六年级下册图形与几何知识点总结精编版
新人教版数学六年级下册总复习《图形与几何》课件(知识点全面)

这些计算公式是怎样推导出来的?它们之间有什么联系?
长方形和正方形是用面积单 位量出来的。
平行四边形转化成长方形。
两个完全相同的三角形或梯形 都可以拼成平行四边形。
利用割补、转化的方 法来推导图形的面积 公式。
长方形的面积是研究其它图形面积的基础。
9.三角形三边的关系
4cm
7cm
13cm
三角形其中两条线段的和大于第三条线段时,这样的三条 线段才能组成一个三角形。
30cm
上升的水的体积就是马铃薯的体积。
在方格纸上分别画出从不同方向看到左边立体图形 的形状图。
正面
左面
上面
连一连。
一个蓄水池(如下图),长10米,宽4米,深2米。 (1)蓄水池占地面积有多大?
10×4 = 40(平方米) 答:占地面积是40平方米。 (2)在蓄水池的底面和四周抹上水泥,抹水泥的面积有多大? 10×4 +(4×2+2×10)×2= 96(平方米)
三角形
锐角三角形 直角三角形
等腰三角形
(三个角都是 (有一个角是直角) 不等边三角形 (两条边相等)
锐角) 钝角三角形
(三条边都 等边三角形 不相等) (三条边都相等)
(有一个角是钝角)
1.平面图形的分类
四边形的分类
平行四边形 长方形
正方形
四边形 梯形
等腰梯形 直角梯形
2.直线、射线和线段
名称
相同点
比例尺 1∶20000
2.辨认方向
在平面图中确定方位,通常是上北、下南、左西、右东。
北
西北
东北
西
东
西南
南
东南
3.根据方向和距离,确定物体位置的一般步骤。
六年级下册数学整理和复习图形与几何第2课时平面图形的认识与测量(2)PPT

2 m =100.48(米) 答:这条道路的面积是188.4平方米,
外沿周长是100.48米。
6.草地上有一间房子,占地形状是边长4米的正方形。
一只羊被拴在房子的外墙角处,已知栓羊的绳子长6
米,这只羊能吃到草的面积是多少平方米?
如图,羊能吃到草的面积由三个扇形组成。
2m
3.14×62×-34 +3.14×(6-4)2×-12
6
6 a
h b
10.5
周长:6×2+10.5+7.5=30(m)
面积: (6+10.5)×6÷2 =16.5×6÷2 =49.5(m2)
1.计算下面各图形的周长和面积。(单位:m)
周长: 3.14×6÷2+6+5×2
6
=9.42+ 6 +10
=25.42(m)
面积: 3.14×(6÷2)2÷2 +5×3
平面图形的面积计算公式 圆的面积=圆周率×半径的平方 把一个圆分成若干份,剪拼成一个近似的长方形, 这个长方形的长相当于圆周长的一半,宽相当于 圆的半径。
r
πr
平面图形的面积计算公式
长方形的面积=长×宽 S=ab 正方形的面积=边长×边长 S=a2
平行四边形的面积=底×高 S=ah 三角形的面积=底×高÷2 S=ah÷2
x cm
梯形面 积减扇 形面积
扇形面积 减三角形 面积
(10+x)×10÷2=107 10+x=21.4 x=11.4
答:x的值是11.4。
课后作业
01 课后练习第6题。 02 相关练习。
a
把正方形看作长和宽相等的长方形。 a
平行四边形的面积=底×高
通过割补、平移转化为长方形。
六年级数学下册总复习知识点整理版

