具箱,讲 解如何使用该工具箱进行小波分析
小结和展望
1 小波分析方法的优点和局限性
总结小波分析方法相较于其他方法的优点并讨论其局限性
2 未来的研究和应用方向
展望小波分析方法在未来可能的研究方向和应用领域
参考资料
相关领域的经典书籍 和教材
推荐一些与小波分析相关的经 典书籍和教材
信号去噪和压缩
学习如何使用小波分析方法对信号进行去噪和压缩 处理
图像处理
探索小波分析在图像处理中的广泛应用
音频处理
了解如何利用小波分析进行音频特征提取和音频效 果处理
视频处理
发现小波分析在视频编解码和视频特征提取中的应用
小波分析算法实现
1
Python和其他编程语言
2
探讨使用Python和其他编程语言实现小 波分析的库和方法
《小波分析方法》PPT课 件
本课程将介绍小波分析方法的基本概念和应用场景,帮助您掌握信号分析的 强大工具。让我们一起开启这个精彩的学习之旅吧!
课程介绍
内容和目标
了解本课程将涵盖的内容和学习目标
小波分析方法
掌握小波分析方法的基本概念和它在实际应用 中的价值
信号分析基础
1 信号的分类
了解不同类型的信号及其 特点
2 傅里叶分析方法
介绍傅里叶分析方法的原 理和局限性
3 小波分析方法
探讨小波分析方法相较于 傅里叶分析的优点和适用 性
小波分析的数学基础
滤波器组和小波变换

小波分析理论ppt课件

小波分析理论ppt课件

S(w,t ) f (t)g*(w t ) eiwt d t R
(1.12)
25
其中,“*”表示复共轭;g(t)为有紧支集的函数;f(t)为被 分析的信号。在这个变换中,ejwt起着频限的作用,g(t)起 着时限的作用。随着时间t的变化,g(t)所确定的“时间窗” 在t轴上移动,使f(t)“逐渐”进行分析。因此g(t)往往被称为
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。 在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
9
若f(t)是实轴上以2p为周期的函数,即f(t)∈L2(0,2p) ,则f(t)可以表示成傅里叶级数的形式,即
(1.1)
F(w)的傅里叶逆变换定义为
f (t) 1 eiwt F (w)dw 2 π -
(1.2)
6
为了计算傅里叶变换,需要用数值积分,即取f(t)在R 上的离散点上的值来计算这个积分。在实际应用中,我们 希望在计算机上实现信号的频谱分析及其他方面的处理工 作,对信号的要求是:在时域和频域应是离散的,且都应 是有限长的。下面给出离散傅里叶变换(Discrete Fourier Transform,DFT)的定义。
。将母函数y(t)经伸缩和平移后,就可以得到一个小波序
列。
对于连续的情况,小波序列为
y a,b (t)
2
其中,短时傅里叶变换和小波变换也是因传统的傅里叶变 换不能够满足信号处理的要求而产生的。短时傅里叶变换 分析的基本思想是:假定非平稳信号在分析窗函数g(t)的 一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,

小波分析全节讲解精品PPT课件

小波分析全节讲解精品PPT课件

x x, en en n 1
并且有Parseval等式,即
x 2
x, en 2
n 1
(5)双正交基
对于不满足规范正交条件的基底 {ek } 来说 ,如果存在另一组对偶基底{en} 使得
en , em
(m n)
0, m n 1, m n
对应的傅里叶展开式为
f f , en en n 1
X ()
x[n] e jn
n
x[n] 1 X ()e jnd
2
2.DFT
X[k]
N 1
j 2 nk
x[n]e N
N 1
x[n]WNnk , k
0,1,..., N
1
n0
n0
x[n]
1 N
N 1
j 2 nk
X [k]e N
n0
1 N
N 1
X [k]WNnk , n
F (t) F 2 f ()
2.位移 时域位移将导致信号频谱增加一个 附加相位,但是幅频特性不变,即
f (t a) F F ()e ja
3.卷积
卷积特性分为时域卷积和频域 卷积,即
f1(t) * f2 (t) F F1()F2
1
2
F1() F2 ()
4.Parseval定理(内积定理)
2.基底及展开
(1)由函数序列张成的空间
设 {ek (t)}为函数序列,令集合 X 为
X
ak
ek
(t),
t,
ak
R,
k
Z
k
即 X 为函数序列{ek (t)} 的所有可能的
线性组合构成的集合,则称 X 为
序列 {ek (t)}张成的线性空间,简记为

