SPSS时间序列分析-spss操作步骤讲述
spss教程第四章---时间序列分析
第四章时间序列分析由于反映社会经济现象的大多数数据是按照时间顺序记录的,所以时间序列分析是研究社会经济现象的指标随时间变化的统计规律性的统计方法。
.为了研究事物在不同时间的发展状况,就要分析其随时间的推移的发展趋势,预测事物在未来时间的数量变化。
因此学习时间序列分析方法是非常必要的。
本章主要内容:1. 时间序列的线图,自相关图和偏自关系图;2. SPSS 软件的时间序列的分析方法−季节变动分析。
§4.1 实验准备工作§4.1.1 根据时间数据定义时间序列对于一组示定义时间的时间序列数据,可以通过数据窗口的Date菜单操作,得到相应时间的时间序列。
定义时间序列的具体操作方法是:将数据按时间顺序排列,然后单击Date →Define Dates打开Define Dates对话框,如图4.1所示。
从左框中选择合适的时间表示方法,并且在右边时间框内定义起始点后点击OK,可以在数据库中增加时间数列。
图4.1 产生时间序列对话框§4.1.2 绘制时间序列线图和自相关图一、线图线图用来反映时间序列随时间的推移的变化趋势和变化规律。
下面通过例题说明线图的制作。
例题4.1:表4.1中显示的是某地1979至1982年度的汗衫背心的零售量数据。
试根据这些的数据对汗衫背心零售量进行季节分析。
(参考文献[2])表4.1 某地背心汗衫零售量一览表单位:万件解:根据表4.1的数据,建立数据文件SY-11(零售量),并对数据定义相应的时间值,使数据成为时间序列。
为了分析时间序列,需要先绘制线图直观地反映时间序列的变化趋势和变化规律。
具体操作如下:1. 在数据编辑窗口单击Graphs→Line,打开Line Charts对话框如图4.2.。
从中选择Simple单线图,从Date in Chart Are 栏中选择Values of individual cases,即输出的线图中横坐标显示变量中按照时间顺序排列的个体序列号,纵坐标显示时间序列的变量数据。
SPSS时间序列分析-spss操作步骤讲述
Time Serises Modeler 对话框Variables选项卡
返回
专家建模标准模型选项卡
返回
判断异常值选项卡
指数平滑标准模型选项卡
返回
ARIMA Criteria Model选项卡
返回
侦查异常值的选项卡
返回
自变量转换选项卡
Байду номын сангаас
返回
时间序列模型Statistics选项卡
返回
Time Serises Modler Plots选项卡
第17章
时间序列分析
Time Series
返回
目 录
各种时间序列分析过程 修补缺失值与创建时间序列
序列图
操作 实例
季节分解法
操作 实例
频谱分析法
频谱分析操作 实例
建立时间序列模型
操作 实例
互相关
操作 实例
应用时间序列模型
操作
自相关
操作 实例
习题17及参考答案
结束
返回
各种时间序列分析过程
返回
修补缺失值过程与对话框
返回
时间序列习题参考答案(5)
三、自相关分析
返回
时间序列习题参考答案(6)
表中显示的是自相关计算结果,从左向右,依次列出的是:滞后数、自相关系数 值值、标准误差、Box-ljung统计量(值、自由度、原假设成立的概率值)。由于原假 设(假设基本过程是独立的,也即假定时间序列所反映的随机过程是白噪声)成立的 概率值都小于0.05,所以全部自相关均有显著性意义。
返回
时间序列习题参考答案(17)
六、数据转换
返回
时间序列习题参考答案(18)
返回
spss(时间序列分析)
• 横截面数据也常称为变量的一个简单随机样本,也即假设每个数据 都是来自于总体分布的一个取值,且它们之间是相互独立的(独立 同分布)。
• 而时间序列的最大特点是观测值并不独立。时间序列的一个目的
是用变量过去的观测值来预测同一变量的未来值。 • 下面看一个时间序列的数据例子。 • 例1. 某企业从1990年1月到2002年12月的月销售数据(单位:百
三、指数平滑模型
• 时间序列分析的一个简单和常用的预测模型叫做指数平滑
(exponential smoothing)模型。
• 指数平滑只能用于纯粹时间序列的情况,而不能用于含有独立变量 时间序列的因果关系的研究。
• 指数平滑的原理为:利用过去观测值的加权平均来预测未来的 观测值(这个过程称为平滑),且离现在越近的观测值要给以越重
Seanal adjusted series SA
Seas factors SF
YEAR
图3 销售数据的季节因素分离
第十七页,共70页。
120
可以看出,逐月的销
