一特征值与特征向量概念

合集下载

5.1 特征值与特征向量

5.1 特征值与特征向量
4 40 a 2 2 a 0 b 1 3 b 0
例6
设A2 3A 2E O, 证明A 的特征值只能取1或2.
解 设A有特征值, A2 3 A 2E 则
3 2
2
又因为A2 3 A 2E 0 故2 3 2 0.
1或者 2.
例7
设n阶方阵A有n个特征值1,2,…., n, 求|A+3E|.
解 设A有特征值, A 3E 则
3
故A+3E的特征值为4, 5, ….., n+3 ( n 3)! A 3E 3!
回答问题
(1) 向量 0 满足 A ,
α 0 是 A 的特征向量吗? 不是
结论:设1, 2 ,, m是方阵A的m个特征值,p1, p2 ,, pm
Байду номын сангаас
依次是与之对应的特征 向量. 若1, 2 ,, m各不相等,
则p1 , p2 ,, pm线性无关。
总结:
1. 属于不同特征值的特征向量是线性无关的.
2. 属于同一特征值的特征向量的非零线性组合仍 是属于这个特征值的特征向量. 3. 矩阵的特征向量总是相对于矩阵的特征值而言 的,一个特征值具有的特征向量不唯一;一个特 征向量只能属于一个特征值.
特征向量仍为 x。
(1 证明: ) Ax x ( kA) x ( k ) x
( 2) A2 x A Ax Ax Ax x 2 x 1 1 1 1 1 ( 3) A Ax A x A x A x x
* *
|A |

x
若,, ,n 是可逆矩阵A的全部特征值,则A*的 | A| | A| | A| 全部特征值是 : , , , ,且对应的特征向量

特征值和特征向量

特征值和特征向量

特征值和特征向量特征值和特征向量是线性代数中非常重要的概念,在数学和工程领域中广泛应用。

它们与矩阵与向量的关系密切相关,可以用于解决许多实际问题。

一、特征值与特征向量的定义特征值和特征向量是矩阵的固有性质,它们描述了矩阵在线性变换下的特殊性质。

特征值(eigenvalue)是一个数,表示矩阵变换后的向量与原向量方向相等或反向。

特征向量(eigenvector)则是与特征值对应的向量。

对于一个n维矩阵A和一个n维向量x,如果满足以下等式:Ax = λx其中λ为标量,称为特征值,x称为特征向量。

我们可以将这个等式分解为(A-λI)x=0,其中I为单位矩阵,如果矩阵A存在一个非零向量x使得等式成立,则说明λ为矩阵A的特征值,x为对应的特征向量。

特征值和特征向量总是成对出现,一个特征值可能对应多个特征向量。

二、特征值与特征向量的求解为了求解矩阵的特征值与特征向量,我们可以使用特征值问题的基本公式:det(A-λI) = 0其中,det表示行列式求值。

解这个方程可以得到矩阵A的特征值λ。

然后,我们将每个特征值代入方程(A-λI)x = 0,求解得到对应的特征向量x。

三、特征值与特征向量的意义特征值和特征向量在许多应用中起着重要的作用,它们可以帮助我们理解矩阵的几何性质和变换规律。

在线性代数中,特征值和特征向量有以下几个重要意义:1. 几何意义:特征向量表示了矩阵变换后不改变方向的向量。

特征值表示了特征向量在变换中的缩放因子。

通过分析特征向量和特征值,我们可以了解变换对向量空间的拉伸、压缩、旋转等操作。

2. 矩阵对角化:如果矩阵A有n个线性无关的特征向量,我们可以将这些特征向量组成一个矩阵P,并将其逆矩阵P^{-1}乘以A和AP^{-1},就可以得到一个对角矩阵D,D的对角线上的元素就是矩阵A的特征值。

这个过程称为矩阵的对角化,可以简化矩阵的运算和分析。

3. 矩阵的奇异值分解:特征值和特征向量也与矩阵的奇异值分解密切相关。

5.1 特征值与特征向量的概念与计算

5.1 特征值与特征向量的概念与计算

特征值λ所对应的齐次线性方程组 特征值λ所对应的齐次线性方程组(λI - A) X = 0 的基础解系所含解向量的个数称为λ 几何重数, 的基础解系所含解向量的个数称为λ的几何重数, 即特征值所对应线性无关特征向量的个数. 特征值所对应线性无关特征向量的个数
−1 1 0 的特征值和全部特征向量. 例 求矩阵 A = −4 3 的一个特征向量, 若α为A的属于特征值 λ 的一个特征向量,
⇔ 齐次线性方程 ( λ I − A) X = 0有非零解 α ,
⇔ λ I − A = 0.
设 Aα = λα (α ≠ 0)
. ⇔α 是(λI − A) X = 0的非零解
步骤: 求A的特征值与特征向量的 步骤:
(1) 求 λI − A = 0 相异的根: 1 , λ2 ,⋯, λk ; 相异的根: λ
2,4 是 A 的特征值 , α , β 分别是 A 对应于特征值
2,的特征向量 , 4
3 Aγ = ≠ kγ . −1
γ 不是 A 的特征向量 .