《基于MATLAB的小波分析应用》课件第1章

《基于MATLAB的小波分析应用》课件第1章

第1章 小波分析基础
因此,如何求解Wn是下一步需要解决的问题。求解的
基本思想是:找到一个函数 (x) ,像函数 (x) 的伸缩和
平移 {2n/2(2n x k) ;k Z} 能够张成空间Vn一样,函数 (x) 的伸缩和平移 {2n / 2 (2n x k ) ;k Z} 也能张成空间Wn。同
第1章 小波分析基础
图1.5 V4中的分量
第1章 小波分析基础
图1.6 W7中的分量
第1章 小波分析基础
1.3 一维连续小波变换
定义2 设 (t) L2 (R) ,其傅里叶变换为,当满足容许
条件(完全重构条件或恒等分辨条件)
ˆ () 2
C
d
R
时,称 (t) 为一个基本小波或母小波。将母函数经伸缩和 平移后得
ˆ *() ˆ (2 j ) 2
j
由上式可以看出,稳定条件实际上是对上式分母的约束 条件,它的作用是保证对偶小波的傅里叶变换存在。
Wf (a, b)
第1章 小波分析基础
1.4 离散小波变换
在实际运用中,尤其是在计算机上实现时,连续小波
变换必须加以离散化。因此,有必要讨论连续小波 a,b (t)
时要求 (x) 和 (x) 能够建立直接的联系。
第1章 小波分析基础
定理1 设Wn是由形如 kZ ak(2n x k)( ak R)的函数所组成
的线性空间,其中ak含有限个非0项,则Wn构成Vn在Vn+1中 的正交补,并且Vn1 Vn Wn 。
定理2 能量有限空间L2(R)可以分解为如下形式之和: L2 (R) V0 W0 W1
V j {0}, V j L2 (R)
jZ
jZ
(4) 平移不变性:f (x)V0 f (x k)V0 ,k Z ;

小波分析PPT课件

小波分析PPT课件
4
一首数学史诗
• 多年的政治生涯及颠簸不定的生活,并没有使他放弃研究数学的强 烈兴趣.事实上,早在1807年他就研究了现在称之为Fourier分析的核 心内容.
• 1822年,正式出版推动世界科学研究进展的巨著——《热的解析理 论》(The Analytic Theory of Heat).由于这一理论成功地求解了困扰 科学家150年之久的牛顿二体问题微分方程,因此Fourier分析成为几 乎每个研究领域科学工作者乐于使用的数学工具,尤其是理论科学家。
• 目前,Fourier的思想和方法被广泛用于线性规划、大地测量以及电 话、收音机、x射线等难以计数的科学仪器中,是基础科学和应用科 学研究开发的系统平台。所以物理学家Maxwell称赞Fourier 分析是一 首伟大的数学史诗。
5
Fourier分析的核心内容
①用数学语言提出任何一个周期函数都能表示为一组正弦函数和余 弦函数之和。这一无限和现称之为Fourier级数。也就是说,任 何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑 的曲线之和,见图。
实际上是将信 号投影在由正 弦和余弦函数 组成的正交基 上,对其实施 Fourier变换。
6
Fourier分析的核心内容
②他解释了为什么这一数学论断是有用的。1807年,他显示任何周 期函数(最下图形)是由正弦和余弦函数叠加而成。 Fourier分析 从本质上改变了数学家对函数的看法.他提供了某些微分方程的 直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
但FFT 的本质还是Fourier变换。
10
Fourier变换的缺点
① Fourier分析对非线性问题感到力不从心。
因为非线性系统具有高度不可预测性,输入端微小的 变化会对输出端产生重大影响。例如牛顿定律方程是非线 性的,若用它来预测空间三个物体之间较长时间的行为是 十分困难的,甚至是不可能的,原因是该系统高度不稳定。 正如著名科学家Korner指出:“19世纪的伟大发现是证 明自然方程是线性的,20世纪的伟大发现是证明自然方程 是非线性的。” ② Fourier变换公式没有反映出随时间变化的频率。实际

小波分析入门PPT课件

小波分析入门PPT课件
随着机器学习的发展,小波分析有望在特征提取、数据压缩等领域与机器学习相结合, 提高机器学习的性能和效率。
THANKS
感谢观看
应用
在音频处理、图像处理、信号处理等领域有广泛应用 。
复数小波变换
定义
复数小波变换是指小波基函数为复数的小波变换,其变换结果也 为复数。
特点
复数小波变换具有更强的灵活性和表达能力,能够更好地描述信 号的复杂性和细节。
应用
在雷达信号处理、通信信号处理、图像处理等领域有广泛应用。
04
CATALOGUE
小波变换的基本原理
小波变换的定义
小波变换是一种信号的时间-频率分析方法,通过将信号分解 成不同频率和时间的小波分量,实现对信号的时频分析和去 噪。
小波变换的原理
小波变换通过将信号与一组小波基函数进行内积运算,得到 信号在不同频率和时间上的投影,从而实现对信号的时频分 析和去噪。
小波变换的应用领域
小波变换的基本理论
一维小波变换
定义
实例
一维小波变换是一种将一维函数分解 为不同频率和时间尺度的过程,通过 小波基函数的平移和伸缩实现。
一维小波变换在图像压缩中广泛应用 ,如JPEG2000标准就采用了小波变 换技术。
作用
一维小波变换用于信号处理、图像处 理等领域,能够有效地提取信号中的 特征信息,实现信号的时频分析和去 噪等。
数值计算中的应用
数值求解偏微分方程
小波分析可以用于求解偏微分方程的数值解,通过小波变 换可以将方程转化为离散形式,便于计算。
数值积分与微分
小波分析可以用于数值积分与微分的计算,通过小波基函 数展开被积函数或被微分函数,可以快速计算积分或微分 值。
数值优化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 x W b k f x k dx 2 R 2 f 2k b 这时,逆变换公式是
k f


