CPRI协议

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言
随着通信技术的发展,标准化的基带-射频接口越来越受到各厂家的关注,在近几年内相继出现了CPRI、OBSAI、TDRI接口标准。

C PRI作为通用开放接口标准,由于其实现上的经济简便性受到了多方厂家的支持,设备供应商相继推出了基于CRPI协议标准的拉远产品,另一方面基于CRPI协议的交换机和路由器也在逐渐的成熟和推广。

开放的通用接口为3G基站产品节约成本、提高通用性和灵活性提供了方便。

CPRI协议由爱立信、华为、NEC、北电和西门子五个厂家联合发起制定,用于无线通讯基站中基带到射频之间的通用接口协议,对其它组织和厂家开放。

CPRI大部分内容主要针对WCDMA标准,为其可实现良好服务。

经分析,CPRI协议同样适用于TD-SCDMA第三代移动通讯标准。

CPRI协议横向分为物理层和数据链路层;纵向分为用户平面、控制管理平面和同步平面,具有图1所示的结构。

硬件构架与实现
CPRI协议分析仪主要实现射频单元、基带单元的功能模拟。

一方面采集数据进行协议分析,另一方面则产生模拟数据进行协议发送。

基于图1的协议结构,分析仪由控制器、CPRI协议处理器、时
钟处理以及对外接口四个主要功能单元构成,支持614.4Mbps、1.22 88Gbps和2.4576Gbps三种数据速率,原理框图如图2示。

协议分析仪上高速信号较多,单组总线宽达64位,时钟速率66. 6MHz,差分线对速率2.5Gbps。

对于宽数据总线和快时钟速率,信号集成设计至关重要,一方面要保证每一个关键信号的信号完整性,同时在时序上需要满足接收芯片对于信号采样点的需求,以保证稳定无误的采样。

本设计中采用了Cadence提供的SigXplorer仿真设计工具,以IBIS作为仿真模型,对关键信号进行了预仿真和布线后仿真,同时对关键链路进行了严格的时序裕度计算。

文章限于篇幅,以部分关键链路和关键信号的设计为例来展开,其他内容在此不再赘述。

差分信号的端接和匹配
CPRI分析仪板卡上存在LVDS、CML和LVPECL等多种差分电平,不同电平之间的互连需要精心地设计他们之间的匹配和端接,以实现稳定可靠的工作。

LVPECL到LVDS之间采用DC耦合,图3和图4显示了61.44MHz时钟在这种设计下的参数和仿真结果。

时序计算分析
所有的同步时序单沿采样分析建立在如下两个时序闭环公式的
基础上:
公式:
公式中各参数的含义及其来源可参考下表:
Tswitch 和T flight 参数是唯一通过仿真来得到的参数,其准确性依赖于对IBIS模型的正确使用,Cadence仿真工具SigXplorer可以直接生成仿真结果参数报表,比较方便。

需要注意的是,驱动管脚的BufferDelay参数需要处理好,否则可能引起这一参数在时序裕度计算过程中重复参与,表1至表6是主控器与外设之间的时序裕度计算过程和结果。

仿真计算结果显示,SDRAM采样保持时间不足,在实际操作中,将MCP的时钟相位相对SDRAM时钟的相位滞后0.6ns解决问题。

实际信号测试
控制信号的实测眼图及其与采样时钟的相位关系见图5、图6。

根据实测数据推算,地址信号和数据信号在SDRAM处的采样时间裕度分别为2.8ns和1.2ns,与仿真计算结果一致。

结论
通过严格的信号仿真和时序裕度计算,实时的调整设计和对板卡的布局布线优化后,板卡性能表现良好,同时也减少了PCB的改版设计次数,节约了研发成本。

在GHz级的设计中,PCB的设计非常重要,传输线的特性阻抗控制,过孔的特性阻抗控制,端接匹配的设计对信号的影响不容忽略。

对于过孔,由于成本和性能上需要均衡,
多层板卡的无用焊盘引入的电容负载增大,在后续的EDA制图工具中,支持中间层多余焊盘删除的功能是必需的。

随着板卡集成度的提高,仿真计算等工作越来越显得必要,凭经验设计的年代逐渐久远,可预知的、可控制性设计需要渗透到每一个细节。

相关文档
最新文档