证明: 设 A2 = A , 证明:A 的特征值为 0 或 1 .
证 设 Aα = λα

(α ≠ 0) A2α = A( Aα) = A(λα) = λ( Aα) = λ2α
= λn − ( λ1 + λ 2 + ⋯ + λ n )λ n −1 + ⋯ + ( −1) n λ1λ 2 ⋅ ⋯ ⋅ λ n
2. 设 αi = λαi (i =1 2), 则 A ,
A(α1 +α2 ) = Aα1 + Aα2 = λα1 + λα2 = λ(α1 +α2 ).
设 Vλ = α | Aα = λα, α ∈ Rn

一特征值与特征向量的概念

一特征值与特征向量的概念

一特征值与特征向量的概念
特征值和特征向量是矩阵分析中非常重要的概念,它们是一种表示矩阵变换特性的方法。

特征值是指矩阵能量的极值,而特征向量则是指矩阵的解决方案。

特征值是一个实数,用来描述矩阵变换的行为。

对于方阵,特征值就是矩阵的特征根。

所有特征值都是矩阵A的根。

特征值定义了矩阵变换的属性,可以用来描述矩阵的秩和特征。

特征向量是矩阵分析的另一个重要概念,它是可以满足特征值方程的向量。

如果矩阵A的特征值是λ,那么特征向量就是向量x使A*x=λ*x 成立的向量x。

特征向量提供了实际的解决方案,可以用来求解矩阵上的最小值。

特征值和特征向量也常用于图像处理、信号处理等领域。

图像处理中特征值和特征向量可以用来识别对象,提取特征,从而更好地分析图像。

例如,在图像检索中,可以使用特征值和特征向量来提取有用的特征,然后将图像分解成不同的基础元素,并使用这些基础元素来识别目标对象。

特征值和特征向量还有助于改善信号处理中的信号品质。

特征值和特征向量可以用来分析信号的频率谱,以便更好地识别噪声和其他干扰。

另外,特征值和特征向量也用于凸优化问题的求解。

一特征值与特征向量

一特征值与特征向量

设 A Pnn , f ( ) E A 为A的特征多项式, 则
f ( A) An (a a a )An1 (1)n A E 0.
11
22
nn
证: 设 B( )是 E A 的伴随矩阵,则
零矩阵
B( )( E A) E A E f ( )E 又B( )的元素是 E A 的各个代数余子式,它们
a a ... a
11
12
1n
E A
a 21 ...
a ... 22 ...
a 2n
fA( )
a a ... a
n1
n2
nn
称为A的特征多项式.
( fA( )是数域P上的一个n次多项式)
注:① 若矩阵A是线性变换 A 关于V的一组基的矩阵,
而0是 A 的一个特征值,则0是特征多项式 fA( ) 的根,即 f A(0 ) 0.
A
在基
1
,
2
,
3
下的矩阵是
1 2 2
A
2 2
1 2
2 1
,
求 A 特征值与特征向量.
解:A的特征多项式
1 2 2 E A 2 1 2 ( 1)2( 5)
2 2 1
故 A 的特征值为: 1 1(二重), 2 5
把 1 代入齐次方程组 ( E A)X 0, 得
2 2
(1) kA (k P) 必有一个特征值为 k ;
(2) Am (m Z ) 必有一个特征值为 m ;
(3)A可逆时,A1必有一个特征值为 (4)A可逆时,A* 必有一个特征值为
1 ;
A
.
(5) f ( x) P[ x], 则 f ( A)必有一个特征值为 f ( ) .

一特征值与特征向量的概念

一特征值与特征向量的概念

一特征值与特征向量的概念特征值与特征向量是矩阵与线性变换理论中的重要概念。

它们有助于我们理解矩阵的性质、矩阵的相似性以及线性变换的本质。

在本文中,我将详细介绍特征值和特征向量的概念、计算方法以及它们的应用。

一、特征值与特征向量的定义对于一个n阶矩阵A,如果存在一个非零向量x使得Ax=kx,其中k为一个数,则k称为矩阵A的一个特征值,x称为对应于特征值k的特征向量。

特征值与特征向量的存在是基于以下原理:矩阵A作为一个线性变换,将一个向量x变换成另一个向量Ax。

如果存在一个向量x使得变换后的向量与原向量方向相同或相反,那么这个向量就是一个特征向量,对应的特征值就是这个变换的比例因子。

特征值与特征向量是配对存在的,一个特征向量可以对应多个特征值,一个特征值也可以对应多个特征向量。

二、特征值与特征向量的计算方法要计算矩阵的特征值与特征向量,可通过以下步骤进行:1. 在方程Ax=kx中,对于给定的特征值k,求解齐次线性方程组(A-kI)x=0,其中I为单位矩阵,x即为对应特征值k的特征向量。