六年级数学下册总复习知识点整理版常用的数量关系式:1.每份数×每份数=总数;总数÷每份数=份数;总数÷份数=每份数。
2.速度×时间=路程;路程÷速度=时间;路程÷时间=速度。
3.单价×数量=总价;总价÷单价=数量;总价÷数量=单价。
4.工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。
5.加数+加数=和;和-一个加数=另一个加数。
6.被减数-减数=差;被减数-差=减数;差+减数=被减数。
7.因数×因数=积;积÷一个因数=另一个因数。
8.被除数÷除数=商;被除数÷商=除数;商×除数=被除数。
小学数学图形计算公式:1.正方形(C:周长;S:面积;a:边长):周长=边长×4;C=4a;面积=边长×边长;S=a×a。
2.正方体(V:体积;a:棱长):表面积=棱长×棱长×6;S表=a×a×6;体积=棱长×棱长×棱长;V=a×a×a。
3.长方形(C:周长;S:面积;a:边长):周长=(长+宽)×2;C=2(a+b);面积=长×宽;S=ab。
4.长方体(V:体积;S:面积;a:长;b:宽;h:高):表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh);体积=长×宽×高;V=abh。
5.三角形(S:面积;a:底;h:高):面积=底×高÷2;S=ah÷2;三角形高=面积×2÷底;三角形底=面积×2÷高。
6.平行四边形(S:面积;a:底;h:高):面积=底×高;S=ah。
六年级下册数学书知识点

六年级下册数学书知识点六年级下册数学书知识1第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
最新人教版六年级数学下册总复习 图形与几何全套课件(4课时)

复习导入
举手回答:我们学过哪些平面图形?你能对 学过的图形进行分类吗?
图形都是由线组成, 那么我们就从复习线 开始复习几何图形。
知识梳理 1. 平面图形的分类
封闭图形
平面 图形
不封闭图形
长方形 正方形 平行四边形
梯形 三角形
圆
四边形
直线 射线 线段 角
平行线 相交线
知识梳理
1. 平面图形的分类
知识梳理 7.正方体表面积的推导 后
上
左
右
正方体的表面积=棱长×棱长×6
下
S正=6a2
知识梳理
8.圆柱表面积的推导
底面
侧面
圆柱的表面积=侧面积+两个底面的面积
S表=2S底+S侧
S侧=Ch
底面
知识梳理
9.长方体的体积推导
h 厘 米 a厘米
长方体的体积 = 长×宽×高 V =ɑbh
长方体的体积 = 底面积×高 V = Sh
(1)大于90°的角叫钝角。
× 大于90°而小于180°(
)
角的大小与角的
(2)角的两条边越长,角就越大。两边的长短无关,( × )
与角的张口的大
(3)直线的两端可以无限延长。 小有关。
(√ )
(4)可以画一条长10厘米的直线。直线是不可度量。( × )
(5)平角就是一条直线。
(×)
只要是角,就是由一个顶 点和两条边组成。
50+35+27=112(厘米)
答:这个正方形 的周长是112厘米。
课后作业
1.从教材课后习题中选取; 2.从课时练中选取。
人教版 数学 六年级 下册
6 整理和复习
立体图形的认识和测量(2)
人教版六年级数学下册 图形与几何整理和复习 第5课时 图形的运动

你能利用图形的运动设计一个图案吗?
巩固运用
1.图ห้องสมุดไป่ตู้A→B→C→D是怎样变过来的?
A向右平移5格得到B,B向右平移5格后逆时针旋转90°得到C,C向右平移5格后逆时针旋转90°得到D。
(教材P92 做一做)
2.下面哪些图形是轴对称图形?画出它们的对称轴。
第3、4幅图是轴对称图形。
(教材P93 练习十九T1)
第 5 课时
图形的运动
2.图形与几何
第6单元 整理和复习
情境导入
这些图形都运用了什么运动方法?
整理复习
轴对称
如果把一个图形沿着一条直线对折,对折后的两边能够完全重合,这个图形就是轴对称图形,这条直线就是对称轴。
无数条
4条
2条
3条
1条
我们学过哪些轴对称图形?各有几条对称轴?
平移和旋转
什么是旋转?旋转的三要素是什么?
物体或图形绕着一个点或一个轴运动的现象是旋转。
旋转中心、旋转方向、旋转角度。
举例说一说生活中常见的旋转现象。
什么是平移?判断平移后的图形的位置,关键有几点?
物体或图形沿着直线运动的现象是平移。
平移的方向、距离。
举例说一说生活中常见的平移现象。
图形的放大与缩小
旋转45°
放大
图形的放大与缩小要注意什么?
各部分均按相同的比放大或缩小。
哪些运动不改变图形的形状和大小?哪些运动只改变图形的大小,而不改变形状?
想一想
平移和旋转改变了图形的位置,但是不改变图形的形状和大小;放大与缩小只改变图形的大小,不改变形状。
(教材P93 练习十九T5)
6.一个直角三角形ABC的两条直角边长分别是3cm和4cm,把它按2:1放大后得到三角形DEF。三角形ABC与DEF的周长之比是多少?面积之比呢?
部编版 人教版六年级数学下册《第六单元整理和复习2图形与几何》(全套)精品PPT优质公开课件

