八年级数学上册 全册全套试卷测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册全册全套试卷测试卷附答案
一、八年级数学三角形填空题(难)
1.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.
【答案】360 °
【解析】
如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.
点睛:本题考查的知识点:
(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.
2.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内时,∠A与∠1+∠2之间有始终不变的关系是__________.
【答案】2∠A=∠1+∠2
【解析】
【分析】
根据∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.
【详解】
∵△ABC纸片沿DE折叠,
∴∠1+2∠AED=180°,∠2+2∠ADE=180°,
∴∠AED=1
2
(180°−∠1),∠ADE=
1
2
(180°−∠2),
∴∠AED+∠ADE=1
2
(180°−∠1)+
1
2
(180°−∠2)=180°−
1
2
(∠1+∠2)
∴△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−1
2
(∠1+∠2)]=
1
2
(∠1+
∠2),
即2∠A=∠1+∠2.
故答案为:2∠A=∠1+∠2.
【点睛】
本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.
3.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC外,若∠2=20º,则∠1的度数为 _______.
【答案】100°
【解析】
【分析】
先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,
∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.
【详解】
如图,
∵∠A=65°,∠B=75°,
∴∠C=180°-∠A-∠B=180°-65°-75°=40°;
又∵将三角形纸片的一角折叠,使点C落在△ABC外,
∴∠C′=∠C=40°,
而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,
∴∠3+20°+∠4+40°+40°=180°,
∴∠3+∠4=80°,
∴∠1=180°-80°=100°.
故答案是:100°.
【点睛】
考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.
4.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.
【答案】85°.
【解析】
【分析】
根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.
【详解】
∵在△ABC中,∠A=50°,∠ABC=70°,
∴∠C=60°,
∵BD平分∠ABC,
∴∠DBC=35°,
∴∠BDC=180°﹣60°﹣35°=85°.
故答案为85°.
5.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.
【答案】﹣5<a<﹣2.
【解析】
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.
【详解】
由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.
即a的取值范围是-5<a<-2.
【点睛】
本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.
6.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.
【答案】125°
【解析】
【分析】
根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.
【详解】
:∵点O到AB、BC、AC的距离相等,
∴OB平分∠ABC,OC平分∠ACB,
∴
1
2
OBC ABC
∠=∠,
1
2
OCB ACB
∠=∠,
∵∠A=70°,
∴∠ABC+∠ACB=180°-70°=110°,
∴
1
11055
2
OBC OCB
∠+∠=⨯︒=︒,
∴∠BOC=180°-(∠OBC+∠OCB)=125°;
故答案为:125.
【点睛】
本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.
二、八年级数学三角形选择题(难)
7.如图,△ABC 中,E 是 AC 的中点,延长BC 至D,使BC :CD=3:2,以CE,CD 为邻边做▱CDFE,连接 AF,BE,BF,若△ABC 的面积为 9,则阴影部分面积是()
A.6 B.4 C.3 D.2
【答案】A
【解析】
【分析】
根据三角形中位线性质结合三角形面积去解答.