2.将齐次线性方程组(A-kI)x=0化为(A-kI)x的行阶梯形式,并求得零空间的基础解系,即特征向量。

对于n阶矩阵A,通常会有n个特征值,但特征值可以有重复。

若特征值的重复次数大于对应特征向量的个数,则称该特征值为特征值的几何重数。

若特征值的重复次数等于对应特征向量的个数,则称该特征值为特征值的代数重数。

三、特征值与特征向量的应用特征值与特征向量在数学和工程领域具有广泛的应用,以下介绍几个重要的应用场景:1.特征值分解特征值分解是将一个矩阵分解为特征值和特征向量的形式,可以用于简化计算、求逆矩阵以及进行数值计算。

特征值分解在信号处理、机器学习中有着重要的应用,例如主成分分析(PCA)和矩阵奇异值分解(SVD)等。

2.矩阵相似性如果两个矩阵具有相同的特征值和对应的特征向量,它们就是相似矩阵。

特征值和特征向量可以帮助我们判断矩阵之间的相似性,进而分析矩阵的性质。

特征值与特征向量定义与计算

特征值与特征向量定义与计算

特征值与特征向量定义与计算特征值(eigenvalue)和特征向量(eigenvector)是线性代数中重要的概念,在许多数学和科学领域中都有广泛的应用。

特征值和特征向量可以帮助我们理解和解决许多实际问题,如物理的振动问题、量子力学中的量子态等。

设A是一个n阶方阵,如果存在一个非零向量x使得Ax=kx,其中k 是一个常数,那么常数k称为矩阵A的特征值,非零向量x称为矩阵A对应于特征值k的特征向量。

特征值和特征向量的计算:对于给定的方阵A,我们可以通过求解特征方程来计算其特征值和特征向量。

设λ为矩阵A的特征值,x为A对应于λ的特征向量,则有方程(A-λI)x=0,其中I是单位矩阵。

求解特征方程的一般步骤如下:1.计算A-λI,形成一个新的矩阵。

2.根据这个矩阵,设置行列式为0,形成特征方程。

3.解特征方程,即求特征值λ的值。

4.将每一个特征值代入(A-λI)x=0,形成一个线性方程组。

5.解线性方程组,求解特征向量x。

需要注意的是,对于一个n阶矩阵A,其特征值的个数不超过n,且特征值可以是复数。

特征值和特征向量的性质:1.矩阵A和其转置矩阵A^T有相同的特征值。

2.两个矩阵A和B的特征值之和等于它们的直和A⊕B的特征值。

3.两个矩阵A和B的特征值之积等于它们的张量积A⊗B的特征值。

4.方阵A与其逆矩阵A^(-1)的特征值互为倒数,非零特征值满足这个特性。

5.方阵A的特征向量张成一个特征子空间,而特征值决定了这个特征子空间的维度。

特征值和特征向量在线性代数中有许多重要应用,包括:2.特征向量的正交性:特征向量张成的特征子空间中的向量是两两正交的,可以用于求解正交变换、对角化、正交投影等。

3.特征值的重要性:特征值大小可以用于判断矩阵的稳定性、收敛性等性质,可以用于分析无线电信号的频域特征等。

总而言之,特征值与特征向量是矩阵分析中非常重要的概念和工具,它们在物理、工程、计算机科学等领域中都有广泛的应用。

特征值和特征向量

特征值和特征向量

练习
3. 已知 A的特征值 为
(1)求AT、aA(a为任意实数A( ) k k为 、正整数)的特 (2设 ) A可逆,A求 1的特征值。
4.试证 A有特征值零的充分 条必 件要 是 A0.
§4.2 相似矩阵与矩阵 可对角化的条件
1. 相似矩阵概念 2. 相似矩阵基本性质 3. 方阵的对角化含义 4. 矩阵可对角化的条件
特征值和特征向量
§4.1 矩阵的特征值 和特征向量
1. 特征值与特征向量定义 2. 相关概念 3.两个有用公式
(特征方程根与系数的关系) 4.特征值与特征向量求法 5.特征值与特征向量的性质
1. 特征值与特征向量定义
定义4.1
设A为n阶方阵, 若存在常数
及非零向量
,使A成立 ,则称 为方A的 阵特征 , 值

A2, 故x=0,y=1.
课堂练习
设矩A阵 12
2 x
24与B5
y
4 2 1
4
相似 ,求x,y.
3.方阵的对角化含义
所谓方阵
A 可以对角化,
是指 A与对角阵
Λ相似.
即存在可逆矩阵
P , 使 P1AP成立.
4.
矩阵可对角化的条件
定理(充要条件)
n阶方阵
个线性无关的特征向量.
可对角化
A
A 有 n
A A O (EA)O
推论1、2(P159) 若α1,α2是A属于λ0的特征向量,则c1α1+ c2α2也是A属于λ0的特征向量。
3.两个有用公式(特征方程根与系数的关系)
设 n阶方 A 的 阵 特征 1,2,值 ,n为 ,
则 (1 1 )2 na1 1a2 2 an;n