100 售额大致沿一个指数
80 曲线呈增长趋势。
60
↘
40
20
0
-20 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
3. saf_1:季节因素(seasonal factor) ,记为{SFt }; 4. stc_1:去掉季节及随机扰动后的趋势及循环因素(trend-
cycle series),记为{TCt }。
第十五页,共70页。
• 这些分解出来的序列或成分与原有时间序列 之间有如下的简单和差关系:
SPSS随机时间序列分析技巧教材
SPSS随机时间序列分析技巧教材SPSS(Statistical Package for the Social Sciences)是一款用于统计分析和数据挖掘的软件工具。
它提供了丰富的功能和功能,可以用于各种统计分析任务。
其中一个强大的功能是随机时间序列分析,它可以帮助用户了解和解释时间序列数据的模式和趋势。
本文将介绍一些SPSS中常用的随机时间序列分析技巧。
1. 数据导入:首先,将时间序列数据导入SPSS中。
确保数据以适当的格式存储,并正确地标识时间变量。
SPSS支持多种数据格式,如CSV、Excel等。
2. 数据检查:在进行时间序列分析之前,需要对数据进行一些基本的检查。
可以使用SPSS中的描述性统计量来检查数据的一般概况,比如数据的均值、方差、最大值和最小值等。
如果数据存在缺失值、异常值或离群值,需要进行适当的数据清洗。
3. 时间序列图:时间序列图可以帮助用户直观地了解数据的模式和趋势。
SPSS提供了绘制时间序列图的功能,用户可以选择不同的图形类型,如折线图、散点图等。
通过观察时间序列图,用户可以判断数据是否存在趋势、季节性或周期性等特征。
4. 时间序列分解:时间序列分解是将时间序列数据分解为趋势、周期和随机成分的过程。
SPSS提供了用于时间序列分解的函数和工具,用户可以根据需要选择不同的分解方法,如移动平均法、指数平滑法等。
分解后的时间序列可以帮助用户更好地理解数据的结构和组成。
5. 自相关分析:自相关分析是研究时间序列数据自身相关性的一种方法。
SPSS提供了自相关分析的功能,用户可以计算自相关系数,并绘制自相关图。
自相关分析可以帮助用户判断时间序列数据是否具有持续性,即当前的值是否与以前的值相关。
6. 平稳性检验:平稳性是时间序列分析的一个重要概念,它指的是时间序列数据的均值和方差在时间上保持稳定。
SPSS提供了多种平稳性检验方法,如ADF检验、KPSS检验等。
通过进行平稳性检验,用户可以判断时间序列数据是否适合进行随机时间序列分析。
SPSS操纵要点整编详细版
Spss操作要点详细版第一章导论——SPSS介绍学习目标:初步认识SPSS软件的内容一、SPSS界面说明SPSS for Windows是SPSS/PC的Windows版本,具有Windows软件的共同特点,其界面十分友好,打开SPSS程序就会出现图1-2界面。
标题栏菜单栏工具栏数据栏标签图1-2 SPSS 11.5 for Windows 界面该界面为SPSS 的数据编辑窗口,其组成部分及主要功能如下:1。
标题栏:功能与其它Windows软件一致。
2.菜单栏:由10个菜单项组成,每个菜单包括一系列功能。
各菜单的主要功能如下。
2.1 File:文件操作菜单。
单击File,有图1-3下拉菜单,主要功能包括:·New:新建数据编辑窗口、语句窗口、结果输出窗口等;·Open和Open Database:打开数据编辑窗口、语句窗口、结果输出窗口等;·Read Text Data:读入文本文件;·Save和Save As:保存文件;·Display Data Info:显示数据的基本信息;·Print和Print Preview:将数据管理窗口中的数据以表格的形式打印出来。
图1-3 File菜单项的下拉菜单图1-4 Edit菜单项的下拉菜单2.2 Edit:文件编辑菜单。
主要用于数据编辑,如图1-4,主要功能包括:·UndoRedo或modify cell values:撤消或恢复刚修改过的观测值;·cut,copy,paste:剪切、拷贝、粘贴指定的数据;·paste variables:粘贴指定的变量;·clear:清除所选的观测值或变量;·find:查找数据。
2.3 View:视图编辑菜单。
用于视图编辑,进行窗口外观控制。
包含显示/隐藏切换、表格特有的隐藏编辑/显示功能及字体设置等功能。
2.4 Data:数据文件建立与编辑菜单。
SPSS时间序列分析案例
SPSS时间序列分析案例时间序列分析是一种研究时间上连续观测变量的统计方法。
