等腰三角形的性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.3.1 等腰三角形

第1课时等腰三角形的性质

教学目标

(一)教学知识点

1.等腰三角形的概念.

2.等腰三角形的性质.

3.等腰三角形的概念及性质的应用.

(二)能力训练要求

1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.

2.探索并掌握等腰三角形的性质.

教学重点

1.等腰三角形的概念及性质.

2.等腰三角形性质的应用.

教学难点

等腰三角形三线合一的性质的理解及其应用.

教学过程

提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

导入新课

同学们通过自己的思考来做一个等腰三角形.

A

I

C

A

B

I

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

提问:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?

等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数.

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,•

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出△ABC的三个内角.

[例]因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则

∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.

在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识.

随堂练习

练习

1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.

(2)

120︒

36︒

(1)

答案:(1)72° (2)30°

2.如右图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?

D C

A

B

答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .

3.如右图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.

D C

A

B

答:∠B=77°,∠C=38.5°.

课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴

是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高. 我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.

活动与探究

如右图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .

求证:AE=CE .

E

D

C

A

B

过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:

证明:延长CD 交AB 的延长线于P ,如右图,在△ADP 和△A DC 中

12,

,,AD AD ADP ADC ∠=∠⎧⎪

=⎨⎪∠=∠⎩

∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .

同理可证:AE=DE . ∴AE=CE . 板书设计

等腰三角形

一、设计方案作出一个等腰三角形

E

D

C

A

B

P

二、等腰三角形性质

1.等边对等角

2.三线合一

第2课时含30°角的直角三角形的性质

1.理解并掌握含30°角的直角三角形的性质定理.(重点)

2.能灵活运用含30°角的直角三角形的性质定理解决有关问题.(难点)

一、情境导入 问题:

1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系? 2.用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现? 今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.

二、合作探究

探究点:含30°角的直角三角形的性质

【类型一】 利用含30°角的直角三角形的性质求线段长

如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,

则AB 的长度是( )

A .3cm

B .6cm

C .9cm

D .12cm

解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.

方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.

【类型二】 与角平分线或垂直平分线性质的综合运用

如图,∠AOP =∠BOP =15°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD

等于( )

A .3

B .2

C .1.5

D .1

解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP +∠AOP =∠AOB =30°.又∵PC =3,∴PE =12PC =1

2

×3=1.5.∵∠AOP =∠BOP ,

PD ⊥OA ,∴PD =PE =1.5.故选C.

相关文档
最新文档