V = Sh
11.圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
1
圆锥的体积= × 底面积×高
3 Ⅴ =1 Ⅴ = 1 sh 圆锥 3 圆柱 3
下面说法是否正确?对的画“√”,错的画“×”。
(1)长方体六个面一定是长方形。
( ×)
圆锥的侧
(2)圆柱和圆锥的侧面展开都是长方形。 面展开是 (
24>22
答:围成正方体用纸多,最多是24平方厘米。
这节课你们都学会了哪些知识?
1.运用平面图形的周长面积的意义及计算 公式,灵活正确进行周长和面积计算。 2.利用体积公式,解决实际问题。 3.体会代数思想,发展创新思维。
下
S正=6a2
8.圆柱表面积的推导
底面
侧面
圆柱的表面积=侧面积+两个底面的面积
S表=2S底+S侧
S侧=Ch
底面
9.长方体的体积推导
h 厘 米 a厘米
长方体的体积 = 长×宽×高 V =ɑbh
长方体的体积 = 底面积×高 V = Sh
10.圆柱体积的推导
底面积
高 高
长方体的体积=底面积 × 高 圆柱的体积 = 底面积 × 高
周角
等于3600的角
不论放大 多少倍角 的度数都 不变。
名称 长方形 正方形 平行 四边形 三角形 梯形
圆形
5. 平面图形的特点
图例
特点
对边相等,四个角都是直角。
四条边都相等,四个角都是直角。
对边平行且相等,相对的角相等。
由三条线段围成,内角和是180度。
只有一组对边平行的四边形。
在同圆(等圆)中,所有的半径都相 等,所有的直径都相等。
六年级数学下册《几何形体》周长,面积,体积等公式大全!

半径=直径÷2r=d÷2
长方体的棱长总和=(长+宽+高)x4
圆的周长=圆周率x直径=圆周率x半径x2c=πd=2πr
正方体的棱长总和=棱长x12
圆的面积=圆周率x半径x半径s=πr²
长方体的表面积=(长x宽+长x高+宽x高)x2
六年级数学下册
《几何形体》周长,面积,体积等公式
内角和:三角形的内角和=180度。
六年级数学下册
《几何形体》周长,面积,体积等公式
长方形的周长=(长+宽)x2c=(面积=长x宽s=ab
正方形的面积=边长x边长s=a.a=a²
三角形的面积=底x高÷2s=ah÷2
平行四边形的面积=底x高s=ah
梯形的面积=(上底+下底)x高÷2s=(a+b)h÷2
正方体的表面积=棱长x棱长x6
长方体的体积=长x宽x高公式:v=abh
正方体的体积=棱长x棱长x棱长公式:v=aaa
长方体(或正方体)的体积=底面积x高
公式:v=sh
圆柱的侧面积=底面的周长x高
公式:s=ch=πdh=2πrh.
圆柱的表面积=底面的周长x高+上下底的面积
公式:s=ch+2s=ch+2πrr
圆柱的体积=底面积x高
公式:v=sh
圆锥的体积=1/3底面积x高
公式:v=1/3sh
北师大版六下数学《总复习.图形与几何》