它可以用于预测未来的趋势和模式,帮助企业提前做出调整。
SPSS是一款功能强大的统计分析软件,可以进行各种统计方法的分析。
以下将通过一个时间序列分析案例,介绍SPSS如何进行时间序列分析。
假设家服装零售店想要分析过去几个季度的销售数据,以便预测未来几个季度的销售情况。
该店提供的数据集包含每个季度的销售总额。
首先,我们需要导入数据集到SPSS软件中。
在SPSS软件的主界面,选择“文件”菜单中的“打开”选项,然后选择对应的数据文件。
接下来,我们需要将数据按照时间序列的顺序进行排序。
在数据视图中,点击数据集右上角的“排列数据”按钮,在弹出的菜单中选择时间变量,并按照升序进行排序。
点击“确定”按钮完成排序。
然后,我们可以使用SPSS的时间序列分析工具来执行分析。
在菜单栏选择“分析”选项,然后选择“时间序列”子菜单中的“建模”选项。
在弹出的对话框中选择要分析的变量,即销售总额,并点击“确定”按钮。
SPSS将会输出一个时间序列模型的报告。
报告中包含了多个统计指标,如拟合优度、残差等,以及趋势和季节性的分析结果。
通过这些指标,我们可以判断时间序列的趋势特征和模式,并做出预测。
除了时间序列分析工具,SPSS还提供了其他的时间序列分析方法,如平滑技术、ARIMA模型等。
根据具体的研究目的和数据特点,我们可以选择合适的方法进行分析。
在本案例中,我们可以使用平滑技术来预测未来的销售情况。
平滑技术根据历史数据的平均值来预测未来的值。
在SPSS的时间序列分析工具中,选择“平滑”子菜单中的“simple exponential smoothing”选项,并设置平滑指数和初始预测值。
SPSS将会输出一个平滑结果的报告,包含了预测值和置信区间。
通过以上步骤,我们可以通过SPSS进行时间序列分析,帮助企业做出准确的预测和决策。
当然,在实际应用中,还需要根据具体情况进行参数选择和模型检验,以确保分析结果的可靠性。
spss时间序列分析教程
3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。
它是系统中某一变量受其它各种因素影响的总结果。
(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。
它不研究事物之间相互依存的因果关系。
(3)假设基础:惯性原则。
即在一定条件下,被预测事物的过去变化趋势会延续到未来。
暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。
近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。
(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。
时间序列的预测和评估技术相对完善,其预测情景相对明确。
尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。
2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。
(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。
(3)随机性:个别为随机变动,整体呈统计规律。
(4)综合性:实际变化情况一般是几种变动的叠加或组合。
预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。
3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。
(1)随机性:均匀分布、无规则分布,可能符合某统计分布。
(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。
)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。
样本序列的自相关函数只是时间间隔的函数,与时间起点无关。
其具有对称性,能反映平稳序列的周期性变化。
特征识别利用自相关函数ACF:ρk=γk/γ0其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。
时间序列季节性分析spss
时间序列季节性分析spss表1 为某公司连续144个⽉的⽉度销售量记录,变量为sales。
试⽤专家模型、ARIMA模型和季节性分解模型分析此数据。
选定样本期间为1978年9⽉⾄1990年5⽉。
按时间顺序分别设为1⾄141。