4-1 特征值与特征向量

4-1 特征值与特征向量

kI A k A
k k -
A ③ 若A可逆,则 是 A*的一个特征值; l
A A A A
A A A I

A I= A

A A A
A
A可逆 0. 假设 =0, I - A =0 - A =0, 与A可逆矛盾. 0 A \ 是 A* 的一个特征值; l
一特征值与特征向量的概念一特征值与特征向量的概念定义定义11a为n阶方阵如果存在数和n维非零向量使得则称为a的特征值称为a的对应于特征值的特征向量
一、特征值与特征向量的概念 定义1 A为n阶方阵,如果存在数λ和n维非零 向量α,使得 A
则λ称为A的特征值, 称为A的对应于特征值 λ的特征向量. Ax y 线性变换 A
0, 是方程的非零解, I A 0.
特征值:方程 I A 0 的根. 特征向量: 齐次线性方程组 I A x 0 非零解向量.
定义2 称 I A 为A的特征矩阵. a11 a12 a1n a21 a22 a2 n I A
1 例3 设矩阵 轾 - 1 0 犏 已知矩阵A有特征值1 1, 2 2, A= 犏 x 0 2 犏 犏 2 1 求x,及A的另一个特征值. 4 臌 3 3 x 2 解:1 2 3 1 x 1 1 - 1 0 123 A 2 x 0 = x + 2 23 x 2 4
1 2 n
n
I A 1 2 n
n 1
1 12 n
n
令 0, 0I A = A (-1)n A 1 12 n

特征值与特征向量_

特征值与特征向量_

特征值与特征向量_一、特征值与特征向量的定义在线性代数中,对于一个nxn的矩阵A,如果存在一个非零向量v,使得Av=λv,其中λ是一个常数,则称λ为矩阵A的特征值,v为对应的特征向量。

特征向量是指矩阵在一些方向上的不发生变化的向量,而特征值则表示该方向上的缩放比例。

矩阵乘以特征向量v等于用特征值λ来放缩这个向量。

二、特征值与特征向量的性质1.特征值和特征向量总是成对出现,即一个特征向量对应一个特征值,可能有多个特征向量对应同一个特征值。

2.特征值可以为复数,但如果A是实对称矩阵,则特征值一定是实数。

3.矩阵的特征值可以通过求解方程,A-λI,=0得到,其中I是单位矩阵。

4.特征向量可以通过求解方程(A-λI)v=0得到,其中0是全零向量。

5.特征值的和等于矩阵的迹(所有主对角线上的元素之和),特征值的乘积等于矩阵的行列式。

三、特征值与特征向量的应用1.特征值分解特征值分解是矩阵分析中非常重要的一种分解方法,对于一个nxn的矩阵A,其特征值分解为A=VΛV^(-1),其中V是由特征向量构成的矩阵,Λ是由特征值构成的对角矩阵。

特征值分解可以用于求解线性方程组、矩阵的幂次计算、矩阵的逆等问题,也可以用于降维和数据压缩等领域。

2.特征值与特征向量的几何意义特征向量可以表示矩阵的一些方向上的不变性,通过求解矩阵的特征向量,可以了解矩阵对于不同方向上的变化情况。

例如,在计算机图形学中,可以通过矩阵的特征向量来描述形状的变化、旋转、缩放等操作。

3.矩阵的谱分析通过分析矩阵的特征值和特征向量,可以了解矩阵的性质和结构。

例如,对于对角矩阵,其特征值就是主对角线上的元素,特征向量为标准基向量。

四、总结特征值与特征向量是线性代数中的重要概念,具有广泛的应用。

特征值与特征向量可以用于矩阵分解、线性方程组求解、数据压缩和图形变换等问题,对于理解和分析矩阵的性质和结构有着重要的意义。

深入理解特征值与特征向量的概念和性质,对于掌握线性代数和应用数学具有重要的作用。

一、特征值与特征向量的概念

一、特征值与特征向量的概念

判断一个方阵A是否可对角化?
1. 求出A的所有特征值:1, ,s.
2. 对于i 1, s,求齐次线性方程组
(iE A)X =0
的基础解系的向量个数n1, ,ns.
s
若 ni =n, 则A可对角化; 否则不可对角化. i 1
四、小结
1.相似矩阵 相似是矩阵之间的一种关系,它具有很多良好 的性质,除了课堂内介绍的以外,还有: (1)A与B相似,则det( A) det(B); ( 2)若A与B相似, 且A可逆, 则B也可逆, 且A 1与 B 1相似; (3)A与B相似,则kA与kB相似, k为常数;
二、相似变换的性质
1. 相似变换是等价关系 (1)自 反 性 A与A本身相似. (2)对 称 性 若A与B相似,则B与A相似. (3)传 递 性 若A与B相似, B与C相似, 则A与C相似.
三、利用对角矩阵计算矩阵多项式
若A相似于某对角矩阵,则存在可逆矩阵P使得P1AP .
则 Ak Pk P1,
(2) 设1, ,s为不同的特征值. 对于i 1, s, 求
齐次线性方程组将(i E A) X 0的基础解系
{i1, , iri },
ri
ri
则 kijij ,其中ki1, ,kiri不全为零(足以保证 kijij 0),
i=1
i=1
即为矩阵A对应i的全部特征向量.
四、特征值和特征向量的性质
性质(总结):
A 为正交矩阵的充要条件是下列条件之一成立:
1 A1 AT ; 2 AAT E;
3 A的列向量是两两正交的单位向量;
4 A的行向量是两两正交的单位向量.
二、实对称矩阵的性质
说明:本节所提到的对称矩阵,除非特别说明, 均指实对称矩阵.