线段是构成图形的基本图形。
三角形、四边形、梯形、平行四边形等都是平面上的线段图形,各条线段首尾顺次连接;圆是平面上的曲线图形。
正方体是长、宽、高都相等的长方体。
圆锥的体积是与它等底等高的圆柱体积的 。
围成一个图形的所有边长的总和叫作这个图形的周长。
物体的表面或围成的平面图形的大小,叫作它的面积。
长方体:由6个长方形围成的立体图形,有8个顶点,12条棱。
圆柱:由完全相同的两个圆和一个曲面组成。
圆锥:由一个圆和一个曲面组成。
2.平面图形的周长和面积。
长方形的周长=(长+宽)×2,即C=(a+b)×2;面积=长×宽,即S=a×b,用字母“a”“b”分别表示长方形的长和宽。
正方形的周长=边长×4,即C=a×4;面积=边长×边长,即S=a2,用字母“a”表示正方形的边长。
四边形是由四条边围成的平面图形。
平行四边形(两组对边平行)→长方形(有一个角是直角)
梯形(只有一组对边平行)
直角梯形:有一个角是直角的梯形。等腰梯形:两条腰相等。
圆:一条线段围绕其中一个端点旋转一周,就形成一个圆。
扇形:由两条半径和弧AB所围成的图形叫扇形。
二、立体图形的分类及概念
1.图形的特点。
正方体:由6个正方形围成的立体图形,有8个顶点,12条棱。
特点:轴对称图形的对称轴相对的部分到对称轴的距离相等,方向相反;平移后的图形大小、形状和方向都不变;旋转后的图形形状和大小不变,方向改变。
五、图形与位置
表示方法:可以用方向、角度和路程来描述物体的位置;还可以用数对来表示物体的位置;可以用方向,角度和路程描述行驶的路线。
用数对表示物体的位置:第一个数表示列,第二个数表示行。
人教版六年级下册图形与几何知识点总结

人教版六年级下册图形与几何知识点总结六年级下册数学复习专题图形与几何图形的认识、测量量的计量一、长度单位是用来测量物体的长度的。
常用的长度单位有千米、米、分米、厘米、毫米。
二、长度单位:1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米1米=1000毫米三、面积单位是用来测量物体的表面或平面图形的大小的。
常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。
边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。
边长1000米的正方形土地,面积是1平方千米。
六、面积单位:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米七、体积单位是用来测量物体所占空间的大小的。
常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升九、常用的质量单位有:吨、千克、克。
十、质量单位:1吨=1000千克1千克=1000克十一、常用的时间单位有:世纪、年、季度、月、旬、日、时、分、秒。
十二、时间单位:(60)1世纪=100年1年=12个月1年=4个季1个季度=3个月1个月=3旬大月=31天小月=30天平年二月=28天闰年二月=29天1天=24小时1小时=60分1分=60秒十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。
十四、常用计量单位用字母表示:千米:km米:m分米:dm厘米:cm毫米:mm吨:t千克:kg克:g升:l毫升:ml平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。
线段、射线都是直线上的一部分。
线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
小学数学六年级下册《图形与几何》知识点归纳

图形与几何一线和角(1)线* 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
* 射线射线只有一个端点;长度无限。
* 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
* 平行线在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
* 垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角(1)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。
平角180°。
周角:角的一边旋转一周,与另一边重合。
周角是360°。
二平面图形1长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式c=2(a+b) s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式c= 4as=a23三角形(1)特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4平行四边形(1)特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
小学六年级数学重点知识归纳几何体的分类与性质

小学六年级数学重点知识归纳几何体的分类与性质小学六年级数学重点知识归纳——几何体的分类与性质几何体是我们在数学学习中经常接触到的一个概念。
它是由许多面构成的立体图形,具有不同的分类和性质。
在小学六年级数学课程中,学生需要了解几何体的基本概念以及它们的分类和性质。
本文将对这些内容进行深入的归纳和总结。
一、几何体的基本概念几何体是由多个面、边和顶点组成的立体图形。
在此基础上,我们可以进一步了解以下几何体的基本概念:1. 面:几何体的面是指原来所占的平面。
常见的几何体如正方体、长方体、圆柱体、圆锥体、球体等都有不同的面。
例如,正方体有六个面,长方体有六个面,圆柱体有三个面,圆锥体有两个面,球体没有面。
2. 边:几何体的边是指相邻两个面之间的线段。
不同的几何体有不同数量和类型的边。
例如,正方体有12条边,长方体有12条边,圆柱体有三个侧边和两个底边,圆锥体有一个侧边和一个底边,球体没有边。
3. 顶点:几何体的顶点是指不同的边所相交的点。
几何体的顶点数量与边和面的数量有密切关系。
例如,正方体有8个顶点,长方体有8个顶点,圆柱体没有顶点,圆锥体有1个顶点,球体有1个顶点。
二、几何体的分类根据几何体的特点和性质,我们可以将几何体进行分类。
常见的几何体分类如下:1. 四面体:四面体是一种具有四个面的几何体。
它的特点是四个面都是三角形。
常见的四面体有金字塔、正四面体等。
2. 正方体:正方体是一种具有六个面的几何体。
它的特点是六个面都是正方形,并且相邻的面互相垂直。
正方体是一种特殊的长方体。
3. 长方体:长方体是一种具有六个面的几何体。
它的特点是六个面都是矩形,并且相邻的面互相垂直。
4. 圆柱体:圆柱体是一种具有三个面的几何体。
它的特点是两个面都是圆,第三个面是一个矩形。
例如,铅笔就是一个圆柱体。
5. 圆锥体:圆锥体是一种具有两个面的几何体。
它的特点是一个面是圆锥形,另一个面是一个圆。
例如,冰淇淋蛋筒就是一个圆锥体。
六年级下册几何知识点总结

