高中数学 第一章 集合与函数概念教案1 新人教A版必修1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 课 题 集合的概念及其运算

教学目标 1、掌握不等式解法

2、能解决与集合概念、运算有关的问题

3、通过本节课以了解学生对知识的掌握情况,据此制定教学计划

重点、难点 1、不等式解法

2、集合概念及其相关运算

考点及考试要求

1、一元二次不等式解法

2、集合的概念、表示

3、集合与集合的关系及其运算

4、集合知识的应用

教学内容

知识框架

了解集合的含义、元素与集合的“属于”关系/能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题/理解集合之间包含与相等的含义,能识别给定集合的子集/在具体情境中,了解全集与空集的含义/理解两个集合的并集与交集的含义/会求两个简单集合的并集与交集/理解在给定集合中一个子集的补集的含义,会求给定子集的补集/能使用韦恩图(Venn)表达集合的关系及运算

1.集合元素的三个特征:确定性、互异性、__________.

2.集合的表示法:列举法、_______________、图示法.

提示:(1)注意集合表示的列举法与描述法在形式上的区别,列举法一般适合于有限集,而描述法一般适合于无限集.

(2)注意集合中元素的互异性:集合{x|2x -2x +1=0}可写为{1},但不可写为{1,1}.

3.元素与集合的关系有:属于和不属于,分别用符号________和________表示.

4.集合与集合之间的关系有:包含关系、_____________、真包含关系,分别用符号________、__________、____________ 表示.任何集合都是其本身的子集。空集是任何集合的子集,是任何非空集合的真子集。

提示:子集与真子集的区别联系:集合A 的真子集一定是其子集,而集合A 的子集不一定是其真子集;若集合A 有n 个元素,则其子集个数为_________个,真子集个数为__________个,非空真子集________个。

5.集合的运算:

6.常用集合运算:(1)=⋂A A ______ =⋂φA _______=⋃A A ________

=⋂A C A U ______ =⋃A C A U ________

** (2) ⇔=⋃A B A __________ ⇔=⋂A B A ___________

思考:若A 、B 为有限集,记集合A 中元素的个数为

cardA ,用图示可验证:

card(A∪B)=card(A)+card(B)-card(A∩B);

考点一:集合及其运算

典型例题

1 1、设集合,则________

卷 2、集合, ,若,则的值为 ______

5、3.若集合则A ∩B 是___________4、已知集合,,且,则实数a 的取值范围是______________________ .已知集合A =-1,3,2-1,集合B =3,.若BA ,则实数= .

6.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜欢乒乓球运动的人数为________.

7.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,求实数m 的

取值范围.

8.已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2

-4≤0,x ∈R }.

(1)若A ∩B =[1,3],求实数m 的值;

(2)若A ⊆∁R B ,求实数m 的取值范围.

知识概括、方法总结与易错点分析

(1)不等式解法在集合运算中起着举足轻重的作用,所以必须能熟练解决不等式问题,以保证集合运算的正确性。

(2)注重数轴和Venn 图的应用可以是集合运算达到事半功倍的效果。

(3)注意以集合的互异性为题目的切入点和检验工具。

(4)对于条件A ∪B =A 的转化A B ⊆一定要注意千万不能忽略φ=B 的情况

针对性练习

1、已知集合A ={a +2,22a +a},若3∈A ,求a 的值.

2、设集合,则=

3.已知全集U=R ,集合,集合<<2,则 4、设集合,则满足条件的集合的个数是________

5、集合R|,则= .

6、设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.

(1)若a =15

,试判定集合A 与B 的关系;(2)若B ⊆A ,求实数a 组成的集合C . 7.已知,.(I )若,求;(II )若R ,求实数的取值范围.

巩固作业

1.如果全集U =R ,A ={1,2},B ={x |1≤x <3},则(∁U A )∩B 等于( )

2.已知集合M ={x ||x |<2},N ={x |

x +1x -3<0},则集合M ∩(∁R N )等于( ) 4.已知全集U ={2,0,3-a 2},子集P ={2,a 2-a -2},且∁U P ={-1},则实数a =

________.

5、若集合A ={x|2

x -2x -8<0},B ={x|x -m<0}.(1)若m =3,全集U =A ∪B ,试求A ∩(∁UB);

(2)若A ∩B =Ø,求实数m 的取值范围;(3)若A ∩B =A ,求实数m 的取值范围.

课 题 函数的概念及其表示

教学目标 1了解构成函数的要素,了解映射的概念.会求一些简单函数的定义域和

2、理解函数的三种表示法:解析法、图象法和列表法

3、能根据不同的要求选择恰当的方法表示简单的函数

4、了解分段函数,能用分段函数来解决一些简单的数学问题

重点、难点 1、函数概念的理解

2、函数定义域的求法

3、分段函数相关问题的解决

考点及考试要求

1、函数的概念,函数的表示方法以及定义域,值域,分段函数

2、本节内容是高考考察的重点,或直接考察,或以本节课内容为

背景结合其他知识点考察。考察方式主要是选择题和填空题,也有

可能把定义一种新运算为考察方式

教学内容

知识框架

1. 函数的定义:设A 、B 是非空________,如果按照某种确定的对应关系f ,使对于集合A

相关文档
最新文档