人教版六年级数学下册负数知识点

合集下载

人教版数学六年级下册知识点整理

人教版数学六年级下册知识点整理

人教版数学六年级下册知识点整理5.数轴:(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2.利率(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

(6)利息的计算公式:利息=本金×利率×存期利率=利息÷存期÷本金×100%(7)注意:如要上交利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)第三单元圆柱和圆锥一、圆柱1.圆柱的形成:圆柱是以长方形的一边为轴旋转而得的,也可以由长方形卷曲而得到。

一个长方形有两种卷曲圆柱的方式(长>宽):(1)以长方形的长为底面周长,宽为高;(2)以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,同一个圆柱的高都是相等的。

3.圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高。

4.圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5.圆柱的侧面展开图:①沿着高展开,展开图是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6.圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=ch=πdh=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

人教版六年级负数知识点

人教版六年级负数知识点

人教版六年级负数知识点在人教版六年级数学教材中,负数是一个重要的知识点。

学习负数的概念和运算是培养学生逻辑思维和数学能力的重要内容。

下面将介绍人教版六年级负数的基本概念、表示方法和运算规则。

一、负数的基本概念1. 负数的概念负数是比零更小的数,用负号“-”表示。

在数轴上,负数位于原点的左侧。

2. 负数的比较负数之间的比较,绝对值越大的数越小。

例如,-3比-2小,-5比-1小。

3. 负数的相反数一个负数的相反数是与它绝对值相等但符号相反的数。

例如,-7的相反数是7,7的相反数是-7。

二、负数的表示方法1. 符号表示法用负号“-”表示负数。

例如,-2表示负二。

2. 温度表表示法在温度表上,正数表示高温,负数表示低温。

例如,-10℃表示低于零度的温度。

3. 欠债表示法在生活中,负数可以表示借贷关系。

例如,-50元表示欠债50元。

三、负数的运算规则1. 加法规则正数与负数相加,取绝对值较大的数的符号,并用两个数的绝对值相加。

例如,2 + (-3) = -1。

2. 减法规则减去一个负数,等于加上该负数相反数。

例如,7 - (-4) = 7 + 4 = 11。

3. 乘法规则两个负数相乘,积为正数。

一个负数与一个正数相乘,积为负数。

例如,(-2) × (-3) = 6,(-2) × 3 = -6。

4. 除法规则负数之间或正数之间相除,商为正数;负数与正数相除,商为负数。

例如,(-6) ÷ (-2) = 3,(-6) ÷ 2 = -3。

四、负数的应用负数在日常生活中有许多应用,例如:1. 公共汽车站上下车人数的变化可以用正负数来表示。

2. 温度的变化也可以用正负数来表示,正数表示温度升高,负数表示温度降低。

3. 资产和负债的变化也可以用正负数来表示。

4. 数学中的一些问题,如欠债还钱、海拔高度等也可以用负数来表示。

通过学习负数知识,可以帮助我们更好地理解和应用数学。

负数运算的掌握,不仅可以培养学生的思维能力,还可以为学习更高阶的数学知识打下坚实的基础。

负数六年级下册知识点

负数六年级下册知识点

负数六年级下册知识点负数是数学中一个重要的概念,在六年级下册中,学生们将进一步深入学习有关负数的知识。

本文将介绍六年级下册的负数知识点,包括负数的概念、负数的表示方法、负数的运算、负数的应用等等。

一、负数的概念负数是指小于零的数,用于表示负向或者亏损的情况。

在数轴上,负数位于原点的左侧。

学生们需要明确负数与正数的区别,并能够理解负数所代表的具体意义。

二、负数的表示方法1. 整数表示法:在数轴上,正数表示向右的方向,负数表示向左的方向。

使用整数表示法时,正数用加号"+"表示,负数用减号"-"表示。

例如,+2代表正数2,-5代表负数5。

2. 负数的绝对值和相反数:负数的绝对值是指该负数去掉负号的值,得到的是一个正数。

相反数是指一个数与其相加等于0的数,即对于任意数a,其相反数为-a。

例如,负数-3的绝对值为3,它的相反数为3。

三、负数的运算1. 负数的加法:负数的加法可以归结为正数的减法。

当两个负数相加时,先将它们的绝对值相加,然后在结果前加上负号。

例如,-3 + (-5) = -8。

2. 负数的减法:负数的减法可以归结为正数的加法。

当两个负数相减时,先将被减数加上减数的相反数,即转换为加法运算。

例如,-7 - (-4) = -3。

3. 负数的乘法:两个负数相乘,结果为正数。

一个负数和一个正数相乘,结果为负数。

例如,-2 × (-3) = 6,-2 × 3 = -6。

4. 负数的除法:两个负数相除,结果为正数。

一个负数和一个正数相除,结果为负数。

例如,-6 ÷ (-2) = 3,-6 ÷ 2 = -3。

四、负数的应用负数的概念在日常生活中有广泛的应用。

例如,在温度计中,负数用来表示低于冰点的温度。

当海拔高度增加时,气温往往会下降,负数用来表示负温度。

在银行账户中,如果取款金额大于存款金额,就会产生负数余额。

负数也在数学中的方程式、函数、图表等多个领域得到了应用。

六年级负数全部知识点

六年级负数全部知识点

六年级负数全部知识点负数是数学中非常重要的概念,对于六年级的学生来说,掌握负数的相关知识是基础中的基础。

以下是负数的知识点概述:负数的定义:负数是小于零的数,用负号“-”表示。

例如:-3、-5、-7等。

正负数的比较:在数轴上,负数位于0的左边,正数位于0的右边。

正数总是大于负数。

绝对值:绝对值是一个数去掉符号后的值。

例如,|-5| = 5,|5| = 5。

相反数:一个数的相反数是与它相加等于零的数。

例如,5的相反数是-5,-3的相反数是3。

负数的加减法:- 加法:两个负数相加,结果还是负数,且绝对值相加。

例如:(-3) + (-2) = -5。

- 减法:减去一个正数等于加上一个负数。

例如:5 - 3 = 2,等同于5 + (-3) = 2。

负数的乘除法:- 乘法:两个负数相乘结果为正数,一个负数和一个正数相乘结果为负数。

例如:(-3) × (-2) = 6,(-3) × 2 = -6。

- 除法:除以一个负数等于乘以它的相反数。

例如:5 ÷ (-2) = -2.5,等同于5 × (-1/2) = -2.5。

负数的数轴表示:数轴是一条直线,上面有一个起点,称为原点,表示数0。

数轴上的点按照数值大小排列,左边是负数,右边是正数。

温度的负数:在温度计上,负数通常用来表示低于冰点的温度,如-5°C表示零下5摄氏度。

负数的实际应用:负数在日常生活中有广泛的应用,如温度、海拔、债务、收支等。

总结:负数是数学中不可或缺的一部分,理解负数的概念和运算规则对于解决实际问题至关重要。

通过不断的练习和应用,六年级的学生可以更好地掌握负数的相关知识。

希望以上的知识点能帮助学生们更好地理解负数。

人教版六年级下册数学负数的认识、数轴、百分数与折扣、成数 试题

人教版六年级下册数学负数的认识、数轴、百分数与折扣、成数  试题

知识点回顾:【错题重做】另附【本节知识框架】知识点一:负数的认识、数轴知识点二:百分数与折扣、成数【知识点讲解】知识点一:负数的认识、数轴知识点:1、数轴:数学中,在直线上表示正数、0和负数的数学工具。