六年级下册几何知识点总结在六年级下册学习了很多几何知识,包括图形的识别、性质以及计算等等。
下面将对这些几何知识进行一个总结。
一、图形的识别在六年级下册学习的几何知识点中,最基础的就是图形的识别。
几何图形包括:点、线、线段、射线、角、三角形、四边形、平行四边形、正方形、长方形、正三角形、等边三角形、等腰三角形、直角三角形、直角、圆等等。
1. 点:几何图形的最基本单位,没有长度、宽度和高度,通常用大写字母表示,如A、B。
2. 线:由无数个点连在一起形成的,长度无限延长。
3. 线段:由两个端点和这两个端点之间的点组成的线段,有特定的长度。
4. 射线:由一个端点和该端点上的一个点连在一起形成,长度无限延长。
5. 角:由两条射线共同起始于一个端点组成的图形。
6. 三角形:由三条线段组成的,有三个顶点和三条边的多边形。
7. 四边形:由四条线段组成的,有四个顶点和四条边的多边形。
8. 平行四边形:四边形中对边互相平行的四边形。
9. 正方形:四边长度相等且四个角都是直角的四边形。
10. 长方形:四边形中两对对边长度相等且四个角都是直角的四边形。
11. 正三角形:三角形中三条边都相等的三角形。
12. 等边三角形:三角形中三个角度都相等的三角形。
13. 等腰三角形:三角形中有两条边相等的三角形。
14. 直角三角形:三角形中一个角是直角的三角形。
15. 圆:由一条弧线和两条半径组成的图形,弧线上的所有点到圆心的距离相等。
二、图形的性质除了识别图形外,六年级下册还学习了各种图形的性质,包括角的性质、线段的性质等等。
1. 角的性质:- 直角:90度的角。
- 锐角:小于90度的角。
- 钝角:大于90度小于180度的角。
- 平角:180度的角。
2. 线段的性质:- 垂直线段:两条线段垂直相交时,相交的两条线段互相垂直。
- 平行线段:两条线段平行时,在同一平面上,两个平行线段上的任何一点到另一个线段上的任何一点的距离都相等。
三、计算几何知识在六年级下册,我们还学习了一些几何计算知识,包括周长、面积、体积等等。
苏教版数学六年级下册知识点总结与归纳精选全文完整版