⼀、画出趋势图,粗略判断⼀下数据的变动特点。
具体操作为:依次单击菜单“Analyz e→Forecasting→Sequence Chart”,打开“Sequence Chart”对话框,在打开的对话框中将sales选⼊“Variables”列表框,时间变量date选⼊“Time Axis Labels”,单击“OK”按钮,则⽣成如图2 所⽰的sales序列。
图1 “Sequence Chart”对话框从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着趋势增加⽽加⼤。
⼆、模型的估计(⼀)、季节性分解模型根据时间序列特点,我们选择带线性趋势的季节性乘法模型作为预测模型。
1、定义⽇期具体操作为:依次单击菜单“Data→Define Date”,打开“Define Date”对话框,在“Cases Are”列表框选择“Years,months”的⽇期格式,在对话框的右侧定义数据的起始年份、⽉份。
定义完毕后,单击“OK”按钮,在数据集中⽣成⽇期变量。
图3 “Define Date”对话框2、季节分解具体操作为:“Analyze→Forecasting→Seasonal Decomposition”打开“Seasonal Decomposition”对话框,将待分析的序列变量名选⼊“Variable”列表框。
在“Model Type”选择组中选择“Multiplicative”模型;在“Moving Average Weight”选择组中选择“Endpoints weighted by 0.5”。
单击“OK”按钮,执⾏季节分解操作。
图4 “Seasonal Decomposition”对话框3、画出序列图①原始序列和校正了季节因⼦作⽤的序列图图5为sales 序列和校正了季节因⼦作⽤的序列图。
SPSS基本操作步骤详解
SPSS基本操作步骤详解本文采用SPSS21.0版本,其它版本操作步骤大体相同一、基本步骤(一)检查数据在进行项目分析或统计分析之前,要检核输入的数据文件有无错误,即检核missing。
例,“XX量表”采用Likert scale五点量表式填答,每个题项的数据只有五个水平:1,2,3,4,5。
1.执行次数分布表的程序Analyze(分析)→Descriptive statistics(描述统计)→将题项变量【例,a1—a10】键入至Variables(变量)框中→Frequencies(频率)→Statistics(统计量)→Minimum (最小值)、Maximum(最大值)→Continue(继续)→OK(确定)2.执行描述统计量的程序Analyze(分析)→(描述统计)→将题项变量【例,a1—a10】键入至Variables(变量)框中→Descriptives(描述)→Options(选项)→Minimum(最小值)、Maximum(最大值)【此处一般为默认状态即可】→Continue(继续)→OK(确定)(二)反项计分若是分析的预试量表中没有反向题,则此操作步骤可以省略;量表或问卷题中如果有反向题,则在进行题项加总之前将反向题反向计分,否则测量分数所表示的意义刚好相反。
例,“XX量表”采用Likert scale五点量表式填答,反向题重向编码计分:1→5,2→4,3→3【可不写】,4→2,5→1。
Transform(转换)→Recode into same Variables(重新编码为相同变量)→将要反向的题目键入至Variables(变量)框中【例,a1,a3,a5】→Old and new values(旧值和新值)→在左边Old value—value中键入1,在右边New value—value中键入5,Add (添加)→……依次进行此步骤……在左边Old value—value中键入5,在右边New value —value中键入1,Add(添加)→Continue(继续)→OK(确定)【注意不同量表计分方式不同,因而反向编码计分也不同,常见的有四点量表、五点量表和六点量表等】(三)题项加总量表题项加总的目的在于便于进行观察值得高低分组。
第十一章SPSS的时间序列分析
3.1 AR(自回归)模型
一般地,如果和p个过去值有关则是p阶自回归模型, 记为AR(p),表达式为: xt 0 1 xt 1 2 xt 2 p xt p t
(B) xt t
或者
其中, (B) 1 1 B 2 B 2 p B p
1 - 12
第三节 时间序列的图形化观察
4、互相关图(CCF) 对两个互相对应的时间序列进行相关性分 析,检验一个序列与另一个序列的滞后 序列之间的相关性 Analyze>Forecasting>Cross Correlations 举例: GDP与通信业务收入,0阶滞后相关性最显 著