(1)数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。

(2)正方向:根据题意要求确定正方向,一般以向上或向右为正方向。

如:(2)原点(0刻度):0左边的数(正方向的反向)都是负数,0右边的数(正方向)都是正数;(3)在数轴上越靠左边的数越小(正方向的反向),越靠右边的数越大(正方向);(4)负数比较大小,不考虑负号,数字部分大的数反而小;(类比同分异母的分数大小比较)(5)0大于所有的负数,小于所有的正数:负数 < 0 < 正数(6)所有的正数都大于负数,反之,所有的负数都小于正数。

2、正、负数的读写方法:(1)写正数时,加“+”或省略“+”两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”的,这个“正”字就不需要读出来。

(2)写负数时,一定要写出“—”,读时也一定要读出“负”字。

3、【知识拓展】(1)O 是自然数,也是整数,但是O 既不是正数,也不是负数。

(2)非0的自然数前面有一个负号,这样的数是负整数,也属于整数。

(一)正负数的读写和识别 例题11、某次数学考试(如果以90分为标准,超出部分记作正,不足部分记作负,那么89分应记作( )分,98分应记作( )分。

2、将以下数字按要求分类1.25、35、-7、3、3.011……、-521、0、712、-0.03正数 负数 自然数 非正数联系生活实际:3、下列每组中的两个量,不具有相反意义的一组是( )。

A 、收入50元和支出50元。

B 、向东走20m 和向北走20m 。

C 、海平面以上10m 和海平面以下10m 4、温度越低就越冷,下面是同一天三个城市的温度,( )的温度最低。

A 、北京-5℃ B 、巴黎-8℃ C 、莫斯科-20℃【变式练习】1、负零点零六写作( ),+19读作( )。

人教版六年级下册数学知识点汇总

人教版六年级下册数学知识点汇总

人教版六年级下册数学知识点汇总一、负数。

1. 负数的定义。

- 为了表示相反意义的量,如零上温度和零下温度、收入与支出等,我们引入负数。

像 -3、-5.6、- (1)/(2)等带有负号的数叫做负数;以前学过的像3、5.6、(1)/(2)等这样的数叫做正数(正数前面也可以加“+”号);0既不是正数也不是负数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 在数轴上,从左到右的顺序就是数从小到大的顺序。

所有的负数都在0的左边,也就是负数都比0小;所有的正数都在0的右边,正数都比0大。

- 两个负数比较大小,“ - ”后面的数越大,这个负数反而越小。

例如 -5< -3。

二、百分数(二)1. 折扣。

- 商店有时降价出售商品,叫做打折扣销售,通称“打折”。

几折就表示十分之几,也就是百分之几十。

例如,八折就是原价的80%,七五折就是原价的75%。

- 原价×折扣 = 现价;现价÷折扣 = 原价;现价÷原价 = 折扣。

2. 成数。

- 成数表示一个数是另一个数的十分之几,通称“几成”。

例如,“一成”就是十分之一,改写成百分数就是10%;“三成五”就是十分之三点五,改写成百分数就是35%。

3. 税率。

- 应纳税额与各种收入(销售额、营业额……)的比率叫做税率。

应纳税额 = 各种收入×税率。

4. 利率。

- 单位时间(如1年、1月、1日等)内的利息与本金的比率叫做利率。

利息=本金×利率×存期。

三、圆柱与圆锥。

1. 圆柱。

- 圆柱的认识。

- 圆柱是由两个底面和一个侧面组成的。

圆柱的两个底面是完全相同的圆,侧面是一个曲面,沿高展开后是一个长方形(或正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

- 圆柱的表面积。

- 圆柱的表面积 = 侧面积+两个底面积。

圆柱的侧面积 = 底面周长×高,用字母表示为S_侧=Ch = 2π rh(r为底面半径,h为圆柱的高);圆柱的底面积S=π r^2,所以圆柱的表面积S = 2π rh+2π r^2。

六年级下册数学第一单元《负数》知识点归纳

六年级下册数学第一单元《负数》知识点归纳

六年级下册数学第一单元《负数》知识点归纳第一单元《负数》知识点一、正、负数的意义1、正数:像+1、+2、3、300、+2/7、+6.3、+26% 这样的数都是正数。