一特征值与特征向量概念

一特征值与特征向量概念
二、性质
(1) 反身性: A∽A; (2) 对称性: A∽B,则B∽A;
(3) 传递性: A∽B,B∽C,则A∽C;
(4)A∽B,则 R A = R B
(5)A∽B,则 A B
(6)A∽B,且A可逆,则 A1 ∽ B1
定理
若n阶矩阵A与B相似,则A与B有相同的特征 多项式,从而A与B有相同的特征值.
故有 E A n a11 a22 L ann n1 L
比较①,有 1 2 L n a11 a22 L ann .
定义 方阵A的主对角线上的元素之和称为方阵A的迹.
记为 tr A aii i .
二、特征值和特征向量的性质
推论1 n阶方阵A可逆A的n个特征值全不为零. 若数λ为可逆阵的A的特征值,
0或1.
3、三阶方阵A的三个特征值为1、2、0,则
2E 3A2 ( )
4、求下列方阵的特征值与特征向量
2 1 1
A
0 4
2 1
0 3
3 1 1
B
7 6
5 6
1 2
四、特征向量的性质 定理 互不相等的特征值所对应的特征向量线性无关。 定理 互不相等的特征值对应的各自线性无关的特征
向量并在一块,所得的向量组仍然线性无关。
而对对角阵 有
1k
k
2k
(1)
,()
(2 )
,
O
O
nk
(n
)
这样可以方便地计算A的多项式 ( A).
三、相似对角化
对n阶方阵A,若能寻得相似变换矩阵P使
P1AP
称之为把方阵A对角化.
定理的推论说明,如果n阶矩阵A与对角矩阵Λ相
似,则Λ的主对角线上的元素就是A的全部特征值. 那么,使得 P1AP 的矩阵P又是怎样构成的呢?

5.2方程的特征值与特征向量

5.2方程的特征值与特征向量

总结:
1.特征方程 A E 0的根,称为的特征值.
2.将代入方程 A E x 0后,求得的全部的非零解, 即是相应于的特征向量.
求矩阵特征值与特征向量的步骤:
1 计算A的特征多项式 A E ;
2 求特征方程 A E 0的全部根1 , 2 , , n , 就是A的全部特征值 ;
a1n a2 n ann
a11 a12 a21 a22 a an 2 n1
a11

A E
a12 an 2

a1n a2 n
=0
a21 a n1
a22
〈特征值、特征向量〉 设 A 为 n 阶矩阵, 是一 个数,如果存在非零向量 x ,使方程 Ax x (1)
成立,则称 为A 的一个特征值,相应的非零向 量 x 称为与 对应的特征向量。
若 是A 的一个特征值, 则方程 Ax x 有非零解
Ax x o 有非零解 ( A E ) x o 有非零解
即 p1 +p2 =1 p1 +2 p2, -1 p1 + -2 p2 =0,
p1 ,p2是线性无关的,故由上式得 -1 = -2 =0,即1 =2,
这与1与2是.两个不同的特征值矛盾,因此p1 +p2不是A 的特征向量
三、小结
求矩阵特征值与特征向量的步骤:
1. 计算A的特征多项式 A E ;
2. 求特征方程 A E 0的全部根1 , 2 , , n , 就是A的全部特征值 ;
3. 对于特征值i , 求齐次方程组
A i E x 0

第1节-特征值与特征向量、相似矩阵

第1节-特征值与特征向量、相似矩阵

例题
例1.求矩阵 A =
34 52
的特征值与特征向量.
1 1 0
例2.求矩阵
A
=
4 1
3 0
0 2
的特征值与特征向量.
2 1 1
例3.求矩阵
A
=
0 4
2 1
0 3
的特征值与特征向量.
§1 特征值与特征向量、相似矩阵
例4 求矩阵
1 2 2 A 2 1 2 ,
2 2 1
特征值与特征向量.