1 - 13
3.2 MA模型
(Moving Average Model)
3.3 ARMA模型
(Auto Regression Moving Average model)
3.4 ARIMA模型
( Autoregressive Integrated Moving Average Model )
1 - 22
3.1 AR(自回归)模型
1 - 15
第六节 ARIMA模型
ARIMA模型全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克 思(Box)和詹金斯(Jenkins)于70年代初提出的著名时间序列 预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。
第十一章 SPSS的时间序列分析
1-1
第一节 时间序列分析概述
一、相关概念 时间序列:有序的数列:y1,y2,y3,…yt 理解: 1、有先后顺序且时间间隔均匀的数列; 2、随机变量族或随机过程的一个“实现” ,即在每一个固定时间点t上,现象yt看 作是一个随机变量, y1,y2,y3,…yt是一系 列随机变量所表现的一个结果。
实验八-spss11中的时间序列分析
实验八spss11中的时间序列分析一、实验目的了解spss11中时间序列分析的简单方法二、实验原理介绍1.SPSS中时间序列分析简要介绍依时间顺序排列起来的一系列观测值称为时间序列,跟大部分的统计不同,这类资料的先后顺序是不能忽视的,更关键的是观测值之间不独立。
因此,这类数据不能用普通的统计方法解决。
时间序列分析(Time series)是专门用于分析这种时间序列资料的统计模型。
它考虑的不是变量之间的因果关系,而是重点考察变量在时间方面的发展变化规律,并为之建立数学模型。
时间序列分析的方法可以分为两大类:Time domain和Frequency domain。
前者将时间序列看成是过去一些点的函数,或者认为序列具有时间系统变化的趋势,它可以用不多的参数来加以描述,或者说可以通过差分、周期等还原成随机序列。
后者则认为时间序列是由数个正弦波成分叠加而成,当序列的确来自一些周期函数集合时,该方法特别有用。
不同的专业领域习惯用不同的方法:经济学习惯用Time domain,而电力工程专家则对Frequency domain更感兴趣。
下面讲述的都是Time domain由于时间序列模型的复杂性,它在spss中横跨了数据整理、统计分析和绘图三大部分,具体来说是:✧预处理模块:包括用于填充序列缺失值的Transform | replace Missing Values过程,建立时间变量的Data | Define dates过程和将序列平稳化的Transform | Create TimeSeries过程。
✧图形化观察/分析:时间序列在分析中高度依赖图形。
Spss为其提供了特有的观察工具:序列图(Sequence Chart)、自相关/偏自相关图(Autocorrelation Function,ACF & Autocorrelation Function,PACF)、交叉相关图(Crosscorrelation Function,CCF)、周期图(Periodogram)和谱密度图(Spectral Chart)。
SPSS使用教程
描述样本数据一般的,一组数据拿出来,需要先有一个整体认识。
除了我们平时最常用的集中趋势外,还需要一些离散趋势的数据。
这方面EXCEL就能一次性的给全了数据,但对于SPSS,就需要用多个工具了,感觉上表格方面不如EXCEL好用。
个人感觉,通过描述需要了解整体数据的集中趋势和离散趋势,再借用各种图观察数据的分布形态。
对于SPSS提供的OLAP cubes(在线分析处理表),Case Summary(观察值摘要分析表),Descriptives (描述统计)不太常用,反喜欢用Frequencies(频率分析),Basic Table(基本报表),Crosstabs(列联表)这三个,另外再配合其它图来观察。
这个可以根据个人喜好来选择。
一.使用频率分析(Frequencies)观察数值的分布。
频率分布图与分析数据结合起来,可以更清楚的看到数据分布的整体情况。