(12)
k k k f x W f b 2 2 x b db R k
(13)
重构小波
1
xb a a
( 3)
为由小波母函数 x 生成的依赖 于参数( a,b )的连续小波,简 称为小波。
注释
注释:如果小波母函数 x 的Fourier 变换 在原点 0 是连续 的,那么公式(2)说明 0 0 , 于是
x dx 0
da Wf a, bWg a, bdb a 2


( 8)
性质
吸收的逆变换公式
2 f x C


0
W a , b x db da a ,b f a2
( 9)
(Dyadic Wavelet Transform)
交小波。
小波级数
这时,逆变换公式就是小波级数
f x
k j



k, j
k, j x
(18)
其中小波系数 k , j 的算法是
k , j f , k , j f x k , j x dx
R
(19)
连续和离散统一
小波系数是信号f(x)的小波变换 W f a, b 在 二进离散点
2
k
,2
k
j

(20)
上的取值,因此,小波系数 k , j 实际上是 信号f(x)的离散小波变换。其实,这也是 小波变换迷人的风采之一: 连续变换和离散变换形式统一; 连续变换和离散变换都适合全体信号;
§2. 小波分析和时-频分析
(Time-Frequency Analysis ) 2.1 窗口Fourier变换和Gabor变换
g x dx 1
R
Gabor Transform
D.Gabor取
2 1 x g x e xp 4 2
(22)
是 Gaussian 函数,对应的变换称为 Gabor 变换 (1946) 。对于 Gabor 变换,存在如下 的频率再分割公式:
k , j x 2 2k x j
k 2
设小波为 x ,对于任意的整数k 和j,记 (16)
如果函数族
k k 2 k , j x 2 2 x j ; k , j Z Z


(17)
2 L 构成空间 R 的标准正交基,则称 x 是正
Windowed Fourier Transform
具体地
S f x0 , 0 f x g x x0 exp i 0 x dx
R
(21)
称为信号 f x L2 R 的窗口Fourier变换,其 中的函数 g x L2 R 称为窗口函数,一般要求 是:
1.1
小波(Wavelet)
x dx
2
*
小波就是空间L2(R)中满足下述条 x 件的函数或者信号 :

R
(1)
C
R
d
2
(2)
这时, x 也称为小波母函数,(2) 称为容 许性条件。
连续小波
函数:
a ,b x
F 0 S f x0 , 0 dx0
R
(23)
物理解释
Gabor变换S f x0 , 0 是信号f x L2 R在x=x0 点“附近”的频率为 0 的频率成分;
其中 x 的Fourier变换满足
k
2 2 1
k k
(14)
称为二进小波 x 的重构小波,比如可取:

k
2
k
2
(15)
1.4. 正交小波和小波级数
(Orthonormal Wavelet)
1.3.二进小波和二进小波变换
如果小波函数 x 满足稳定性条件
A
j


B
2
(10)
则称 x 为二进小波,对于任意的整数k,记
1 x 2k x k k 2 2
(11)
逆变换
2 对于任意的 f x L R ,其二进小波变换为:
R
这说明函数 x 有波动的特点,公式(1) 又说明函数 x 有衰减的特点,因此, 称函数 x 为“小波”。
1Байду номын сангаас2 小波变换(Wavelet
小波变换为
W f a , b f x a ,b x dx
R
Transform)
2 对于任意的函数或者信号 f x L R,其
(Windowed Fourier Transform and Gabor Transform)
D.Gabor在1946年开创时-频分析的先河提出
Gabor Transform
一般的时-频分析是
Windowed Fourier Transform Short-Time Fourier Transform
dadb R2 W f a, b a,b x a 2
(6)
性质
吸收公式:当吸收条件



2
0

d


2
0

d
(7)
成立时,有吸收的Plancherel恒等式
1 C f x g x dx 0 2


1 a

R
xb f x dx a
(4)
性质
这样定义的小波变换具有下列性质: Plancherel恒等式:
C
R
dadb f x g x dx 2 W f a , b W g a , b 2 R a
(5)
小波变换的逆变换公式:
1 f x C
相关文档
最新文档