2 3 1 时, 解方程组
(E A)X 0 ,
2 2 2 x1

2 2 2 x2 0,
2 2 2 x3
§1 特征值与特征向量、相似矩阵
2 2 2 x1 2 2 2 x2 0, 2 2 2 x3
解之得基础解系为
(1 , 1 , 0)T , (0 , 1 , 1)T ,
§1 特征值与特征向量、相似矩阵
4 2 2 4 2 2
解之得基础解系为
2 x1 2 x2 0, 4 x3
(1 , 1 , 1)T ,
所以属于 1 5 的一个线性无关的特征向量就是
1 = 1 + 2 + 3,
全部特征向量就是 k11 (0 k1 P) .
§1 特征值与特征向量、相似矩阵
1i jn
1n 12 n
—(2)
比较(1)与(2)的展开式中同次项的系数,
§1 特征值与特征向量、相似矩阵
得根与系数的关系为:
a1 1 n a2 12 13 n1n
a3 123 124 n2n1n
an1 1 n1 12 n1 13 n 23 n an 1n 12 n

(完整版)特征值与特征向量的概念与求法

(完整版)特征值与特征向量的概念与求法

A
2
3
1
2 1 3
于是,属于1 2 4 的全部特征向量为k11(k1 0 )
《线性代数》课题组
对于3 2,求解齐次线性方程组 (A 2E)x 0
2 3 3 2 3 3 1 0 0
A
2E
2
1
1
0
1
1
0
1
1
2 1 1 0 0 0 0 0 0
解得一个基础解系为
0
思考
1
对角矩阵
2
a11 a12
上三角矩阵
a22
的特征值为__1_,__2_,___, n
n
a1n
a2n
的特征值为_a_1_1_, a__22_,__
, ann
ann
《线性代数》课题组
求特征值就是求一元n次方程的根;求特征向量就是求解 相应的齐次线性方程组的非零解.
例1
求矩阵
2
1
1
4 3 3
A
2
3
1
2 1 3
于是,属于3 2 的全部特征向量为k22 (k2 0)
《线性代数》课题组
1 1 1 1
例3 设A 1 1 1 1,求A的特征值与的特征向量.
1 1 1 1
1 1 1 1
所有元素 均为1
解 A 的特征方程为
1 1 1 1
1 1 1 AE
1 3( 4) 0
《线性代数》课题组
注意
(A–E) = 0
(1)矩阵的特征向量总是相对于矩阵的特征值而言的,一 个特征值具有的特征向量不唯一;
若为A的属于的特征向量,则k(k ≠ 0)也是A的属于 的特征向量。即A的属于的特征向量不唯一。

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

Ak
( PP 1 )k
Pk P1
0 P
k
5
P1
上例中,对二阶方阵AP,存在可逆矩阵P, 使得P1AP .
对角阵的对角元是A的特征值,可逆阵P 即为相应对角元位置的特征值的线性无关的特 征向量组成.
接下来,主要研究方阵化对角阵的问题.
定义 设 A, B 都是 n 阶矩阵,若存在可逆矩阵P,使得 P1AP B
特征值, A 为 A 的一个特征值.
问题( :1)已知是A的特征值,求f (A)特征值
(2)已知f (A)=O,求A的特征值
例6 设3阶矩阵A的一个特征值是-3,则-A2必有 一个特征值 ___
例7
设A=
1 0
2 3
,求B=A2
-2A+3E 的所有特征值 2
例8 设三阶矩阵A的特征值分别为1,2,3, 则 A 2E __
4 1 3
( 1) 22 ,
令 ( 1) 22 0
得A的特征值为1 1,2 3 2.
当1 1时,解方程E A x 0.由
1 1 1 1 0 1
E
A
0
3
0
0
1
0
,
4 1 4 0 0 0
得基础解系
1 p1 0, 1
故对应于1 1的全体特征向量为
k p1
E A
a21
L
a22 L
LL
an1
an2 L
a1n
a2n
L
ann
称E A 为A的特征方阵 .
记 f E A ,它是 的 n 次多项式,
称其 为方阵 A的 特征多项式 .
称以 为未知数的一元n 次方程 E A 0
为A的特征方程 .

特征值特征向量

特征值特征向量

二、特征值与特征向量的求法
(1) 令 A − λ I = 0, 求出λi
(2)对每个λi , 令( A − λi I ) x = 0, 求出基础解系ξ1 , ..., ξ t ,
则对应于λi的全部特征根为: x = c1ξ1 + Biblioteka .. + ct ξ t .
注: 1) 特征向量不唯一; 2)λi 对应的特征向量不构成向量空间
T
当λ2,3 = 1 时, 解方程 ( A − 1 ⋅ I ) x = 0, 得
基础解系
ξ 2 = ( −1, −2,1)
T
∴ λ2,3 = 1的特征向量为: kξ 2 , k ≠ 0, k ∈ R
显然, 显然,ρ λ2 = 1 ≤ 2 = mλ2 .
− 2 1 1 的特征值与特征向量. A 例3 设 = 0 2 0 , 求A 的特征值与特征向量. − 4 1 3
(少了个0向量).
λi的特征子空间=λi的特征向量+零向量
即为(A − λi I ) x = 0的解空间,记为N(A − λi I )
dim ( N ( A − λi ) ) 称为λi的几何重数, 记为ρ λi
称λi 在f (λ ) = 0的重数为代数重数,记为mλi
(代 数 重 数 ≥ 几 何 重 数 )
3. 方阵A与A 的特征值相同,
T
但 特 征 向 量 却 未 必 一 样.
0 0 A= , λ1,2 = 0, 1 0 0 x = c 1
0 1 A= , λ1,2 = 0, 0 0
1 x = c 0
4. 设 Ax = λ x , 且 A 可逆,则 可逆,
∴ y j T Axi = y j T λi xi , xi T AT y j = xi T λ j y j