以自带文件Trends chapter 13.sav为例,选择Analyze->Descriptive Statistics->Frequencies,把hstarts选入Variables,取消在Display Frequency table前的勾,在Chart里面histogram,在Statistics选项中如图1图1分别选好均数(Mean),中位数(Median),众数(Mode),总数(Sum),标准差(Std. deviation),方差(Variance),范围(range),最小值(Minimum),最大值(Maximum),偏度系数(Skewness),峰度系数(Kutosis),按Continue返回,再按OK,出现结果如图2图2表中,中位数与平均数接近,与众数相差不大,分布良好。
标准差大,即数据间的变化差异还还小。
峰度和偏度都接近0,则数据基本接近于正态分布。
下面图3的频率分布图就更直观的观察到这样的情况图3二.采用各种图直观观察数据分布情况,如采用柱型图观察归类的比例等。
SPSS常用分析方法操作步骤
SPSS常用分析方法操作步骤SPSS是一款常用的统计分析软件,可以用于数据处理、数据分析、数据可视化等任务。
下面将介绍SPSS常用的分析方法及其操作步骤。
一、描述性统计1.打开SPSS软件,在菜单栏选择“统计”-“概要统计”-“描述性统计”。
2.将需要进行描述性统计的变量拉入“变量”框中,点击“统计”按钮选择需要计算的统计量,例如均值、中位数、标准差等。
3.点击“图表”按钮可以选择绘制直方图、箱线图等图表形式。
确定参数后点击“OK”按钮,即可得到描述性统计结果。
二、相关分析1.打开SPSS软件,在菜单栏选择“分析”-“相关”-“双变量”。
2.将需要进行相关分析的变量拉入“变量1”和“变量2”框中,点击“OK”按钮即可得到相关系数。
3.如果需要进行多变量相关分析,可以选择“分析”-“相关”-“多变量”来进行操作。
三、T检验1.打开SPSS软件,在菜单栏选择“分析”-“比较手段”-“独立样本T检验”或“相关样本T检验”。
2.将需要进行T检验的变量拉入“因子”框中,点击“OK”按钮即可得到T检验结果。
四、方差分析1.打开SPSS软件,在菜单栏选择“分析”-“一般线性模型”-“一元方差分析”。
2.将需要进行方差分析的因变量拉入“因变量”框中,将因子变量拉入“因子”框中,点击“OK”按钮即可得到方差分析结果。
3.如果需要进行多因素方差分析,可以选择“分析”-“一般线性模型”-“多元方差分析”来进行操作。
五、回归分析1.打开SPSS软件,在菜单栏选择“回归”-“线性”。
2.将需要进行回归分析的因变量和自变量拉入对应的框中,点击“统计”按钮选择需要计算的统计量,例如R平方、标准误差等。
3.如果想同时进行多个自变量的回归分析,可以选择“方法”选项卡,在“逐步回归”中进行设置。
六、聚类分析1.打开SPSS软件,在菜单栏选择“分析”-“分类”-“聚类”。
2.将需要进行聚类分析的变量拉入“加入变量”框中,点击“聚类变量”按钮选择需要进行聚类的变量。
用SPSS软件做时间序列分析
滞后
偏自相关 标准 误差
1
.728
.171
2
-.168
.171
3
.108
.171
4
-.053
.171
5
.206
.171
6
.000
.171
7
.076
.171
8
-.015
.171
9
.014
.171
10
.034
.171
11
-.121
.171
12
-.066
.171
13
-.059
.171
14
.115
.171
滞后
自相关
标准 误差 a
Box-Ljung 统计量
值
df
Sig. b
1
.728
.164
19.633
1
.000
2
.450
.162
27.383
2
.000
3
.310
.159
31.169
3
.000
4
.207
.157
32.911
4
.000
5
.219
.154
34.941
5
.000
6
.241
.151
37.484
6
2
.115
.171
3
.107
.1715
-.279
.171
6
-.010
.171
7
.046
.171
8
.268
.171
9
-.130
SPSS数据分析-时间序列模型
我们在分析数据时,经常会碰到一种数据,它是由时间累积起来的,并按照时间顺序排列的一系列观测值,我们称为时间序列,它有点类似于重复测量数据,但是区别在于重复测量数据的时间点不会很多,而时间序列的时间点非常多,并且具有长期性。
这种数据资料首先先后顺序不能改变,其次观测值之间不独立,因此普通的分析方法不再适用,需要专门的时间序列模型,这种时间序列分析关注的不再是变量间的关系,而是重点考察变量在时间方面的发展变化规律。