2、负数:像-1、-2、-300、-3/5、-0.68、-5%这样的数都是负数。

3、正数和负数可以用来表示两个相反意义的量。

例如:零上温度和零下温度、向东行和向西行、上车人数与下车人数、收入与支出、增加与减少等,都是互为相反意义的两个量,其中一个用正数表示,另一个就用负数表示。

4、0既不是正数,也不是负数。

它是正数与负数的分界点。

注意:除0外,整数、小数、分数、百分数都有正数和负数两种形式。

二、正、负数的读写1、正、负数的读法:“+”读作正,“-”读作负;按照从左往右的顺序读数,先读“正”或“负”,再读符号后面的数字。

读正数时,若数字前面有“+”号,读数时一定要读出“正”字,若数字前面的正号省略不写,则读数时也不读。

2、正、负数的写法:先在数的左侧写上“+”或“-”,再写数字。

写正数时,数左侧的“+”可以省略不写。

例如:+87.25读作:正八十七点二五;-20%读作:负百分之二十。

例如:正三十二写作:+32,也可写作32。

负四十八写作:-48。

三、用直线上的点表示正、负数1、正数、0、负数都可以用直线的上点表示出来。

直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。

例如:2、用直线上的点表示数时,要先确定好0的位置,并用箭头表示出正数的方向。

3、用有正数和负数的直线可以表示距离和相反的方向。

4、在直线上的点,位置越往左,表示的数就越小;位置越往右,表示的数就越大。

所有的负数都比0小,所有的正数都比0大,正数都比负数大。

提示:在数学中,可以用一条直线上的点表示数,这条直线就叫做数轴。

提示:最小的正整数是1,最大的负整数是-1,没有最大的正整数,也没有最小的负整数。

例如:-3℃和-18℃,温度越低就越冷,也说明那个数就越小。

六年级下数学负数知识点

六年级下数学负数知识点

六年级下数学负数知识点负数是数学中一个重要的概念,在六年级下学期的数学课程中有着较高的重要性。

本文将介绍六年级下学期数学课程中关于负数的知识点。

一、负数的概念负数是小于零的实数,用负号“-”表示,如-1,-2等。

在数轴上,负数在原点的左边,与正数相比,负数表示比零更小的数。

二、负数的表示负数可以用数字表示,也可以用字母表示。

在数学中,常使用字母表示未知数,如x,y等。

负数的表示方法有以下几种:1. 整数上加负号。

如-3,-5等。

2. 小数上加负号。

如-0.5,-1.2等。

3. 分数上加负号。

如-1/2,-3/4等。

4. 字母上加负号。

如-x,-y等。

三、负数的加减运算1. 同号相加减。

两个负数相加减,先忽略负号,然后按照正数进行加减运算,最后结果加上负号。

如-3 + (-2) = -5,-4 - (-2) = -2。

2. 异号相加减。

一个正数与一个负数相加减,先忽略负号,然后按照正数进行加减运算,最后结果的符号取决于绝对值较大的数的符号。

如3 + (-2) = 1,4 - (-2) = 6。

四、负数的乘除运算1. 同号相乘除。

两个负数相乘除,结果为正数。

如-3 × (-2) = 6,-6 ÷ (-3) = 2。

2. 异号相乘除。

一个正数与一个负数相乘除,结果为负数。

如3 × (-2) = -6,-6 ÷ 3 = -2。

五、负数的大小比较1. 绝对值大小比较。

绝对值大的负数表示的数值比绝对值小的负数表示的数值要小。

如-5的绝对值大于-7的绝对值,所以-5 < -7。

2. 相反数大小比较。

相反数是指绝对值相等,符号相反的两个数。

如-3和3是一对相反数,它们的大小相等。

六、负数在实际生活中的应用负数在实际生活中有广泛的应用,如:1. 温度计中的负数。

低于零度的温度使用负数表示,如-5°C表示零下五摄氏度。

2. 负债与资产。

负债表示欠款,是负数的应用之一;而资产表示拥有的财产,可以是正数。

人教版六年级数学下册负数知识点

人教版六年级数学下册负数知识点

六年级下册
第一章负数
一、负数的意义和读、写法
1、正、负数的意义
像162000,6.3这样的数叫做正数;像-16,-0.4这样的数叫做负数。

正数和负数可以用来表示两种相反意义的量。

2、正、负数的读写方法
负数的读法是:先读“负”,再读数。

正数前面的“+”可以省略不写。

如果为了与负数对比,也可以加上正号。

3、0既不是正数,也不是负数,它是正数与负数的分界点。

二、在直线上表示正数、0和负数
-4 -3 -2 -1 0 1 2 3 4
表示出正数、0和负数的直线,叫做数轴。

三、
四、
五、借助数轴比较数的大小
1、在数轴上,从左到右的顺序就是数从小到大的顺序。

2、所有的负数都在0的左边,即负数都比0小;所有正数都在0的右边,即正数都比0大。

因此,负数都比正数小。

3、比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。

六年级下次负数知识点

六年级下次负数知识点

六年级下次负数知识点六年级下学期负数知识点在六年级下学期的数学课程中,负数是一个重要的知识点。

对于学生来说,正确理解和掌握负数的概念和运算规则是十分关键的。

本文将重点介绍六年级下学期负数的相关知识点,旨在帮助学生深入了解和应用负数概念。

一、负数的引入与概念阐述负数的引入是为了解决一些实际问题中的负值情况。

在数轴上,我们将正数表示为向右的方向,那么负数就表示为向左的方向。

负数可以理解为与正数相对的数值,表示欠债、亏损、温度下降等情况。

例如,-3表示从0点向左3个单位。

二、负数的加减运算1. 同号数相加减:当两个负数或两个正数相加或相减时,只需将它们的绝对值相加减,并在结果前面加上相同的符号。

例如,(-5) + (-3) = -8,(-7) - (-2) = -5。

2. 异号数相加减:当一个正数与一个负数相加或相减时,可以把它们看作相减,取它们绝对值的差,符号取绝对值较大的数的符号。

例如,(-4) + 3 = -1,5 - (-2) = 7。

三、负数的乘除运算1. 同号数相乘除:当两个负数或两个正数相乘或相除时,它们的结果总是正数。

例如,(-2) × (-3) = 6,(-8) ÷ (-4) = 2。

2. 异号数相乘除:当一个负数与一个正数相乘或相除时,它们的结果总是负数。

例如,(-5) × 4 = -20,12 ÷ (-3) = -4。

四、负数的应用领域1. 温度计算:温度的正负表示高低,例如正数表示高温,负数表示低温。

在寒冷的冬天,我们常常会遇到负数的温度,可以利用负数的运算规则计算温度变化。

2. 财务问题:负数可以用于计算财务上的欠款、亏损等情况。

例如,一个人有100元欠款,又欠了50元,则可以用负数表示为-100-50=-150,表示总共欠款150元。

3. 坐标系统:平面坐标系中,x轴的负半轴表示向左移动,y 轴的负半轴表示向下移动。

负数的概念在解决平面上位置变化的问题时起到重要的作用。

人教版小学六年级下册第一单元负数知识点整理归纳

人教版小学六年级下册第一单元负数知识点整理归纳

第一单元 负数知识点总结一、负数的基本概念1、负数的定义①正数和负数可以用来表示两种相反意义的量。

在正数前面加上“-”就是负数。

②例如,像“162000”、“6.3”这样的数叫做正数;像“-16”,“-0.4”这样的数叫做负数。

③以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”可以省略不写。

如果为了与负数对比,也可以加上“+”。

④负数前面必定有“-”如果前面不是“-”(可能没有符号或者是“+”)都是正数(0除外)。

⑤0既不属于正数,也不属于负数,它是正数和负数的分界点。

2、负数的读法和写法①读法:先读“负”,再读数。

例如:“-6”读作“负六”;“-2.37”读作“负二点三七”;“-25”读作“负五分之二”。

②写法:读法中有“负”字,在数字前面加上“-”。

例如:“负六”写作“-6”;“负二点三七”写作“-2.37”;“负五分之二”写作“-25”。

3*、相反数①绝对值相等,正负号相反的两个数互为相反数。

(只有符号不同且数值相同的两个数) ②例如,像-2与+2互为相反数(写+2时一般省略“+”号,直接写成“2”)。

用字母表示a 与-a 是相反数,0的相反数是0。

这里a 便是任意一个数,可以是正数、负数,也可以是0。

二、数轴的基本概念1、认识数轴①表示出正数、0和负数的直线,叫做数轴。

②数轴的三要素:原点(0刻度)、正方向(箭头表示)、单位长度(刻度)。

·原点:也就是数字0所在的位置,一般根据表示数字的分布情况来确定,如果需要表示的正负数差不多相等时原点在数轴中间。

·正方向:根据题意要求确定正方向,一般以向上或向右为正方向。

·单位长度:由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一些,如果数字偏小刻度距离可以适当大一些。