特征值与特征向量的概念

特征值与特征向量的概念
(1). k 是矩阵 kA 的特征值 (2). m 是矩阵Am的特征值
(3).设 g( x) a0 xm a1xm1 L am
则 g() 是矩阵 g(A) 的特征值
(4).当A可逆时, 1是矩阵 A1的特征值
A 为A的伴随矩阵A*的特征值
定理
设 1, 2 ,L , m 是方阵A的特征值,
p1 , p2 ,L , pm
1 x 2 x
1 2 x 0,
由于1 2 0, 则x 0, 与定义矛盾 .
思考题
设4阶方阵A满足条件: det3E A 0,
AAT 2E,det A 0,求A的一个特征值.
征向量.
二、特征值和特征向量的性质
1. 设n 阶方阵A的特征值为: 则
1, 2 ,L , nபைடு நூலகம்
(1) 1 2 n a11 a22 ann;
(2) 12 n A .
称为矩阵的迹
2. A 与其转置矩阵AT 有相同的特征值,事实上 有相同的特征多项式。
3. 若 是矩阵A的特征值, x 是A的属于的 特征向量,则
x2 x3
0
解得 基础解系:
0
p 1
0 1
,
所以k p1(k 0)是对应于1 2的全部特征值.
当 2 3 1 时 ,由
E A x 0
2 1 0 1 0 1

E
A
4 1
2 0
01
~
0 0
1 0
2 0
,
解得 基础解系:
1
p
2
2 1
,
所以k p2 (k 0)是对应于 2 3 1的全部特征值.
2 1
例2 解
求矩阵A
1 4

线性代数特征值与特征向量

线性代数特征值与特征向量
为f(A)的全部特征值。
5
§1 特征值与特征向量
例6(P107)
例5
:
设A
1 0
2
3
,
求B

A2
2A
3I的特征值
解:三角阵A的特征值为它的对角元1和3,
由B A2 2A 3I可知对应的多项式为
f (x) x2 2x 3,
B的特征值为f (1) 2, f (3) 6.
6
§1 特征值与特征向量
的一个特征向量。
把 Ap p 改写成 (In A)p 0 ,则特征向量p就是齐次线性方程组 (In A)x 0 的任意一个非零解。显然,它有非零解当且仅当它的系数 行列式为零: In A 0 。这就是特征值 必须满足的方程。
2
§1 特征值与特征向量
一、定义
把 In A 称为A的特征方阵;行列式
特征值与特征向量
§1 特征值与特征向量
一、定义
设A为n阶方阵,p为n维非零列向量,通常,Ap未必与p线性相关。
如果Ap与p线性相关,则有 Ap p 。
定义1(P103) 设 A (aij ) 为n阶方阵,如果存在某个数 和某个n维非零 列向量p满足,则称 是A的一个特征值,成p是A的属于这个特征值
9
练习 P117 2.(矩阵相似)
3. (矩阵相似条件,并求特征向量)
10
谢谢!
11
定理1(P113) 相似方阵有相同的特征多项式。因而有相同的特征值,有 相同的迹和相同的行列式。 例4(P113) -- 运用定理1。
8
§2 方阵的相似变换
定理2(P114) n阶方阵A相似于对角阵A有n个线性无关的特征向量。 定理3(P115) 属于n阶方阵A的两两不同特征值的特征向量组一定为线性 无关组。 推论(P116) ① 任意一个没有重特征值的方阵一定相似于对角阵。 ② 对角元两两不同的三角阵一定相似于对角阵。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的λ都是方阵A的特征值.
定义 称以λ为未知数的一元n次方程 E A 0 为A的特征方程.
定义 称以λ为变量的一元n次多项式 f E A
为A的特征多项式.
定理 设n阶方阵 A aij 的特征值为 1,2 , ,n
则 (1) 12 n A ; (2) 1 2 n a11 a22 ann;
比较①,有 1 2 n a11 a22 ann .
定义 方阵A的主对角线上的元素之和称为方阵A的迹.
记为 tr A aii i .
二、特征值和特征向量的性质
推论1 n阶方阵A可逆A的n个特征值全不为零. 若数λ为可逆阵的A的特征值,
推论2 则 1为 A的1 特征值. 推论3 则 k为 kA的特征值. 推论4 则 A 1为 A的特征值. 推论5 则 m 为 Am的特征值. 特别 单位阵E的一个特征值为1.
三、应用举例
1、若λ=2为可逆阵A的特征值,则
1 3
A2
1
的一个特征值为( )
2、证n阶方阵A的满足 A2 A,则A的特征值为
0或1.
3、三阶方阵A的三个特征值为1、2、0,则
2E 3A2 ( )
4、求下列方阵的特征值与特征向量
2 1 1
A
0 4
2 1
0 3
3 1 1
B
7 6
5 6
( A) P()P1.
而对对角阵 有
1k
k
2k
(1)
,()
nk
(2 )
,
(n
)
这样可以方便地计算A的多项式 ( A).
三、相似对角化
对n阶方阵A,若能寻得相似变换矩阵P使
P1AP
称之为把方阵A对角化.
定理的推论说明,如果n阶矩阵A与对角矩阵Λ相
似,则Λ的主对角线上的元素就是A的全部特征值. 那么,使得 P1AP 的矩阵P又是怎样构成的呢?
0 (2) A 0
0 0
0 0
,
化矩阵A为对角矩阵。
3 0 1
例题: A, B为n阶矩阵,且A 0,证明
AB∽ BA。
一、内积的定义与性质
,
pn
)
2
P,
n
所以 P 1 AP , 即A与对角矩阵Λ相似.
定理 n阶矩阵A能与对角矩阵Λ相似 A有n阶线性无关的特征向量.
推论 如果n阶矩阵A有n个不同的特征值,则矩阵A
可相似对角化.
推论 若n阶矩阵A可相似对角化A的任 ti重特征值 i 对应 ti 个线性无关的特征向量.
注意 (1)P中的列向量 p1, p2 , , pn的排列顺序要与 1,2 , ,n 的顺序一致.
a12
a22
a1n a2n
an1
an2
ann
它的展开式中,主对角线上元素的乘积
a11 a22 ann
是其中的一项,由行列式的定义,展开式中的其它项至
多含n-2个主对角线上的元素,因此,特征多项式中
含 n 与 n1的项只能在主对角线上元素的乘积项中.
故有 E A n a11 a22 ann n1
设存在P可逆,使得 P1AP AP P
若 P p1, p2, , pn ,
1