时间序列模型根据分析思想不同可以分为传统时间序列模型和现代时间序列模型 1.传统时间序列模型它分为时间序列由长期趋势、循环趋势、季节变化、不规则变化四部分组成,通过分析各部分如何结合以及如何相互作用来进行时间序列分析,代表模型有指数平滑模型 2.现代时间序列模型它把时间序列看做是一个随机概率过程,把任意时间内发生的事情看做是概率作用,由此进行分析,这种模型比传统时间序列模型计算量更大,代表模型有ARIMA模型时间序列模型对数据要求较高,并且不同的时间趋势有不同的分析方法,因此分析起来比较繁琐,在SPSS中使用的过程较多,主要有 1.数据预处理此过程包括填补缺失值、定义时间变量,时间序列平稳化,做一些分析前的准备 2.时间序列建模与预测此过程是选择合适的模型进行建模,并对模型进行各种检验和诊断,以达到最优效果 3.模型调优我们得出的模型只是针对这一段时间数据的预测,对于长期趋势是否适合还不得而知,随着时间推移,会有新的数据加入,因此需要对模型进行不断的调整校正。
下面我们看一个例子我们希望根据nrc的数据进行预测,收集了1947年1月至1969年12月的数据,希望据此预测1970年1-12月的数据,数据如下首先我们进行预处理的第一步:填补缺失值时间序列模型对数据完整性要求较高,并且对于缺失值,不能采取剔除的方法处理,因为这样会使周期错位,在SPSS中有两个过程可以对缺失值进行处理,分别是1.转换—替换缺失值2.分析—缺失值分析该过程专门用于分析并填充缺失值,比较全面,内容也包含上面的替换缺失值过程第二步:定义时间变量SPSS中需要专门设置时间变量,才可以进行后续的时间序列分析,否则即使直接输入时间数值,SPSS也无法自动识别数据—定义日期第三步:时间序列平稳化时间序列模型都是建立在序列平稳的基础上,一个平稳的随机过程有如下要求:均值、方差不随时间变化;自相关系数只与时间间隔有关,而与所处的时间无关。
利用spss17.0的专家建模器实现arima模型及时间序列分析
第二步,数据的导入,可以是excel文件,也可以直接复制粘贴过来。这 里以excel的源文件为例。 文件——打开 ;界面如下
打开后的界面如下:
第三步:用时间序列分析 分析——预测——创建模型 界面如下,提示的定义日期可以根据数据的日示 数据集处:
输出查看器:
输出查看器
预测值
输出查看器的图形
第七步:设置图表 建议在拟合值出画勾。这样可以鲜明看到拟合值与预测值的比较
第八步:保存选项 在预测值处画勾,并将‘预测值(p)’改为‘预测值’
第九步:选项栏,点击第二个选项,如果定义了日期,则日期处填写想 要预测日期的最后一个日期;如果没有定义日期,则看已知数据的个数, 加上自己要预测的个数,键入即可。 最后点击确定。
第四步:选择变量,将要分析预测的变量转入因变量,自变 量可有可无。
此处仅选x1进行分析,放到因变量的栏里 如下图:
第五步:可以在界面的中间找到条件选项点开:
点开条件选项,可以选择模型类别,默认的为‘所有模型’, 此处以arima模型为例。
在条件选项下还可以选择对离群值的设置。
第六步:设置统计量,注意要在显示预测值的空白处画勾,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频谱分析 Spectral Analyze
返回
谱图选择对话框
返回
频谱分析实例输出
模型描述
周期图
密度图
返回
互相关
Cross -Autocorrelation
返回
Cross-Autocorrelation对话框
返回
Options对话框
返回
互相关实例输出
模型描述
样品处理摘要
返回
互相关实例输出(1)
互相关系数表
男女服装销售量的互相关图
返回
17
习题
1、 时间序列的基本概念。 时间序列分析过程中有哪几种常用的方法? 2、 对数据用时间序列模型进行拟合处理前,应做哪些准备工作? 3、 在哪个过程中可进行缺失值的修补?修补缺失值的方法共有几种? 4、 在哪个过程中可定义时间变量? 5、 时间序列分析是建立在序列的平稳的条件上的,怎样判断序列是否平稳? 6、为什么要建一个时间序列的新变量?在SPSS的哪个过程中来建时间序列的新 变量? 7、光盘中Data17-07.sav(Data17-07a.sav是Data17-07.sav使用中文标签名的同一 个文件)记录了一个邮购公司在1989年1月至1998年12月间男、女服装产品的 销售量情况以及一些可能影响服装销售的宣传、服务方面的变量。试用学过 的时间序列方法对其进行分析,并预测1999年4月的男装的销售量。
返回
时间序列习题参考答案(1)
7、一、定义时间序列
(说明:1、对data17-07a.sav和data17-07.sav都要做这个工作。2、在第四步起data1707.sav)