单位长度不一定每个刻度只能表示1。

2、借助数轴比较数的大小①在数轴上,从左到右的顺序就是数从小到大的顺序。

小学六年级下负数知识点

小学六年级下负数知识点

小学六年级下负数知识点负数是数学中的一个重要概念,它常常使人感到困惑。

在小学六年级下学习负数的知识,对于学生来说是一种挑战,但只要我们掌握了相关的知识点和技巧,就能够轻松应对。

本文将介绍小学六年级下的负数知识点,以帮助同学们更好地理解。

1. 负数的概念负数是表示比零小的数,可以用负号(-)表示。

在数轴上,负数位于原点的左侧,与正数相对应。

例如,-1、-2、-3等都是负数。

2. 负数的相反数每个负数都有一个相反数,它们的和等于零。

例如,-3的相反数是3,-5的相反数是5。

负数与它的相反数的和为零,可以表示为 a + (-a) = 0。

3. 表示负数的方法在数轴上,我们可以使用箭头表示正数和负数。

箭头向右表示正数,箭头向左表示负数。

例如,在数轴上,我们可以用箭头表示-2为“<-2”,表示2为“2->”。

4. 负数的加法和减法在小学六年级下,我们开始学习负数的加法和减法。

当计算两个负数相加时,我们先忽略符号,将它们按照正数相加的方法计算,然后在结果上加上负号。

例如,-4 + (-3) = -(4 + 3) = -7。

类似地,负数的减法也可以通过先转化为加法来计算。

5. 负数在实际生活中的应用虽然负数在我们的日常生活中不太常见,但它们在某些领域中扮演着重要的角色。

例如,温度可以用负数来表示,负数的年龄表示在出生前的年份等。

通过学习负数,我们可以更好地理解和应用这些概念。

6. 负数的乘法和除法在小学六年级下,我们开始学习负数的乘法和除法。

负数与正数相乘或相除,结果的符号取决于负数的个数。

当两个负数相乘时,正负相乘的结果为正数;当一个正数和一个负数相乘时,结果为负数。

例如,(-2) × (-3) = 6,(-2) × 3 = -6。

类似地,负数的除法也可以通过先转化为乘法来计算。

7. 负数的大小比较在小学六年级下,我们也需要学会比较负数的大小。

我们可以把负数看作是原点的左侧,更远离原点的负数比较小,距离原点更近的负数比较大。

负数的知识点六年级下册

负数的知识点六年级下册

负数的知识点六年级下册负数的知识点负数是数学中的一个重要概念,是我们在六年级下册学习的内容之一。

理解和掌握负数的概念和运算是扎实数学基础的重要组成部分。

本文将介绍关于负数的知识点,帮助同学们更好地理解和运用负数。

一、负数的定义负数是小于零的整数,如-1、-2、-3等。

在数轴上,负数位于原点的左侧,与正数相互对称。

负数可以表示欠债、亏损等与减法有关的概念。

二、负数的表示方式负数有多种表示方式,如代数表示、数轴表示和温度表示等。

1. 代数表示负数的代数表示常用符号“-”与正整数相结合,如-1表示“负一”。

2. 数轴表示数轴是一种直观的表示方式,可以帮助我们更好地理解负数。

在数轴上,正数位于原点的右侧,而负数则位于左侧。

3. 温度表示负数可以用来表示温度,如-10℃表示气温为零下10摄氏度。

三、负数的运算规则负数的运算包括加减乘除四则运算,需要遵循一定的规则。

1. 负数的加法负数的加法可以看作是相减的运算。

如-2 + (-3)等于-2 - 3,结果为-5。

2. 负数的减法负数的减法可以看作是相加的运算。

如-5 - (-2)等于-5 + 2,结果为-3。

3. 负数的乘法两个负数相乘,结果为正数。

如-2 × -3等于6。

4. 负数的除法两个负数相除,结果为正数。

如-6 ÷ -2等于3。

四、应用案例负数的概念和运算在生活和实际问题中有广泛应用。

以下是一些具体案例:1. 钱的概念当我们的钱包里有100元,却花掉了120元时,我们可以用负数来表示这种亏损。

-20表示我们目前的财务状况。

2. 海拔高度海拔高度的正负表示在山顶和海平面之间的相对位置。

海拔为正数时表示山顶的高度,而负数则表示海平面以下的高度。

3. 温度计温度计使用负数来表示低于冰点的温度。

比如,当温度为-5℃时,表示气温低于零下5度。

五、负数的性质负数也有一些特殊的性质,包括:1. 负数与正数相加,绝对值较大的数的符号决定结果的符号。

人教版六年级数学下册第1单元第1课时 负数的认识

人教版六年级数学下册第1单元第1课时 负数的认识
9
5. 下面各数哪些是正数?哪些是负数? -3 1 +4.6 0 -2.5 - 2 + 3 +7 58 正数:_1___+_4_._6___+_83____+_7___
负数:___-_3___-2_._5___- _52______
四、课堂小结
正数 包括正整数、正分数、正小数

0
0既不是正数,也不是负数。它是 正、负数的分界点。
负六十 写作 ( -60 ) 零上十二摄氏度 记作( +12℃ ) 零下三十摄氏度 记作( -30℃ )
3.爸爸的银行卡上存入为“+”,支出为“-”, 那么-680元表示( 支出680元),+2687元 表示( 收入2687元 )。
4.请同学们读出下列各数。 +13,-31, -1.5 , +7, -7,- 7
1-1-1-2:
1 质数
质因数
合数
分解质因数 最大公因数
因数和倍数 因数
公因数
互质数
倍数
公倍数
最小公倍数
2的倍数的特征 5的倍数的特征 3的倍数的特征
偶数 奇数
9的倍数的特征
1-1-1-3:
意义 分类
按整数部分 混小数(带小数)
纯小数
小数的认识
计数方法
按小数部分
读法和写法
小数的基本性质
有限小数 无限小数
小互 数化
分数的基本性质
约分
倒数
作用 通分 最简分数
数的大小比较 意义:一个数是另一个数的百分之几的数
百分率
百分数 读法和写法
百分比
特点:只表示两数间的关系,不表示实际数量
成数、折扣、税率和利率

六年级下册数学一二单元知识点

六年级下册数学一二单元知识点

六年级下册数学一二单元知识点一、负数1. 负数的认识- 负数就像生活中的那些“反向”情况。

比如说温度,零上温度我们用正数表示,像+5℃表示零上5摄氏度。

那零下温度呢,就用负数啦,比如 - 3℃就是零下3摄氏度。

它就像是正数的“小跟班”,但是方向相反哦。

- 在数轴上,负数在0的左边,正数在0的右边。

0就像是个分界点,把正数和负数分得清清楚楚的。

就像拔河比赛,0是中间的那条线,正数队在右边用力拉,负数队在左边用力拉。

2. 负数的大小比较- 比较负数的大小有点像比谁更“冷”。

比如说 - 5和 - 3, - 5就比 - 3更“冷”,也就是 - 5< - 3。

因为在数轴上,越往左的数越小,负数离0越远就越小。

这就好比在冬天,零下5度肯定比零下3度要冷得多呀。

3. 负数的运算- 加上一个负数就等于减去这个负数的绝对值。

比如说3+( - 2),就相当于3 - 2 = 1。

就好像你本来有3个苹果,又有人拿走了2个(这里拿走就用负数表示),最后就剩下1个苹果啦。

- 减去一个负数就等于加上这个负数的绝对值。

像5-( - 3),就等于5 + 3 = 8。

这就像是你本来欠别人3个东西(用 - 3表示),现在不用还了(减去 - 3),那你就相当于多了3个,所以就变成加3了。

二、百分数(二)1. 折扣- 折扣就是商家的一种促销手段。

比如说打八折,就是按原价的80%出售。

如果一件衣服原价100元,打八折后的价格就是100×80% = 80元。

这就好比你去菜市场买菜,老板说给你个八折优惠,你就可以少花点钱啦。

2. 成数- 成数也和百分数有关系哦。

一成就是10%,二成就是20%。

比如说今年粮食产量比去年增产二成,就是说今年的产量比去年多了20%。

如果去年产量是1000千克,今年产量就是1000×(1 + 20%)=1200千克。

就像你的零花钱比去年多了二成,你就可以买更多的小零食啦。

3. 税率- 税率是国家从企业或者个人收入里拿一部分钱的比例。

六年级人教版下册数学知识点总结归纳

六年级人教版下册数学知识点总结归纳

六年级人教版下册数学知识点总结归纳第一单元负数1、负数:任何正数前加上负号就是一个负数。

在数轴线上,负数都在0的左侧,所有的负数都比自然数小。

负数用负号“-”标记,如-2,-5.33,-45,-0.6等。

2、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于零(>0),则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有无数个,其中有正整数,正分数和正小数。

