八年级数学上册 全册全套试卷测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册全册全套试卷测试卷附答案

一、八年级数学三角形填空题(难)

1.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.

【答案】360 °

【解析】

如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.

点睛:本题考查的知识点:

(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.

2.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内时,∠A与∠1+∠2之间有始终不变的关系是__________.

【答案】2∠A=∠1+∠2

【解析】

【分析】

根据∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.

【详解】

∵△ABC纸片沿DE折叠,

∴∠1+2∠AED=180°,∠2+2∠ADE=180°,

∴∠AED=1

2

(180°−∠1),∠ADE=

1

2

(180°−∠2),

∴∠AED+∠ADE=1

2

(180°−∠1)+

1

2

(180°−∠2)=180°−

1

2

(∠1+∠2)

∴△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−1

2

(∠1+∠2)]=

1

2

(∠1+

∠2),

即2∠A=∠1+∠2.

故答案为:2∠A=∠1+∠2.

【点睛】

本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.

3.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC外,若∠2=20º,则∠1的度数为 _______.

【答案】100°

【解析】

【分析】

先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,

∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.

【详解】

如图,

∵∠A=65°,∠B=75°,

∴∠C=180°-∠A-∠B=180°-65°-75°=40°;

又∵将三角形纸片的一角折叠,使点C落在△ABC外,

∴∠C′=∠C=40°,

而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,

∴∠3+20°+∠4+40°+40°=180°,

∴∠3+∠4=80°,

∴∠1=180°-80°=100°.

故答案是:100°.

【点睛】

考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.

4.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.

【答案】85°.

【解析】

【分析】

根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.

【详解】

∵在△ABC中,∠A=50°,∠ABC=70°,

∴∠C=60°,

∵BD平分∠ABC,

∴∠DBC=35°,

∴∠BDC=180°﹣60°﹣35°=85°.

故答案为85°.

5.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.

【答案】﹣5<a<﹣2.

【解析】

【分析】

根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.

【详解】

由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.

即a的取值范围是-5<a<-2.

【点睛】

本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.

6.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.

【答案】125°

【解析】

【分析】

根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.

【详解】

:∵点O到AB、BC、AC的距离相等,

∴OB平分∠ABC,OC平分∠ACB,

1

2

OBC ABC

∠=∠,

1

2

OCB ACB

∠=∠,

∵∠A=70°,

∴∠ABC+∠ACB=180°-70°=110°,

1

11055

2

OBC OCB

∠+∠=⨯︒=︒,

∴∠BOC=180°-(∠OBC+∠OCB)=125°;

故答案为:125.

【点睛】

本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.

二、八年级数学三角形选择题(难)

7.如图,△ABC 中,E 是 AC 的中点,延长BC 至D,使BC :CD=3:2,以CE,CD 为邻边做▱CDFE,连接 AF,BE,BF,若△ABC 的面积为 9,则阴影部分面积是()

A.6 B.4 C.3 D.2

【答案】A

【解析】

【分析】

根据三角形中位线性质结合三角形面积去解答.

相关文档
最新文档