返回
时间序列习题参考答案(2)
二、序列图分析
返回
时间序列习题参考答案(3)
返回
时间序列习题参考答案(4)
序列图显示了许多峰值,其中许多峰值是等间隔 出现的,有很清楚的上升趋势。等间隔的峰值暗 示存在时间序列的周期成分。考虑到销售的季节 性,高峰典型地发生在假期期间,你不必对数据 中发现的年季节成分感到吃惊。 也有峰值似乎没有成为季节性模式的一部分,这 表示邻近的数据点显著偏离。这些点可能是异常 值,它可以而且应该由Expert Modeler解决。
返回
Options选项卡
返回
自相关分析实例输出
模型描述
样品处理摘要
自相关表
返回
自相关分析实例输出(1)
自相关图
偏自相关表
偏自相关图
返回
季 节 分 解 法
Seasonal Deccomposition
返回
季节分解主对话框
返回
季节分解法分析实例输出
模型描述
季节因素
数据文件中增加的4个新变量
返回
返回
创建时间序列对话框
运行函数Lag时的结果说明
返回
序列图
Sequence Charts
返回
序列图过程
主对话框
返回
时间轴参考线对话框
返回
定义时间轴的格式对话框
返回
序列图应用实例输出
模型描述表
样品处理摘要
含有基准线的序列图
返回
建立时间序列模型
Create models
返回
时间序列建模提示框
返回
时间序列习题参考答案(5)
三、自相关分析
返回
时间序列习题参考答案(6)
返回
Time Serises Modler Output Filter对话框
返回
Time Serises Modler Save选项卡
返回
时间序列模型 Option选项卡
返回
时间序列分析实例输出
模型描述
均数绝对百分比误差频数图
最大绝对百分比误差频数图
返回
时间序列分析实例输出(1)
模型拟合
返回
时间序列分析实例输出(2)
模型统计数据
返回
时间序列分析实例输出(3)
预测部分结果
数据编辑器中的新变量
返回
应用时间序列模型
(Apply models )
返回
Apply time Series models对话框
返回
自相关
(Autocorrelations )
返回
Autocorrelations对话框
Time Serises Modeler 对话框Variables选项卡
返回
专家建模标准模型选项卡
返回
判断异常值选项卡
指数平滑标准模型选项卡
返回
ARIMA Criteria Model选项卡
返回
侦查异常值的选项卡
返回
自变量转换选项卡
返回
时间序列模型Statistics选项卡
返回
Time Serises Modler Plots选项卡
返回
时间序列习题参考答案
1、 时间序列是指一个依时间顺序做成的观察资料的集合。时间序列分析过程中最常用的 方法是:指数平滑、自回归、综合移动平均及季节分解。 2、 先对数据进行必要的预处理和观察,直到它变成稳态后再用这些过程对其进行分析。 根据对数据建模前的预处理工作的先后顺序,将它分为三个步骤:首先,对有缺失值 的数据进行修补,其次将数据资料定义为相应的时间序列,最后对时间序列数据的平 稳性进行计算观察。 3、 修补缺失值可在Transform菜单的Replace Missing Values过程中进行。修补缺失值 的方法共有五种,它们分别是: ⑴、Series mean; ⑵、Mean of nearby points; ⑶、Median of nearby points; ⑷、Linear interpolation; ⑸、Linear trend at point。 4、 定义时间变量可在Data菜单的Define dates过程里实现。 5、 判断序列是否平稳可以看它的均数和方差是否不再随时间的变化而变化、自相关系数 是否只与时间间隔有关而与所处的时间无关。 6、在时间序列分析中,为检验时间序列的平稳性,经常要用一阶差分、二阶差分,有时为 选择一个合适的时间序列的模型还要对原时间序列数据进行对数转换或平方根转换等。 这就需要在已经建立的时间序列的数据库中,再建一个新的时间序列的变量。在SPSS 的Create Time Series中可根据现有的数字型时间序列变量的函数建立一个新的变量。
第17章
时间序列分析
Time Series
返回
目 录
各种时间序列分析过程 修补缺失值与创建时间序列
序列图
操作 实例
季节分解法
操作 实例
频谱分析法
频谱分析操作 实例
建立时间序列模型
操作 实例
互相关
操作 实例
应用时间序列模型
操作
自相关
操作 实例
习题17及参考答案
结束
返回
各种时间序列分析过程
返回
修补缺失值过程与对话框