A p1, p2 ,, pn p1, p2,,pn2
1 p1,2 p2 , ,n pn
n
于是有 Api i pi (i 1, 2, , n), 因为P可逆, 故
pi 0(i 1, 2 , n), 于是 p1, p2 , , pn是A的n个线性无
(2)因 pi是 ( A E)x 0的基础解系中的解向量, 故 pi 的取法不是唯一的,因此P也是不唯一的.
(3)又 A E 0的根只有n个(重根按重数计算) 所以如果不计i 的排列顺序, 则 是唯一的.
例题:
1 (1) A 3
4 4
2 0 ,
化矩阵A为对角矩阵。
3 1 3
一、特征值与特征向量的概念
定义 A为n阶方阵,λ为数, 为n维非零向量,

A
(1)
则λ称为A的特征值, 称为A的特征向量.
注 ① 特征向量 0,特征值问题只针对与方阵;
② , 并不一定唯一;
③ n阶方阵A的特征值,就是使齐次线性方程组
E A x 0 有非零解的λ值,即满足 E A 0
定理
若n阶矩阵A与B相似,则A与B有相同的特征 多项式,从而A与B有相同的特征值.
推论 若n阶矩阵A与对角矩阵
1
diag(1,2 ,
,
n
)
2
n
相似, 则 1,2 , ,n 就是A的n个特征值.
(7)A∽B,则 Am ∽ Bm
(8)A∽B,则A的多项式 A ∽ B
特别 若有可逆矩阵P使 P 1 AP , 则 Ak P K P 1,
证明① 当1,2 , ,n 是A的特征值时,A的特征多项
式可分解为 f E A 1 2 n n 1 2 n n1 1 n 12 n
令 0, 得 A 1n 12 n
即 12 n A .
证明② 因为行列式
a11 E A a21
记作: A∽B. 对A进行运算P 1AP, 称为对A进行相似变换, 可逆矩阵P称为把A变成B的相似变换矩阵.
二、性质
(1) 反身性: A∽A; (2) 对称性: A∽B,则B∽A;
(3) 传递性: A∽B,B∽C,则A∽C;
(4)A∽B,则 R A = R B
(5)A∽B,则 A B
(6)A∽B,且A可逆,则 A1 ∽ B1
关的特征向量。
反之,若A有n个线性无关的特征向量 p1, p2 , , pn
即 Api i pi (i 1, 2, , n), 设 P ( p1, p2 , , pn ), 则P 可逆,且 AP ( Ap1, Ap2 , , Apn ) (1 p1,2 p2 , ,n pn )
1
( p1, p2 ,
1 2
四、特征向量的性质 定理 互不相等的特征值所对应的特征向量线性无关。 定理 互不相等的特征值对应的各自线性无关的特征
向量并在一块,所得的向量组仍然线性无关。
定理 若n阶矩阵A的任 ti 重特征值 i 对应的线性无
关的特征向量的个数不超过 ti .
一、定义
定义 设A、B都是n阶矩阵,若有可逆矩阵P, 使得 P 1 AP B, 则称B是A的相似矩阵,或者说矩阵 A与B相似.
相关文档
最新文档