让学生经历数学知识的形成过程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈让学生经历数学知识的形成过程摘要:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生在活动中能更好地积累经验,感悟、理解数学知识的内涵,主动建构知识体系,并发展解决问题的策略,因此,教师要让学生充分经历数学知识的形成过程。

关键词:数学;感悟;建构

实践证明:知识来源于实践,深刻于体验,发展于个性。《义务教育数学课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生在活动中能更好地积累经验,感悟、理解数学知识的内涵,主动建构知识体系,并发展解决问题的策略。

通过学习、研究,我们发现,让学生采用操作实践、自主探索、大胆猜测、合作交流、积极思考等有效活动方式经历数学知识形成过程,是学生学好数学的关键。

一、自主探究——让学生经历“再创造”

荷兰数学家弗赖登塔尔说过:“学习数学的唯一正确方法是实行再创造,也就是由学生把本人要学习的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造工作,而不是把现成的知识灌输给学生。”就是说要让学生像科学家一样去自己研究、发现,在自主探究中体验,在体验中主动建构知识。没有学习者的“再创造”,他对学习的内容就难以真正理解,更谈不上灵活运用了。

四年级上册《找规律》是教学中的一大难点,教学中,我精心设计了学生的探究活动,即“再创造”的过程,使学生在活动中顺理成章地揭示规律。首先,动手操作直观感知“一一间隔排列”。一上课我就提议开展按要求“摆花片”的竞赛,“一朵红花、一朵黄花、一朵红花、一朵黄花”,要求如此简单,学生摆得既开心又纳闷,突然,老师提问:猜一猜,下一朵该摆什么花?学生异口同声:“红花。”“为什么呢?”从而借学生的口归纳出“一一间隔排列”,这里的操作增强了学生的感性认识。接着,观察比较、揭示规律。为了进一步强化“一一间隔排列”,出示例题图后先让学生找出哪些物体是“一一间隔排列”的,有兔子和蘑菇、手帕和夹子、木桩和篱笆等,然后引导学生观察:每组的两种物体不但“一一间隔排列”,还有什么共同的特点?学生有了新发现——“两端物体相同”。再让学生数一数每组两种物体的数量,看看你发现了什么?揭示出“两种物体一一间隔排列,两端物体比中间物体多1”的规律。

然而这节课要掌握的规律还不仅限于此,在解决实际问题中还要运用两种物体一一间隔排列,两端不同的物体围成封闭图形各有什么规律。我设计的教学活动充分利用了红花和黄花的排列。在例题教学之后,先出示了一长串红花、黄花(两种花一一间隔排列并且两端都是红花),“不许数,你知道哪种花多吗?”“为什么?”学生用前面学习的规律作了解释。接着请学生剪去一端的一朵红

花,“这两种花还是一一间隔排列吗?它们的数量怎样?你发现了什么规律?”最后请学生把这串花围成一个花环,“你又发现了什么规律?”这一次次的变化,学生感到像变魔术一般,学得兴趣盎然,同时他们在活动中实现了知识的“再创造”。

知识的“再创造”需要教师创设情景,让学生在动手操作、观察比较、分析归纳中学习数学,也就是让学生在“做中学”。当然,探究活动还需要教者设计好方案,把握好时机,适时引导,达到动静协调,提高课堂教学的有效性。

二、大胆猜测——让学生自己“验证发现”

“没有大胆的猜想就没有伟大的发现。”可见,猜测活动在学生的认知活动中有重要的意义。波利亚认为:“参与教学在一定程度上就是积极地参与发现工作,并且在很大程度上是通过猜测来实现的。”在课堂教学中,我常常从自由猜测入手,引导学生发现问题、提出问题、激活思维;继而让学生通过剪一剪、折一折、量一量等活动验证猜测,从而理解概念、把握规律、掌握特征。

例如:在教学“认识平行四边形”时,我首先让学生观察准备的平行四边形,猜一猜平行四边形有哪些特征。学生的积极性立刻被调动了起来,争先恐后地发表自己的见解,不但发现平行四边形对边平行且相等,对角相等,内角和是360度,还有学生提出平行四边形相邻的两个角的和是180度。然后组织学生分组活动——验证猜测,这个环节更充分发挥了学生的主观能动性,仅仅是验证平

行四边形对边平行,学生就想出了三种不同的方法:①用画平行线的方法检验;②对折;③在一组对边之间选不同位置做出两条高,如果两条高长度相等,说明这组对边互相平行。孩子们的精彩表现真比考试得了满分还要让我高兴。

可见,自由猜测,能激活思维、激发兴趣,彰显课堂活力,教师应创设机会,并引导学生科学合理猜测。

三、交流讨论——让学生经历“说数学”

思维能力是数学能力的核心,而语言则是思维的外在表现。数学教学中,教师不但要给学生提供动手、动脑的机会,更要给学生提供动口的机会。例如,计算教学中让学生说算理;几何图形教学中说特征;应用题教学中说思路等。课堂上师生互动、生生互动的合作交流,能够构建平等自由的对话平台,使学生处于积极、活跃、自由的状态,能出现始料未及的体验和思维火花的碰撞,使学生得到不同的发展。学生在合作交流中充分地表达、争辩,能更好地锻炼创新思维能力,帮助学生进一步建构、强化认知结构。同时也便于教师及时掌握学生的学习情况,及时发现缺漏,及时辅导。

四、解决问题——让学生经历“用数学”

《义务教育数学课程标准》指出:“数学教学要体现生活性。人人学有价值的数学。”教师要创设条件,重视从学生的生活经验和已有知识出发,学习和理解数学;要善于引导学生把课堂中所学的数学知识和方法应用于生活实际,既可加深对知识的理解,又能让

学生切实体验到生活中处处有数学,体验到数学的价值。

学习需要引导学生主动参与学习的全过程,在经历知识的形成过程中感悟、在感悟中思考、在思考中锻炼思维、建构知识。当然,创设一个愉悦的学习氛围相当重要,让我们和学生一起经历知识获取的过程,与学生共同分享获得知识的快乐。

(作者单位江苏省镇江市中华路小学)

相关文档
最新文档