3、0既不是正数,也不是负数,它是正、负数的分界数。

正数都大于0,负数都小于0,正数大于一切负数。

应用举例:16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃.如果2000表示存入2000元,那么-500表示支出了500元。

向东走3m记作+3,向西4m记作-4。

4、在直线上表示数:(1)正数、0和负数可以用直线上的点表示出来。

直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。

(2)用有正数和负数的直线可以表示距离和相反的方向。

题型:1、将以下数字按要求分类1.25、、-7、3、3.011……、-5、0、、-0.03正数负数自然数非正数2、写数下列数相对的负数形式0.33……、3、如果﹢20%表示增加20%,那么﹣20%表示什么?4、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

5、在数轴上表示下列个数1.75--450-3.2第二单元百分数(二)1、折扣:几折就是十分之几,也就是百分之几十例如:八五折表示现价是原价的85%原价×折扣=现价现价÷折扣=原价现价÷原价=折扣2、成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”例如:二成就是(十分之二),改写成百分数是20%。

3、税率:应纳税额=各种收入×税率各种收入=应纳税额÷税率4、利率:存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

数学六年级下册《负数》知识点

数学六年级下册《负数》知识点

数学六年级下册《负数》知识点数学是一门精密而又有趣的学科,通过学习数学,我们可以锻炼我们的逻辑思维能力和解决问题的能力。

在六年级下册的数学课程中,负数是一个重要的知识点。

接下来,我将为大家详细介绍负数的概念、表示方法和运算规则。

一、负数的概念负数是数学中的一个重要概念,它代表着小于零的数。

在实际生活中,我们经常会遇到表示亏损、借贷或者欠债的情况。

这些情况之所以被称为负数,是因为它们在数轴上表示的位置在零的左边。

与负数相对应的是正数,它们在数轴上的位置在零的右边,代表着大于零的数。

二、负数的表示方法为了方便表示负数,数学家们引入了负号(-),将负数与正数进行区别。

当我们要表示一个负数时,可以在数之前加上负号。

例如,-3代表着小于零的三个单位。

同样地,我们也可以使用括号来表示负数,如(-3)。

三、负数的运算规则1. 负数的加法当我们计算两个负数之间的加法时,我们只需要将它们的数值相加,并在最终结果前加上负号。

例如,-2 +(-3)= -5。

2. 负数与正数的加法当我们计算一个负数与一个正数之间的加法时,我们需要将它们的绝对值相减,并使用绝对值较大的符号作为结果的符号。

例如,-5 + 3 = -2。

3. 负数的减法负数的减法可以转化为加法来计算。

例如,-5 - 3 可以改写为 -5 +(-3),然后按照负数的加法规则进行计算。

4. 负数的乘法两个负数相乘的结果为正数。

例如,-2 × -3 = 6。

而一个负数与一个正数相乘的结果为负数。

例如,-2 × 3 = -6。

5. 负数的除法两个负数相除的结果为正数。

例如,-6 ÷ -3 = 2。

一个负数与一个正数相除的结果为负数。

例如,-6 ÷ 3 = -2。

负数在我们的日常生活中有着广泛的应用。

例如,在气温的表示中,负数表示低于零摄氏度的温度;在财务报表中,负数用来表示亏损的情况;在地理中,负数被用来表示海平面以下的高度等等。

人教版六年级数学下册 负数 知识点 填空

人教版六年级数学下册 负数 知识点 填空

《负数》知识点归纳知识点一、负数的概念1、负数的意义:引入负数是为了表示与正数()的量。

2、在正数前面添上“-”号,这个数就是()。

这里的“-”不能读“减”,而应该读()。

读作:()。

3、负数的读法:先读“负”,再读数。

例如-5读作:();-56知识点二、负数的性质1、正数和负数都有()个。

2、正数比0(),负数比0()。

3、0既不是(),也不是()。

4、负数大小的比较方法:先不看“-”号,把两个负数当作正数来看。

哪一个正数小,那么该负数反而()。

例:比较-3和-8的大小。

因为3<8,所以-3()-8。

知识点三、数轴1、用一条直线上的点表示数,那么这条直线叫做()。

它满足以下要求:(1)该直线上任取一个点用来表示0,这个点叫做()。

(2)规定一个方向为正方向,则它的反方向叫做负方向。

通常规定从原点向()的方向为正方向。

(3)选取适当的长度为单位长度。

从原点向正方向每隔一个单位长度就取一个点,并写上它所代表的数,负方向也如此。

温馨提示:一些特殊的数轴会以其它的方向为正方向,例如把温度计看成是一条数轴,则它的上方就是正方向。

但如果没有特殊说明,一般默认数轴从原点向()的方向为数正方向。

另外,单位长度不一定取1,也可以取其它数,但数轴上两个数之间的距离必须()。

2、数轴三要素:()、()、()。

3、在数轴上,正数都在原点的(),负数都在原点的()。

4、从原点向左,数越来越();从原点向右,数越来越()。

数轴上右边的数总比左边的数()。

5、用数轴比较大小的方法:若干个数排列在数轴上,最左边的数最(),从它向右,数依次增大,最右边的数最()。

例题:用数轴比较-2.5、13、-123、0、-14、的大小。

大小关系:-2.5<-123<-14<0<13。

新人教版六年级数学下册知识点归纳

新人教版六年级数学下册知识点归纳

新人教版六年级数学下册知识点归纳一.负数1.负数的由来:为了表示相反意义的两个量(如盈利亏损.收入支出……).光有学过的0 1 3.4 2/5 ……是远远不够的·所以出现了负数.以盈利为正.亏损为负;以收入为正.支出为负2.负数:小于0的数叫负数(不包括0).数轴上0左边的数叫做负数·若一个数小于0.则称它是一个负数·负数有无数个.其中有(负整数.负分数和负小数)负数的写法:数字前面加负号“-”号. 不可以省略例如:-2.-5.33.-45.-253.正数:大于0的数叫正数(不包括0).数轴上0右边的数叫做正数若一个数大于0.则称它是一个正数·正数有无数个.其中有(正整数.正分数和正小数)正数的写法:数字前面可以加正号“+”号.也可以省略不写·例如:+2.5.33.+45.254. 0 既不是正数.也不是负数.它是正.负数的分界限负数都小于0.正数都大于0.负数都比正数小.正数都比负数大5.数轴:规定了原点.正方向和单位长度的直线叫数轴·所有的数都可以用数轴上的点来表示·也可以用数轴来比较两个数的大小·数轴的三要素:原点.单位长度.正方向负数 0 正数左边<右边6.比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小.数字大的就大.数字小的就小·负数之间比较大小.数字大的反而小.数字小的反而大 1/3 >1/6 -1/3 <-1/6二. 百分数(二)(一).折扣和成数1.折扣:用于商品.现价是原价的百分之几.叫做折扣·通称“打折”·几折就是十分之几.也就是百分之几十·例如八折=8/10 =80﹪.六折五=6.5/10 =65/100 =65﹪解决打折的问题.关键是先将打的折数转化为百分数或分数.然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2.成数:几成就是十分之几.也就是百分之几十·例如一成=1/10 =10﹪.八成五=8.5/10 =85/100 =8 0﹪解决成数的问题.关键是先将成数转化为百分数或分数.然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二).税率和利率1.税率(1)纳税:纳税是根据国家税法的有关规定.按照一定的比率把集体或个人收入的一部分缴纳给国家·(2)纳税的意义:税收是国家财政收入的主要来源之一·国家用收来的税款发展经济.科技.教育.文化和国防安全等事业·(3)应纳税额:缴纳的税款叫做应纳税额·(4)税率:应纳税额与各种收入的比率叫做税率·(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2.利率(1)存款分为活期.整存整取和零存整取等方法·(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社.储蓄起来.这样不仅可以支援国家建设.也使得个人用钱更加安全和有计划.还可以增加一些收入·(3)本金:存入银行的钱叫做本金·(4)利息:取款时银行多支付的钱叫做利息·(5)利率:利息与本金的比值叫做利率·(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税).则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率) 购物策略:估计费用:根据实际的问题.选择合理的估算策略.进行估算·购物策略:根据实际需要.对常见的几种优惠策略加以分析和比较.并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处三.圆柱和圆锥一.圆柱1.圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的·圆柱也可以由长方形卷曲而得到·(两种方式:1.以长方形的长为底面周长.宽为高;2.以长方形的宽为底面周长.长为高·其中.第一种方式得到的圆柱体体积较大·)2.圆柱的高是两个底面之间的距离.一个圆柱有无数条高.他们的数值是相等的3.圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆·(2)侧面的特征:圆柱的侧面是一个曲面·(3)高的特征:圆柱有无数条高4.圆柱的切割:①横切:切面是圆.表面积增加2倍底面积.即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R.切面为正方形).该长方形的长是圆柱的高.宽是圆柱的底面直径.表面积增加两个长方形的面积.即S增=4rh5.圆柱的侧面展开图:①沿着高展开.展开图形是长方形.如果h=2πr.展开图形为正方形②不沿着高展开.展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6.圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高. 求圆柱的侧面积.表面积.体积.底面周长②已知圆柱的底面周长和高.求圆柱的侧面积.表面积.体积.底面积③已知圆柱的底面周长和体积.求圆柱的侧面积.表面积.高.底面积④已知圆柱的底面面积和高.求圆柱的侧面积.表面积.体积⑤已知圆柱的侧面积和高. 求圆柱的底面半径.表面积.体积.底面积以上几种常见题型的解题方法.通常是求出圆柱的底面半径和高.再根据圆柱的相关计算公式进行计算无盖水桶的表面积 =侧面积+一个底面积油桶的表面积 =侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩.排水管.漆柱.通风管.压路机.卫生纸中轴.薯片盒包装侧面积+一个底面积:玻璃杯.水桶.笔筒.帽子.游泳池侧面积+两个底面积:油桶.米桶.罐桶类二.圆锥1.圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2.圆锥的高是两个顶点与底面之间的距离.与圆柱不同.圆锥只有一条高3.圆锥的特征:(1)底面的特征:圆锥的底面一个圆·(2)侧面的特征:圆锥的侧面是一个曲面·(3)高的特征:圆锥有一条高·4.圆柱的切割:横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形.该等腰三角形的高是圆锥的高.底是圆锥的底面直径.面积增加两个等腰三角形的面积. 即S增=2rh5.圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3 πr²h考试常见题型:①已知圆锥的底面积和高.求体积.底面周长②已知圆锥的底面周长和高.求圆锥的体积.底面积③已知圆锥的底面周长和体积.求圆锥的高.底面积以上几种常见题型的解题方法.通常是求出圆锥的底面半径和高.再根据圆柱的相关计算公式进行计算三.圆柱和圆锥的关系1.圆柱与圆锥等底等高.圆柱的体积是圆锥的3倍·2.圆柱与圆锥等底等体积.圆锥的高是圆柱的3倍·3.圆柱与圆锥等高等体积.圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍·4.圆柱与圆锥等底等高 .体积相差2/3 Sh题型总结直接利用公式:分析清楚求的的是表面积.侧面积.底面积.体积分析清楚半径变化导致底面周长.侧面积.底面积.体积的变化分析清楚两个圆柱(或两个圆锥)半径.底面积.底面周长.侧面积.表面积.体积之比圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体.长方体与圆柱圆锥之间)横截面的问题浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积.等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体.正方体⑤等体积转换问题:一个圆柱融化后做成圆锥.或圆柱中的溶液倒入圆锥.都是体积不变的问题.注意不要乘以1/3四.典型题:1.一个圆柱的侧面展开是一个正方形.它的高是底面直径的π倍. 即h=C=πd,它的侧面积是S侧=h²2.圆柱的底面半径扩大2倍.高不变.表面积扩大2倍.体积扩大4倍·3.圆柱的底面半径扩大2倍.高也扩大2倍.表面积扩大4倍.体积扩大8倍·4.圆柱的底面半径扩大3倍.高缩小3倍.表面积不变.体积扩大3倍·5.一个圆柱和它等底等高的圆锥体积之和是48立方厘米.这个圆柱的体积是()立方厘米.圆锥的体积是()立方厘米圆锥和它等底等高的圆柱体积之比是1 :3.圆柱占1份.圆锥占3份.一共4份.题目中说了4份的和一共是48立方厘米·圆锥占了4份中的1份.圆柱占了4份中的3份 V锥:48÷4=12(立方厘米)或 48×1/4 =12(立方厘米)V柱:48÷4=12(立方厘米) 12×3=36(立方厘米) 或 48×3/4 =36(立方厘米)6.一个圆柱和它等底等高的圆锥体积之差是24立方分米.这个圆柱的体积是()立方分米.圆锥的体积是()立方分米·圆锥和它等底等高的圆柱体积之比是1 :3.圆柱占1份.圆锥占3份.1份和3份相差了2份.题目中说了相差24立方分米.2份就是24立方分米圆锥占了2份中的1份.圆柱占了2份中的3份V锥:24÷2=12(立方分米) 或24×1/2 =12(立方分米)V柱:24÷2=12(立方分米) 12×3=36(立方分米) 或 24×3/2 =36(立方分米)7.一个圆柱和一个圆锥.体积相等.底面积也相等.圆柱的高是2厘米.圆锥的高是()厘米· V柱=V锥 V柱=V锥S柱底h柱= 1/3 S锥底h锥 S柱底h柱= 1/3 S锥底h锥h柱= 1/3 h锥 S柱底= 1/3 S锥底2= 1/3 h锥 4 = 1/3 S锥底h锥= 2÷1/3 S锥底= 4÷1/3h锥=6 S锥底=128.一个圆柱和一个圆锥体积相等.高也相等.圆柱的底面积是4平方分米.圆锥的底面积是()平方分米·9.一个圆锥和一个圆柱的底面积相等.体积的比是1:6·如果圆锥的高是3.6厘米.圆柱的高是()厘米.如果圆柱的高是3.6厘米.圆锥的高是()厘米·10.一个圆柱体.把它的高截短3厘米.它的底面积减少94.2平方厘米.这个圆柱的体积减少了()立方厘米·πr²C=S侧÷h r=C÷π÷2V=πr²h=94.2÷3 =31.4÷3.14÷2 =3.14×5×3=31.4(厘米) =5(厘米) =235.5(立方厘米)四.比例1.比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号.读作“比”·比号前面的数叫做比的前项.比号后面的数叫做比的后项·比的前项除以后项所得的商.叫做比值·(3)同除法比较.比的前项相当于被除数.后项相当于除数.比值相当于商·(4)比值通常用分数表示.也可以用小数表示.有时也可能是整数·(5)比的后项不能是零·(6)根据分数与除法的关系.可知比的前项相当于分子.后项相当于分母.比值相当于分数值·2.比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外).比值不变.这叫做比的基本性质·3.求比值和化简比:求比值的方法:用比的前项除以后项.它的结果是一个数值可以是整数.也可以是小数或分数·根据比的基本性质可以把比化成最简单的整数比·它的结果必须是一个最简比.即前.后项是互质的数·4.按比例分配:在农业生产和日常生活中.常常需要把一个数量按照一定的比来进行分配·这种分配的方法通常叫做按比例分配·方法:首先求出各部分占总量的几分之几.然后求出总数的几分之几是多少·5.比例的意义:表示两个比相等的式子叫做比例·组成比例的四个数.叫做比例的项·两端的两项叫做外项.中间的两项叫做内项·6.比例的基本性质:在比例里.两个外项的积等于两个两个内项的积·这叫做比例的基本性质·7.比和比例的区别(1)比表示两个量相除的关系.它有两项(即前.后项);比例表示两个比相等的式子.它有四项(即两个内项和两个外项)·(2)比有基本性质.它是化简比的依据;比例也有基本性质.它是解比例的依据·8.成正比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.他们的关系叫做正比例关系·用字母表示y/x =k(一定)9.成反比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的积一定.这两种量就叫做成反比例的量.他们的关系叫做反比例关系·用字母表示x ×y=k(一定)10.判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定.如果商一定.就成正比例;如果积一定.就成反比例·11.比例尺:一幅图的图上距离和实际距离的比.叫做这幅图的比例尺·12.比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13.图上距离:实际距离=比例尺或图上距离/实际距离 =比例尺实际距离×比例尺=图上距离图上距离÷比例尺=实际距离14.应用比例尺画图的步骤:(1)写出图的名称. (2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离.写清地点名称(6)标出比例尺15.