实验·6 时间序列分析的spss应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验6 时间序列分析的spss应用
6.1 实验目的
学会运用SPSS统计软件创建时间数列,熟练掌握长期趋势线性模型拟合和季节变动测定的SPSS方法与技能。
6.2 相关知识(略)
6.3 实验内容
6.3.1 用SPSS统计软件创建时间序列的创建
6.3.2用SPSS统计软件处理长期趋势线性模型的拟合(最小二乘法、指数平滑法)及预测。
6.3.3掌握测定季节变动规律的SPSS测定方法。
6.4实验要求
6.4.1准备实验数据
6.4.2用SPSS统计软件创建彩电出口数量的时间序列
6.4.3用最小二乘法测定长期趋势,拟合线性趋势方程,并进行趋势预测。
6.4.4测定彩电出口数量的季节变动规律。
6.4.5用指数平滑法预测2014和2015年的彩电出口数量。
6.5 实验步骤
6.5.1 实验数据
为了研究某国彩电出口的情况,某研究机构收集了从2003-2013年某国彩电出口的月度数据,如表6-1所示。
表6-1 我国 2003-2013年的我国彩电出口的月度数据(单位:万台)1月2月3月4月5月6月7月8月9月10月11月12月2003年12.53 13.73 24.45 28.75 32.45 31.11 25.94 32.98 43.49 42.94 63.29 77.28 2004年30.01 39.63 29.77 42.74 32.25 31.94 32.27 32.59 32.92 30.98 47.44 52.82 2005年24.08 16.42 31.24 29.33 31.88 30.09 28.08 32.99 44.99 47.57 50.36 75.19 2006年39.02 25.81 43.38 37.34 39.22 39.87 51.10 50.99 55.16 62.78 57.75 72.20 2007年28.76 39.38 46.10 39.41 38.74 40.18 45.59 43.31 46.68 54.17 53.65 61.12 2008年28.87 21.23 35.82 26.97 32.33 24.53 29.39 31.96 38.22 39.24 52.95 68.41
2009年29.99 37.09 37.70 35.33 29.53 53.64 28.95 25.88 37.61 39.83 28.44 54.85 2010年55.77 13.96 43.50 32.96 32.91 47.65 39.74 39.48 50.70 60.53 68.22 83.47 2011年66.35 70.35 86.19 87.50 61.19 93.23 89.31 88.37 90.05 90.06 107.56 101.63 2012年78.31 91.97 91.73 101.67 77.60 87.64 98.82 79.90 110.86 113.29 125.58 120.24 2013年101.65 93.53 127.04 133.68 143.76 155.50 170.59 168.96 186.16 181.91 253.78 201.14
6.5.2 创建彩电出口数量时间序列
1.先录入数据,录入后的SPSS数据文件如下图6-1所示:
图6-1 录入后的数据文件(部分图)
2.定义日期变量。选择“数据-定义日期”,打开“定义日期”主对话框,选择相应的时间设置类型,运行完成后,数据文件中会增加相应的时间变量。在本案例中,数据是年份和月份数据,且是从2003年1月开始的,所以时间为“年份、月份”类型,且起始年份为2003年,起始月份为1月。
图6-2 “定义日期”对话框
运行完成后,在数据文件中增加了3个变量,分别是“YEAR_”“MONTH_”及“DATE_”,如图6-3所示。
图6-3 定义日期变量后的结果(部分图)
3.创建时间序列(用移动平均法)
选择“转换-创建时间序列”,打开“创建时间序列”对话框,将“出口量”变量移入右侧的“变量-新名称”框中,在“函数”下拉框中选择“中心移动平均”,在“跨度”中输入5表示五项移动平均,然后点击“更改”按钮,设置情况如下图6-4所示:
图6-4 创建时间序列对话框
设置完毕,单击“确定”按钮,则会在原数据文件中增加一个变量,名称为“出口量_1”的五项移动平均序列。
4.绘制时间序列趋势图
选择“分析-预测-序列图”,打开“序列图”对话框,将“出口量”和“出口量_1”移动右侧的“变量”框,并将定义的日期变量设为“时间轴”标签,单击“确定”按钮,系统输出如图6-5所示的时间序列图。
图6-5 序列图设置对话框
图6-6 生成的时序图
由图6-6中我们可以看出,彩电出口量趋势线变得平滑,随着时间的延长,彩电出口量增加的趋势特征明显。但是增长并不是单调上升的,而是有涨有落,这种升降不是杂乱无章的,与季节因素有关。我们知道,影响时间序列的因素有长期趋势变动、季节因素、循环变动和不规则变动,所以案例中彩电出口量的变动除了增长的长期趋势和季节变动的影响外,还受不规则变动和循环变动的影响。
6.5.3用最小二乘法分析彩电出口量变动的长期趋势
1.新建一个时间变量,变量名为“时序”,按照时间的顺序设为1,2,3,4,5……
选择“分析-回归-线性”,打开“线性回归”对话框,如下图6-7所示。从左边的待分析变量框中,将变量“出口量”移入“因变量”框中,将变量“时序”移入“自变量”框中。
图6-7 线性回归对话框
2.单击“统计量”按钮,弹出如图6-8所示的对话框,依次勾选“估计”、“置信区间”、“协方差矩阵”、“模型拟合度”、“Durbin-Wstson”,单击继续按钮,