可编辑修改精选全文完整版苏教版数学六年级下册知识点总结与归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。
圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的距离。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b 就是圆柱的高h。
长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式=2πr(h+r)知识点四:圆柱体积的计算方法理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册数学复习专题图形与几何图形的认识、测量量的计量一、长度单位是用来测量物体的长度的。
常用的长度单位有千米、米、分米、厘米、毫米。
二、长度单位:1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米1米=1000毫米三、面积单位是用来测量物体的表面或平面图形的大小的。
常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。
边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。
边长1000米的正方形土地,面积是1平方千米。
六、面积单位:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米七、体积单位是用来测量物体所占空间的大小的。
常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升九、常用的质量单位有:吨、千克、克。
十、质量单位:1吨=1000千克1千克=1000克十一、常用的时间单位有:世纪、年、季度、月、旬、日、时、分、秒。
十二、时间单位:(60)1世纪=100年1年=12个月1年=4个季1个季度=3个月1个月=3旬大月=31天小月=30天平年二月=28天闰年二月=29天1天=24小时1小时=60分1分=60秒十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。
十四、常用计量单位用字母表示:千米:km 米:m 分米:dm 厘米:cm 毫米:mm 吨:t 千克:kg 克:g 升:l 毫升:ml平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。
线段、射线都是直线上的一部分。
线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
二、从一点引出两条射线,就组成了一个角。
角的大小与两边叉开的大小有关,与边的长短无关。
角的大小的计量单位是(°)。
三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。
四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。
五、三角形是由三条线段围成的图形。
围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。
六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。
按边分,可以分为等边三角形、等腰三角形和任意三角形。
七、三角形的内角和等于180度。
八、在一个三角形中,任意两边之和大于第三边。
九、在一个三角形中,最多只有一个直角或最多只有一个钝角。
十、四边形是由四条边围成的图形。
常见的特殊四边形有:平行四边形、长方形、正方形、梯形。
十一、圆是一种曲线图形。
圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
通过圆心并且两端都在圆的线段叫做圆的直径。
十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。
这条直线叫做对称轴。
十三、围成一个图形的所有边长的总和就是这个图形的周长。
十四、物体的表面或围成的平面图形的大小,叫做它们的面积。
十五、平面图形的面积计算公式推导:【1】平行四边形面积公式的推导过程?①把平行四边形通过剪切、平移可以转化成一个长方形。
②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。
③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。
即:S=ah。
【2】三角形面积公式的推导过程?①用两个完全一样的三角形可以拼成一个平行四边形。
②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。
即:S=ah÷2。
【3】梯形面积公式的推导过程?①用两个完全一样的梯形可以拼成一个平行四边形。
②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。
③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。
即:S=(a+b)h÷2。
【4】画图说明圆面积公式的推导过程①把圆分成若干等份,剪开后,拼成了一个近似的长方形。
②长方形的长相当于圆周长的一半,宽相当于圆的半径。
③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。
即:S=πr2。
十六、平面图形的周长和面积计算公式:长方形周长=(长+宽)×2 长方形面积= 长×宽正方形周长= 边长×4 正方形面积= 边长×边平行四边形面积= 底×高三角形面积= 底×高÷ 2十七、常用数据:常用π值2π=6.283π=9.424π=12.565π=15.76π=18.847π=21.988π=25.129π=28.2610π=31.4 12π=37.6815π=47.116π=50.2418π=56.5220π=62.825π=78.532π=100.48 6.25π=19.625立体图形【认识、表面积、体积】一、长方体、正方体都有6个面,12条棱,8个顶点。
正方体是特殊的长方体。
二、圆柱的特征:一个侧面、两个底面、无数条高。
三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。
四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
五、体积:物体所占空间的大小叫做物体的体积。
容器所能容纳其它物体的体积叫做容器的容积。
六、圆柱和圆锥三种关系:①等底等高:体积1︰3 ②等底等体积:高1︰3 ③等高等体积:底面积1︰3七、等底等高的圆柱和圆锥:①圆锥体积是圆柱的1/3,②圆柱体积是圆锥的3倍,③圆锥体积比圆柱少2/3,④圆柱体积比圆锥多2倍。
八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。
九、立体图形公式推导:【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)①圆柱的侧面展开后一般得到一个长方形。
②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。
④圆柱的侧面展开后还可能得到一个正方形。
正方形的边长=圆柱的底面周长=圆柱的高。
【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?①把圆柱分成若干等份,切开后拼成了一个近似的长方体。
②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。
即:V=Sh。
【3】请画图说明圆锥体积公式的推导过程?①找来等底等高的空圆锥和空圆柱各一只。
②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。
③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。
即:V=1/3Sh。
十、立体图形的棱长总和、表面积、体积计算公式:长方体棱长总和= (长+宽+高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 长方体体积=长×宽×高正方体棱长总和=棱长×12 正方体表面积=棱长×棱长×6正方体体积=棱长×棱长×棱长圆柱体侧面积=底面周长×高圆柱体表面积=侧面积+底面积×2圆柱体体积=底面积×高圆锥体体积=底面积×高×1/3(二)图形与变换一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。
二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。
三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。
(三)图形与位置一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。
二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。
再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。