图形的放大与缩小:形状相同.大小不同·16.用比例解决问题:根据问题中的不变量找出两种相关联的量.并正确判断这两种相关联的量成什么比例关系.并根据正.反比例关系式列出相应的方程并求解·17.常见的数量关系式:(成正比例或成反比例)单价×数量=总价单产量×数量=总产量速度×时间=路程工效×工作时间=工作总量总价/单价 =数量总产量/单产量 =数量路程/速度 =时间工作总量/工作效率=工作时间总价/数量 =单价总产量/数量 =单产量路程/时间 =速度工作总量/工作时间=工作效率18.已知图上距离和实际距离可以求比例尺·已知比例尺和图上距离可以求实际距离·已知比例尺和实际距离可以求图上距离·计算时图距和实距单位必须统一·19.播种的总公顷数一定.每天播种的公顷数和要用的天数是不是成反比例?答:每天播种的公顷数×天数=播种的总公顷数已知播种的总公顷数一定.就是每天播种的公顷数和要用的天数的积是一定的.所以每天播种的公顷数和要用的天数成反比例·20.判断下面各题的两个量是不是成比例.如果成比例.成什么比例?(1)订阅《中国少年报》的份数和钱数·因为钱数/订阅《中国少年报》的份数 = 每份的钱数(一定)所以.订阅《中国少年报》的份数和钱数成正比例·(2)三角形的底一定.它的面积和高·因为三角形的面积/高 =1/2 (一定)所以.它的面积和高成正比例·(3)图上距离一定.实际距离和比例尺·因为.实际距离×比例尺=图上距离(一定)所以.实际距离和比例尺成反比例·(4)一条绳子的长度一定.剪去的部分和剩下的部分·因为.剪去的部分和剩下的部分不存在比值或积一定的关系. 所以.剪去的部分和剩下的部分不成比例·(5)圆的面积和它的半径不成正比例.因为圆的面积和它的半径的比值不一定.所以圆的面积和它的半径不成正比例·自行车里的数学:前齿轮转数×前齿轮齿数=后齿轮转数×后齿轮齿数蹬一圈走的路程=车轮周长×(蹬一圈.后轮转动的圈数)蹬一圈走的路程=车轮周长×(前齿轮齿数:后齿轮齿数)48:28≈1.71 48:24=2 48:20=2.4 48:18≈2.67 48:16=3 48:14≈3.4340:28≈1.4340:24≈1.67 40:20=2 40:18≈2.22 40:16=2.5 40:14≈2.86前.后齿轮齿数相差大的.比值就大.这种组合走的就远.因而车速快.但骑车人较费力前.后齿轮齿数相差小的.比值就小.这种组合走的就近.因而车速慢.但骑车人较省力自行车跑的快慢与两个条件有关:1.前后齿轮齿数的比值·2.车轮的大小(合理)五数学广角—鸽巢问题1.鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法, 如下表放法盒子1盒子2130221312403无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”·这个结论是在“任意放法”的情况下, 得出的一个“必然结果”·类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信我们把这些例子中的“苹果”.“鸽子”.“信”看作一种物体.把“盒子”.“鸽笼”.“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式②利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12.摸2个同色球计算方法·①要保证摸出两个同色的球.摸出的球的数量至少要比颜色数多1·物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球.再无论摸出一个什么颜色的球.都能保证一定有两个球是同色的·③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)常见乘法计算(敏感数字):25×4=100 125×8=1000加法交换律简算例子加法结合律简算例子乘法交换律简算例子乘法结合律简算例子 0.87 5+2/3 +1/8 23 +14 +0.8 0.4×33×52 23×0.375×16/3=7/8 +2/3 +1/8 =2/3 +1/4 +4/5 =2/5 ×33×5/2 =23×3/8 ×16/3=7/8 +1/8 +2/3 =2/3 +(1/4 +4/5 ) =2/5 ×2/5 ×33 =23 ×(3/8 ×16/3 )=1+2/3 =2/3 +1 =1×3 =23×2含加法交换律与结合律含乘法交换律与结合律数字换减法式数字换加法式0.875+2/3 +1/8 +1/3 0.375×29/7 ×16/3 ×7/29 35×5/36 101×9/10=7/8 +2/3 +1/8 +1/3 =3/8 ×29/7 ×16/3 ×7/29 = (36-1) ×5/36 = (100+1) ×9/10=7/8 +1/8 + 2/3 +1/3 =3/8 ×16/3 ×29/7 ×7/29 =36×536 -1×536 =100×9/10 +1×9/10= (7/8 +1/8 )+ (2/3 +1/3 ) = (3/8 ×16/3 )×(29/7 ×7/29 ) =5-5/36 =1+9/10=1+1 =2×1乘法分配律提取式乘法分配律提取式乘法分配律(添项) 乘法分配律(添项)101×0.9-9/10 ×1 95.5÷1.6-15.5÷1.6 101×0.9-9/10 52×5/8 +29×5/8 -0.625=101×9/10 -9/10 ×1 =(95.5-15.5)÷1.6 =101×9/10 -9/10 =52×5/8 +29×5/8 -5/8=101×9/10 -1×9/10 =80÷1.6 =101×910 -1×910 =52×58 +29×58 -1×5/8=(101-1) ×910 =800÷16 =(101-1) ×9/10 =(52+29-1)×5/8=100×9/10 =100×9/10 =80×5/8减法的性质简算例子减法的性质简算例子减法的性质简算例子数字换乘法式18-58 -0.375 134 -716 -0.75 1225 -(7/16 +0.4) 0.56×125=18-58 -38 =134 -716 -34 =1225 -(716 +2/5 ) =0.7×0.8×125=18-(58 +38 ) =134 -34 -716 =1225 -25 -7/16 =0.7×(0.8×125)=18-1 =1-7/16 =12-7/16 =0.7×100除法的性质简算例子除法的性质简算例子除法的性质简算例子数字换乘法式3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) 33333×33333=3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =11111×3×33333=3200÷1 =1000÷2.5 =1000÷2.5 =11111×99999=11111×(100000-1)同级运算中.第一个数不能动.后面的数可以带着符号搬家1+2/3 +7/16 -2/3 250÷0.8×0.4 123 -716 +13 29×0.25÷0.29=1+2/3 -2/3 +7/16 =250×0.4÷0.8 =1+2/3 +1/3 -7 / 16 =29÷0.29×0.25=1+716 =100÷0.8 =2-7/16 =100×0.25解方程方法一:消项(如果消+3.方程两边就同时-3 ;如果消×3.方程两边就同时÷3) 1:把方程里的“括号”全部去掉.两种去括号的方法任选其一2:如果两边都有几X , 要先消去其中一边的几X (如果有“-几X”.就把“-几X”消去.如果没有“-几X”.就把较小的X消去掉)3:消去“-几”.消去“÷”4:把X这边的数字全部消掉.先消“+ -”再消“÷”最后消“×” (注意:无论解到哪一步.数字+几X 都要写成几X+数字)解方程方法二:移项(+3移到另一边就变成-3.×3移到另一边就变成÷3)1:把方程里的“括号”全部去掉.两种去括号的方法任选其一2:如果两边都有几X ,就把其中一边的几X 移到另一边 (如果有“-几X”.就把“-几X”移到另一边·如果没有“-几X”.就把较小的X移到另一边)3:把“-几X”移到另一边.把“÷X”移到另一边”4:把X这边的数字全部移到另一边.先移“+ -”再移“÷”最后移“×” (注意:无论解到哪一步.数字+几X 都要写成几X+数字)长度单位换算km m dm cm mm1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算 km² m² dm² cm² mm²1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算 L mL m³ dm³ cm³1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升 1立方米=1000升1立方分米=1升 1立方厘米=1毫升质量单位换算 t kɡɡ1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算 h min s1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档负数一、负数的定义”是可以省略不写的!除外)都是正数,也就是说正数前面的“+1、以前所学的所有数(0 -”就是负数。

2、负数的定义:在正数前面加上“除外)。

”如果前面不是“-”(可能没有符号或者是“+”)都是正数(03、负数前面必定有“- 0既不属于正数,也不属于负数,它是正数和负数的分界。

4、
二、负数的作用 1、负数是在人为规定正方向的前提下出现的。

2、负数常用来表示和正数意义相反的量。

、在选择用正数还是负数表示时,首先看是否规定了正方向。

3 、一般含有褒义的量用正数表示,含有贬义的量则用负数表示。

4-500元用-5℃表示。

收入2000元用+2000元表示;支出500例:零上5°用+5℃表示;零下5°用元表示。

练习: 20%、如果﹢20%表示增加,那么﹣20%表示什么?1摄、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 _ 2 氏度。

0.3米记作_____________0.2记作
____________,低于正常水位3、正常水位为0,水位高于正常水位。

记作
6.3m记作,低于正常水位2.5m 正常水位为5米,现在水位为、按照要求回答:一个学生演示,教师提出要求规定向前走为正。

4
________________。

5(2)向后走步记作(1)向前走2步记作_________________。

5、看图答题
+1时;巴黎时间晚7小时,记为个小时,记为-7时。

以北京时与北京时间相比,东京时间早1间为标准,表示出其他时区的时间。

悉尼时间:____________ 伦敦时间:_____________
6、判断题
(1)0可以看成是正数,也可以看成是负数()
(2)海拔-155米表示比海平面低155米()
(3)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元()(4)温度0℃就是没有温度()
7、常见负数的意义
(1)地图上的负数:
中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,你能说说8848米,-155米各表示什么吗?这两个高低是以谁为标准的?
(2)收入与支出
收入:2600元,()教育支出:300元()娱乐支出:500元()。

(3)电梯间的负数
.
精品文档层是什么意思?是以谁为标准的?-3,这时小明离学校-100m、以学校
为起点,往东走为正,往西走位负,小明从学校走了+50m,又走了8 。

的距离是(),实际没袋最多不多于)”表示食品的标准质量是( 500、食品包装上常注明:“净重±5g,9 。

)(),最少不少于(三、负数的读法和写法、读法:在所读数的前面加上“负” 1 、写法:在所写数的前面加上“-” 2 练习:读作:)或()零上16摄氏度写作:(
读作:写作:()零下3摄氏度
四、认识数轴、单位长度(刻度)。

、原点(0刻度)1、数轴的要素:正方向(箭头表示)、正方向:根据题意要求确定正方向,一般以向上或向右为正方向。

2所在的位置,一般根据表示数字的分布情况来确定,如果需要表示的正负数03、原点:也就是数字差不多相等时原点在数轴中间;如果正数比负数多得多原点偏左;如果负数比正数多得多原点偏右。

、单位长度:由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小4 。

一些,如果数字偏小刻度距离可以适当大一些。

单位长度不一定每个刻度只能表示1
五、用数轴表示数 1、在已给数轴上表示数:根据数字在对应的刻度上描点表示。

2等分处为该数。

3等分则20将刻度进一步细分如,需要将—1之间线段分为、对于非整数的表示:23-3-3.5在3和4中间,而+3.503、对于负数的表示:负数都在的左面,正数都在0的右面。

例:在中间。

和-4
练习: 1、在数轴上表示下列个数311 5 0 -3.2
1.75 - -4 43
.
精品文档
、写出下列各点表示的数2
A B C D E F G
-8 -6 -4 -2 0 2 4 6 8 10 六、根据数轴比较数的大小右边的数都是正数;、0左边的数都是负数,01
所有的正数都大于负数;所有的负数都小于正数 2、在数轴上越靠右边的数越大,越靠左边的数越小;3、负数比较大小,不考虑负号,数字部分大的数反而小;
4、0大于所有的负数,小于所有的正数。

负数 < 0 < 正数
.。

相关文档
最新文档